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Abstract: It focuses on the problems of forecasting exchange rate that is a nonlinear time series. A dynamics systems approach 

and the recurrent neural networks (RNN) were employed to modeling this nonlinear time series. The delay time was calculated 

using mutual information method and embedding dimension was confirmed by false nearest neighbors. The dataset was 

reconstructed form source time series for trained and verified the neural networks model. The quadratic optimization criterion 

was considered which the neural networks weights update algorithm were derived using gradient descent method for hidden 

layer; recurrent layer and output layer. The calculation flow chart was designed for neural networks learning and emulation. The 

reliability and stability of neural networks was confirmed by testing dataset. The results of simulation showed that the recurrent 

neural networks were preferably performance for prediction the change of exchange rate. 
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1. Introduction 

Exchange rate is a very important economic variable; the 

fluctuation of exchange rate has great effects on the waxing 

and waning of national income, the development of industry 

and agriculture, the change of interest rate, etc. As a result, the 

forecasting of exchange rate has attracted wide attention. 

People have developed many methods and models in 

exchange rate forecasting [1~3]. It is proved that neural 

network not only has strong ability in nonlinear mapping, 

which can approximate primitive function in any precision; 

but can also learn from large amounts of history data to find 

laws in some behavior changes. There are masses of reference 

make study on artificial neural network in exchange rate 

forecasting [4~8]. Although the study shows that the result is 

better than results in other methods, the training network is 

caught in local minimal point when it is connected with weight. 

Lyapunov’s theory in stability on dynamic system is used to 

derive the learning algorithm in neural network weight and 

make sure the neural network learning does not converge to 

the local minimal. The paper creates a recurrent neural 

network by Matlab toolbox. Finally, accomplishing the goal 

uses middle price at RMB exchange rate to predict middle 

price in the future. The features and contents of this paper are 

included. Section 2 the forecasting model of recurrent 

networks was proposed. Section 3 the neural networks 

weights update algorithm was deduced by gradient descent 

method. Section 4 the prediction calculate flow was designed 

and the RMB to US dollars exchange rate simulation was 

proceed, and then prediction error was analysis. 

2. Neural Network Forecasting Model 

Nonlinear forecasting equation can be described as
 
[9~12]: 

( 1) [ ( ), , ( 1)] ( )y k f y k y k p v k+ = − + +⋯       (1) 

where, ( )f ⋅  is a nonlinear function; 

( ), , ( 1) Ry k y k p− + ∈⋯  is output variable in nonlinear 

function and output time delay in different orders described in 

equation (1). p  is order in time delay during input or output. 

If ( ( ) | ( ), ( 1), ) 0v k y k y k − =E ⋯  and ( )kv  has limited 

variance 2σ , then there is a given minimum mean square 

error optimal estimation in series [13~14]

( ), ( ); 1y k y k p k p− ≥ +⋯ . That is: 
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ˆ( 1) ( ( 1) | ( ), ( 1), , ( ))y k y k y k y k y k p+ = + − −E ⋯  

( ( ), ( 1), , ( 1))f y k y k y k p= − − +⋯    (2) 

Where: there is mean square error and unknown nolinear 

function f . As a result, it can use Recurrent Neural 

Networks to approximate the function f . The structure of 

recurrent neural network shows [15~16] in figure 1. Where: 

weights , , 1, 2, , , 1, 2, ,H
i jW i p j m= =⋯ ⋯  are from input layer 

to hidden layer in neural network, the weights 

, 1, 2,O
jW j m= ⋯  are from hidden layer to output layer, the 

weight R
lW . Hidden layer neuron activation function ( )ϕ ⋅  

is Sigmoid function. The output layer is a linear combination. 

 

Figure 1. Structure diagram of recurrent neural network. 

Figure 1 represents that the neural network approximate 

equation (1). That is: 

ˆ( 1) ( ( ), ( 1), , ( 1))y k f y k y k y k p+ = − − +⋯  

,

1 1 1

( ( 1) ( ))

pm s
O R H
j l j j h h

j l h

W W x k W U k

= = =

= Φ − +∑ ∑ ∑   (3) 

In equation (3), network parameters , , ,H O R
j h j lW W W  can be 

acquired through neural network learning. 

( ) [ ( ), ( 1), , ( 1)]
T

hU k y k y k y k p= − − +⋯ , 

( ), 1, 2, ,jx k j m= ⋯  is output signal in hidden layer. In order 

to derive the learning algorithm in neural network, the 

equation (3) can be revised as: 

1

s

,

1 1

( ) ( )

( ) ( ( ))

( ) ( 1) ( ),

1,2,

m
O

i j j

j

j j

p
R H

j l j j h h

l h

Y k W x k

x k S k

S k W x k W U k

j m

ϕ
=

= =

=

=

= − +

= ⋅⋅ ⋅ ⋅⋅ ⋅

∑

∑ ∑

   (4) 

3. The Weights Update Algorithm 

The error function is ˆ( ) ( ) ( )i i ik y k y kε = − . Defining cost 

function as: 

2 2

1 1

1 1
ˆ( ) ( ) ( ( ) ( ))

2 2

m m

k i i i

i i

E k k y k y kε
= =

= = −∑ ∑   (5) 

Where: ( )iy k is k  time’s output vector of source time 

series, ˆ ( )iy k  is k  time’s output vector of neural network. 

The weights adjust algorithm is 

( ) ( 1) kE
k kθ θ η

θ
∂

= − −
∂

 

ˆ ( )
( 1) ( ) i

i

y k
k kθ ηε

θ
∂

= − +
∂

        (6) 

Where: the θ  is weight for all neural networks. The θ  is 

hidden layer weight. 

^

O
j

( )
( )j

y k
x k

W

∂ =
∂

                (7) 

The θ  is output layer weight. 

,

ˆ( )
( )O

j jH
i j

y k
W P k

W

∂ =
∂

             (8) 

The θ  is recurrent layer weight. 

,

ˆ( )
( )O

j i jR
j

y k
W Q k

W

∂ =
∂

            (9) 

Where: 
( )

( )
j

j R
j

X k
P k

W

∂
=

∂
; ,

,

( )
( )

j

i j H
i j

X k
Q k

W

∂
=

∂
 

The equation (10) and (11) are solvable 

( ) ( ( ))[ ( 1) ( 1)]R
j j j j jP k S k X k W P kϕ ′= − + −  

(0) 0jP =                   (10) 

, ,( ) ( ( ))[ ( ) ( 1)]R
i j j h j i jQ k S k U k W Q kϕ ′= + −  

, (0) 0i jQ =                  (11) 

The global error function is 

1

m

k

k

E E

=

=∑                 (12) 

According to all above, the calculated step is designed. 

Step (1) all layer weights are initialized, set training rate η  

and ,(0) 0, (0) 0, 0, 1j j i jx P Q k= = = =  

Step (2) the delay time of time series is computed by mutual 
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information and embedded dimension of time series 

confirmed by false nearest neighbors. 

Step (3) the data pair { ( ), ( )p mU k Y k } is formed using 

results of step (2). 

Step (4) the neural networks weights are trained by data pair 

{ ( ), ( )p mU k Y k } 

Step (5) the ( )jS k , ( )jX k , ( )iY k  is calculated using 

equation (4) 

Step (6) the error of weights training is computed using 

equation (5) 

Step (7) using equations (5), (6), (7), (8), (9) and (10) to 

adjust all of weights 

Step (8) set 1k k= + , go to step (2) and continue to 

calculate until all datasets finish. 

Step (9) if 

1

m

k

k

E ε
=

>∑ , ε >0, set 1k =  again, return step 

(2), when E  less then a position ε , the weights training 

produce finished. 

Step (10) the testing dataset is used to confirm the 

performances of the neural networks. 

4. The Time Series Prediction Simulation 

A time series has 478 samples 1 2 3 478{ , }y y , y , , y⋯⋯ . The 

two datasets are formed to use samples of source time series, 

the first dataset has 390 samples which are used to train the 

neural networks, the second dataset has 88 samples which are 

used to verify the neural networks. The embedded dimension
 

[17] shows in figure 2, the time delay [18] shows in figure 3. 

From figure 1 and figure 2, the time delay is 15 and 

embedded dimension is 4, the data pair { ( ), ( )p mU k Y k } is 

constructed to form the first dataset in order to input the neural 

networks, it is 15×20×1. 

 

Figure 2. The Time delay curve. 

 

Figure 3. The embedded dimension curve. 

 

Figure 4. The neural networks train and verify curve. 

The simulation output shows figure 4, the absolute error of 

train is in figure 5, and histogram is in figure 6 and figure 7, in 

the figure 4 the neural networks are better to predict the 

exchange rate. In the figure 5 may know that only 8 epochs the 

neural networks absolute error is close to zero and the error is 

normal distribution in figure 6 and figure 7. The neural 

networks training algorithm may be satisfy real time calculate 

on line. The weights updated algorithm has a high speed to 

train neural networks and not convergence in the local 

minimal. The algorithm may apply to modeling and control 

dynamics systems, also. 

 

Figure 5. Absolute error of train Neural Networks. 
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Figure 6. The histogram of error distribution. 

 

Figure 7. The histogram of absolute error distribution. 

5. Conclusion 

The neural networks have recurrent neurons to feedback the 

hidden neuron states in order to speed up the weights update 

and the fast convergence. The recurrent neurons can memorize 

learning message that the neural networks can not locate in 

local minimal point during training process. When apply the 

recurrent neural networks to forecasting middle rate of RMB 

to US dollars, it is clear that the neural networks has some 

feedback neurons have better performances then others 

methods. This paper proposed method may use modeling 

chaotic time series or nonlinear dynamics model. 
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