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Abstract: Numerical weather prediction (NWP) models are commonly used for wind power forecasts, but NWP forecasts are 
uncertain due to uncertainties in the initial conditions, approximate model physics, and the chaotic nature of the atmosphere. 
Ensemble prediction systems (EPS), which simulate multiple possible futures, thus provide valuable information about forecast 
uncertainties. However, the spatial resolution of global ensemble forecasts from the European Centre for Medium-range Weather 
Forecast (ECMWF) and the National Centers for Environmental Prediction (NCEP) is relatively coarse and insufficient for many 
wind power farms built in complex terrain. This work proposes using the Weather and Research Forecasting model (WRF) to 
downscale ECMWF EPS and NCEP global ensemble forecast system (GEFS) to determine and compare the added values of 
downscaling different global EPS forecasts for wind forecasts in the complex terrain of Sichuan and Yunnan in China. A total of 
366 days of day-ahead forecasts (28 to 51 hours) for wind speed at 80 meters are evaluated. The results demonstrate that the 
ensemble average of the higher resolution WRF downscaled forecast is considerably better than that of the global EPS forecast, 
and downscaled forecast of ECMWF EPS achieves the best performance. Also, a selective ensemble average (SEA) method is 
proposed and applied for the ultra-short (10 to 13 hours) forecast. Verification results demonstrate that the SEA method 
outperforms the ensemble mean. 
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1. Introduction 

At the end of 2022, China had about 365 GW of wind 
generation capacity installed, according to data from China’s 
National Energy Administration (NEA). In 2022, wind power 
plants provided about 8% of China’s electricity production 
and accounted for 10% of China’s installed power generating 
capacity. Meanwhile, wind power prices have decreased and 
become comparable with coal-fired power generation [1, 2]. 
In 2011, China’s NEA drafted a regulation requiring a 
15-minute resolution of both a 24-hour ahead wind forecast 
(96 steps) and 4 hours ahead ultra-short wind forecast (16 

steps) (Chinese GBT). In addition, penalties are imposed for 
wind farms that exceed the presupposed error threshold [3]. 
Due to regulation and the increasing wind power percentage 
of the energy mix of China and the world, the accurate wind 
power forecast is increasingly important for large-scale wind 
energy penetration [4, 5]. 

Numerical weather prediction (NWP) models are widely 
used for wind power forecasts [6, 7]. However, using NWP 
models for wind power forecasts suffers from several 
uncertainties. Firstly, the atmospheric system is chaotic, and 
minor errors in the initial conditions can grow dramatically [8, 
9]. Such errors in the initial conditions of NWP models are 
inevitable due to insufficient observations, which affect NWP 
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forecast accuracy as NWP is essentially an initial value 
problem [10, 11]. Secondly, approximate simulations of the 
complex atmospheric processes cause errors limiting NWP’s 
predictability [8]. Therefore, the ensemble prediction system 
(EPS) is often used for estimating forecast uncertainty [12]. In 
the early 1990s, both the European Centre for Medium-range 
Weather Forecast (ECMWF) and the National Centers for 
Environmental Prediction (NCEP) Toth et al. developed their 
operational EPS [13-17]. Currently, the ECMWF EPS uses 18 
km horizontal resolution and 91 vertical levels and contains 
one control member and 50 perturbed members [18]. On the 
other hand, the NCEP global ensemble forecast system (GEFS) 
uses 34 km horizontal resolution and 64 vertical levels with 
one control member and 20 perturbed members [19]. 

Since many wind power plants are built in complex terrain, 
higher than the coarse resolution of global EPS data is needed 
to resolve topographic impact and local patterns. Dynamical 
downscaling using a mesoscale NWP model is one of the most 
common approaches to obtaining higher spatial resolution. 
Horvath et al. applied Aire Limitée Adaption dynamique 
Développement International (ALADIN) model to downscale 
the ECMWF reanalysis (ERA-50) data to 8 km horizontal grid 
spacing in the complex terrain of Croatia for ten years [20]. 
The statistical verification against wind speed measurement 
suggested that the downscaling improved the model accuracy. 
Marjanovic et al. ran the Weather Research and Forecasting 
(WRF) model to downscale the North American Regional 
Reanalysis (NARR) data for wind farms located in the 
complex terrain on the West Coast of the United States [21]. 
They compared WRF predicted wind speed of different 
resolutions and showed significant improvement of higher 
resolution simulations compared to lower resolution 
simulations, especially during weak forcing. Jiménez and 
Dudhia proposed a new parameterization to account for the 
effects of the unresolved topography that exerts over the 
surface circulation in WRF [22]. Their results demonstrated 
that the WRF simulation using the new scheme outperforms 
the default WRF simulation regarding surface wind over the 
complex terrain region located northeast of the Iberian 
Peninsula. 

Dynamical downscaling of the global ensemble is also 
applied for constructing regional EPS (REPS) with initial 
conditions and lateral boundary conditions provided by 
ensemble members of global EPS [23]. Branković et al. used 
the ALADIN-Limited Area Ensemble Forecasting 
(ALADIN-LAEF) model to downscale ECMWF EPS over the 
central European and northern Mediterranean domain for four 
severe weather cases [24]. The verification result indicated 
that the downscaled ensemble of higher resolution improves 
the precipitation rate and pattern. Weidle et al. also used the 
ALADIN-LAEF model to downscale ECMWF EPS and 
NCEP GEFS for 51 days in the 2010 summertime over central 
Europe [23]. The comparisons revealed that using GEFS 
performs better for surface parameters, while using EPS is 
superior at upper levels. Zhang et al. constructed the 
operational REPS of North China using the WRF model to 
downscale GEFS to forecast severe local weather [25]. They 

illustrated that the downscaling improves ensemble 
verification scores. 

The dynamical downscaling of the global ensemble has 
been successfully applied in several REPS for many years, and 
the REPS is also used for building operational wind forecast 
systems thanks to increasing computational resources. The 
WRF model is extensively implemented for downscaling 
global operational forecast data of coarse resolution [26, 27]. 
The aim of this work is to downscale both ECMWF EPS and 
NCEP GEFS using the WRF model and evaluate the potential 
benefits of downscaling global EPS forecast for operational 
wind forecast complex terrain wind farms in Sichuan and 
Yunnan, China. The effects of downscaling are evaluated by 
comparing the ensemble mean of the day-ahead and 
ultra-short forecast from the high-resolution WRF model with 
the global ensemble. 

The ensemble mean is the average of all the ensemble 
members, but it is not necessarily the best way to use the 
ensemble forecasts [28]. Qi et al. assumed that the ensemble 
member performing well at the short lead time would also 
have smaller errors at the long lead time [29]. Thus, they 
proposed a methodology to select the ensemble members of 
which 0-12 hour forecast error is smaller than the ensemble 
mean (called SEA_Qi). The ensemble average of selected 
members is shown to have better skill than the ensemble mean 
of all members for 24, 48, 72, and 120 hours tropical cyclone 
track forecast. Kikuchi et al. compared different ensemble 
weighted-average methods for wind nowcasting and 
concluded that the SEA_Qi method performs better than the 
ensemble mean [30]. In light of these successful applications, 
we propose a selective ensemble average (SEA) method using 
wind turbine observation data for ultra-short-term wind 
forecasts. The proposed SEA method is also compared. 

 

Figure 1. Digital elevation data of the single WRF domain at a horizontal 

resolution of 5km. Black dots indicate the locations of wind farms. 
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2. Data and Methods 

2.1. WRF Model Configurations and Sea Method 

2.1.1. WRF Model Configurations 

We used the WRF model version 3.9.1 with initial and 
boundary conditions provided by the ensemble members of 
ECMWF EPS and the NCEP GEFS. As shown in Figure 1, the 
WRF model was configured with one single domain at a 
horizontal grid spacing of 5 km with 65 vertical levels. The 
WRF model performance largely depends on the choice of 
WRF scheme combinations. In order to find the best 
performing WRF configurations, we tested 79 combinations 
of planetary boundary layer (PBL) schemes, land surface 
models (LSM), and surface layer schemes, as we found that 
wind speed forecast is mostly sensitive to the PBL and LSM 

schemes. Similar to the methodology described by Huva et al., 
the WRF physics parameterizations were tested on a 
representative 15-day period [31]. The 15 days were selected 
based on daily average wind speed values throughout the year 
to cover all possible scenarios. As a result, the schemes 
selected include WRF Single-Moment 6-Class for 
microphysics, NCEP GFS scheme for PBL mixing, Pleim-Xiu 
LSM, Kain-Fritsch scheme for cumulus, and New Goddard 
for both longwave and shortwave radiation [32-37]. 

The WRF forecasts were run for 52 hours from each 1200 
UTC release by downscaling all 51 members of EPS (WRF 
EPS) and 21 members of GEFS (WRF GEFS). Consistent with 
operational wind speed and power forecast required by 3, the 
day-ahead hours of 28 to 51 hours and ultra-short term of 10 to 
13 hours were chosen for performance evaluation (Table 1). 

Table 1. Specification of forecast data. 

Ensemble forecast Horizontal resolution 
Number of ensemble 

members 
Initial time (UTC) 

Used day ahead 

forecast (hour) 

Used ultra-short term 

forecast (hour) 

Raw ECMWF HRES 0.1° 1 

12 28 to 51 10 to 13 

Raw NCEP GFS 0.25° 1 
Raw ECMWF EPS 0.2° 51 
Raw NCEP GEFS 0.5° 21 
WRF HRES 5km 1 
WRF GFS 5km 1 
WRF EPS 5km 51 
WRF GEFS 5km 21 

 

2.1.2. SEA Method 

As discussed in Section 1, the ensemble average of selected 
members is possibly more accurate than the ensemble mean (of 
all members). This is because the members with smaller errors 
are selected based on past performance measured through 
observation data. Operationally, the global ensemble forecast 
product is available with a delay of a few hours after the initial 
time of forecast. The delay time is about 6 to 7 hours for NCEP 
GEFS and ECMWF EPS. Additionally, the wind power forecast 
providers, such as Envision, must make forecasts available for 
wind farms before 7 am Beijing Time, which allows at least 0 to 
9 hours of forecasts to be evaluated by observations (because the 
forecast initial time of 12 UTC is 8 pm in Beijing Time). 

The following steps calculate the SEA. Firstly, the root mean 
square error (RMSE, see Eq. 1) of the ensemble members’ 0 to 
9 hours wind forecast is calculated. Then, the ensemble 
members are ranked in descending order of their RMSE. Lastly, 
the average for top N (a hyper-parameter) members is 
calculated. Section 4 evaluates the impact of differences in N on 
ultra-short-term forecast performance. In addition, we follow 
30 and add the average of the selected members with smaller 
than average RMSE (named SEA_Qi) in our evaluation. 

2.2. Observation Data and Metrics for Evaluation 

2.2.1. Observation Data 

Each wind turbine has an anemometer installed on the 
nacelle behind the rotor at turbine hub height (i.e., 80 m above 
the surface). We utilize wind speed observations from 2 wind 
farms in Sichuan and 2 in Yunnan, China (black dots indicate 

the locations of wind farms in Figure 1). We compared the 
hourly observation data with NWP model output interpolated 
to 80 meters. The wind turbine observations represent a single 
local point in space, so we only extracted the nearest single 
point from the NWP domain. 

In addition, we applied the following data quality control 
procedures to remove poor-quality observation data: 

1. Remove data when either wind speed or wind power 
observation is missing. 

2. Remove data when wind speed data is beyond the range of 
[0.0, 50.0] or wind power capacity factor (defined as actual 
power generated as a proportion of a wind turbine’s 
maximum capacity) is beyond the range of [-0.1, 1.25]. 

3. Remove data of the same values that appear more than 
six times (observation is taken at the frequency of about 
10 minutes) consecutively. 

2.2.2. Evaluation Metrics 

The study period covers the entire year of 2020, so 366 days 
of forecasts are used for evaluation in this work. Multiple 
metrics are used in this study to evaluate the performance of 
ensemble forecasts, including standard probabilistic 
verification scores: RMSE, mean bias error (MBE), and 
Pearson’s correlation coefficient (CC) of the ensemble mean, as 
well as the continuous ranked probability score (CRPS) and 
rank histograms [38-40]. These measures are defined below: 

���� = �∑(	�
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 −	����)�/�         (1) 
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 −	����)            (2) 
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where WSpred is the predicted wind speed WS, WSobs is the 
observed wind speed, and N is the number of pairs of 
forecast and observation. 

The CRPS is calculated following: 

���� = ∑ ��(�) − ��(�)���� !          (3) 

��(�) = "0, %&	� ( )*+,-.,�	./01,1, )34,-5%+,         (4) 

Fo(y) is a cumulative probability step function that jumps 
from 0 to 1 when the forecast variable y equals the observations 
[41]. The CRPS generalizes the mean absolute error (MAE), and 
the smaller values of CRPS indicate better forecast skill. All the 
metrics were calculated at the 1-hour frequency. 

In addition, the rank histogram allows a quick and 
straightforward demonstration of the qualities of the ensemble. 
A reliable EPS should have a flatter pattern [40]. A U-shape 
indicates a lack of spread (variability), while J or L-shapes 
indicate the presence of consistent biases. 

3. Results and Discussion 

3.1. Day Ahead Forecast and Ultra-Short Term Forecast 

Evaluation 

Figures 2 and 3 illustrate the comparisons of the ensemble 

mean for the raw EPS, raw GEFS, WRF EPS, and WRF GEFS 
in terms of RMSE, MBE, CC, and CRPS over the four wind 
farms in the forecast lead time of day-ahead hours of 28 to 51 
hours and ultra-short term of 10 to 13 hours, respectively. 
They clearly show that the ensemble mean of WRF EPS and 
WRF GEFS significantly outperforms the mean of the raw 
EPS and raw GEFS at all four wind farms, confirming the 
great benefits of downscaling global ensemble forecasts in 
complex terrain. Table 2 summarizes all the metrics averaged 
over the four wind farms. The forecast performance of WRF 
EPS is slightly better than WRF GEFS. However, the 
improvement of WRF downscaling is more dramatic for 
GEFS than EPS. The temporal evolution of wind speed RMSE, 
MBE, CC, and CRPS presented in Figure 4 demonstrates that 
WRF EPS is the most accurate forecast throughout all the 
forecast horizons. Figures 5 and 6 compare the rank 
histograms for all the ensembles in the four wind farms for 
both day-head and ultra-short-term forecasts, respectively. 
The rank histograms of raw EPS and GEFS for all farms are 
L-shaped and J-shaped, respectively, indicating significant 
negative and positive biases, consistent with MBE 
comparisons in Figures 2 and 3. Although the U- shaped rank 
histograms of WRF EPS and WRF GEFS also imply 
under-dispersed ensembles, they show many of the biases 
removed by WRF downscaling. 

 

Figure 2. 28 to 51 hour wind forecast RMSE (top left), MBE (top right), and CC (bottom left) of ensemble mean of raw ECMWF EPS, raw NCEP GEFS, WRF 

EPS, and WRF GEFS for farm 1 and farm 2 in Sichuan and farm 3 and farm 4 in Yunnan as well CRPS (bottom right) for all the ensemble forecast. 
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Figure 3. 10 to 13 hour wind forecast RMSE (top left), MBE (top right), and CC (bottom left) of ensemble mean of raw ECMWF EPS, raw NCEP GEFS, WRF 

EPS, and WRF GEFS for farm 1 and farm 2 in Sichuan and farm 3 and farm 4 in Yunnan as well CRPS (bottom right) for all the ensemble forecast. 

Table 2. Summary of 28 to 51 hours and 10 to 13 hours wind speed forecast RMSE, MBE, CC, and CRPS average of all four wind farms for raw EPS, raw GEFS, 

WRF EPS, and WRF GEFS. 

 
28 to 51 hours 10 to 13 hours 

raw EPS raw GEFS WRF EPS WRF GEFS raw EPS raw GEFS WRF EPS WRF GEFS 

RMSE 5.26 10.13 2.60 2.74 5.72 9.89 2.60 2.86 
MBE -4.42 5.26 0.10 -0.28 -4.96 5.07 -0.35 -0.85 
CC 0.44 -0.1 0.70 0.65 0.44 -0.06 0.69 0.62 
CRPS 2.65 7.97 1.24 1.42 3.58 7.71 1.36 1.56 

 

Figure 4. RMSE, MBE, CC, and CRPS of ensemble mean of raw ECMWF EPS (top right), raw NCEP GEFS (top left), WRF EPS (bottom left), and WRF GEFS 

(bottom right) as function of forecast horizon from 10 to 51 hour wind forecast for 4 wind farms. 
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Figure 5. Rank histograms of 28 to 51 hour wind forecast of raw ECMWF EPS (top right), raw NCEP GEFS (top left), WRF EPS (bottom left), and WRF GEFS 

(bottom right) for 4 wind farms. 

 

Figure 6. Rank histograms of 10 to 13 hour wind forecast of raw ECMWF EPS (top right), raw NCEP GEFS (top left), WRF EPS (bottom left), and WRF GEFS 

(bottom right) for 4 wind farms. 
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3.2. Sea Method Evaluation 

The proposed SEA method has one hyper-parameter N, the 
number of ensemble members selected for calculating the 
ensemble average. The effect of differences in N on forecast 
performance is presented in Figure 7. Figure 7 shows that the 
RMSE of raw EPS and raw GEFS increases with increasing 
value of N while the RMSE of WRF EPS and WRF GEFS 
decreases first and then increases with a local minimum N of 
either 2 or 3. Therefore, we choose N = 1 for raw EPS and raw 
GEFS and N = 2 for WRF EPS and WRF GEFS. The optimal 
value of N depends on the ensemble type, forecast horizon, 

and location of wind farms. Similar comparisons are needed 
when using the SEA method for a different case. 

Table 3 summarizes ultra-short-term forecast RMSE 
comparisons using three ensemble averaging methods: SEA, 
SEA_Qi, and the ensemble mean of all the ensemble 
members. The comparisons demonstrate that the SEA method 
achieves the lowest RMSE among the three methods for all 
the ensemble forecasts except for WRF EPS and GEFS at 
farm 4 where the SEA_Qi is the most accurate. The overall 
most accurate forecast is also the SEA of WRF EPS (2.34 
m/s). 

 

Figure 7. RMSE of 10 to 13 hour wind forecast of SEA for raw ECMWF EPS (top right), raw NCEP GEFS (top left), WRF EPS (bottom left), and WRF GEFS 

(bottom right) in 4 wind farms as a function of N from 1 to 12 (see Section 2.2). 

Table 3. Summary of 10 to 13 hours wind speed forecast RMSE comparisons using three ensemble average methods: SEA with N = 1 for raw EPS and GEFS and 

2 for WRF EPS and GEFS (see Section 3.2), SEA_Qi, and ensemble mean of all the members. Bold font indicates the lowest RMSE within each type of ensemble 

forecast, and italic font indicates the lowest RMSE among all the ensemble forecasts. 

 

raw EPS raw GEFS WRF EPS WRF GEFS 

SEA SEA_Qi mean SEA SEA_Qi mean SEA SEA_Qi mean SEA SEA_Qi mean 

(N=1) (N=1) (N=2) (N=2) 

farm 1 5.40 5.76 5.90 9.35 9.53 9.70 2.49 2.55 2.66 2.99 3.05 3.14 
farm 2 5.92 6.17 6.26 9.19 9.37 9.51 2.43 2.59 2.74 2.73 2.80 2.89 
farm 3 5.17 5.34 5.42 9.53 9.65 9.80 2.45 2.52 2.61 2.79 2.85 2.92 
farm 4 3.97 4.23 4.34 10.76 10.94 11.08 2.01 2.01 2.06 2.18 2.16 2.19 
average 5.12 5.37 5.48 9.71 9.87 10.02 2.34 2.42 2.52 2.67 2.71 2.79 

 

4. Conclusion 

In this paper, we applied the WRF model to downscale two 
global ensemble forecast systems, ECMWF EPS and NCEP 
GEFS. We investigated the added values of downscaling on 
wind forecast performance for four wind farms over complex 
terrain in the Sichuan and Yunan provinces of China. The 

entire year of 2020 forecast data was used for evaluation. The 
results demonstrate that the ensemble average of the WRF 
downscaled forecasts has significantly lower RMSE than the 
raw ensemble forecast for both day-ahead (2.60 and 2.74 m/s 
of WRF EPS and WRF GEFS compared to 5.26 and 10.13 
m/s of raw EPS and raw GEFS) and ultra-short term forecast 
(2.60 and 2.86 m/s for WRF EPS and WRF GEFS compared 
to 5.72 and 9.89 m/s of raw EPS and raw GEFS). Thus, 
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downscaling is quite valuable in improving wind forecast 
capability in complex terrain, and WRF EPS is more accurate 
than WRF GEFS. 

In addition, we also proposed the SEA method to select N 
top-performing ensemble members for calculating the 
ensemble average. The sensitivity tests of ultra-short term 
forecast performance of the SEA method to changes in N 
were conducted. Tests showed that the optimal value of N 
varies for different ensemble forecasts and locations. The 
SEA method with an optimal value of N also was compared 
with the ensemble mean of all the ensemble members and the 
SEA_Qi method. The SEA method showed the best forecast 
performance (2.34 m/s compared to 2.42 and 2.52 m/s RMSE 
for WRF EPS). 

Future work could consider applying machine learning 
models using ensemble-related statistics as input features to 
reduce forecast biases further. Additionally, as the WRF 
downscaling of all the global ensemble forecast members is 
very computationally expensive, other methods to build 
regional EPS should be considered. 
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