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Abstract: In this paper we presented the structure and methodology of designing of an innovated DC motor with permanent 

magnets and axial flux. Progress in the field of sliding contacts manufacturing, the simplicity of the structure of the engine as 

the control simplicity of DC motors make this structure an attractive solution to the problem of electric cars drive. In this 

context, a dimensioning model of this engine structure is developed. This model is based on the analytical design method of 

electric actuators. The overall design approach is based on justified simplifying assumptions, leading to a simplification of the 

resolution of the sizing problem. Finally, this paper provides a comprehensive tool for sizing and modeling of this type of 

actuator. 
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1. Introduction 

DC motors are the first engines used in industrial 

applications. These engines have many advantages including: 

� Simplicity of the structure. 

� Variable excitation for engines with wound inductor. 

� Simple and easy control. 

� By consequence, these engines have been somewhat 

neglected in the near past for they present drawbacks, 

namely: 

� Significant induced magnetic reaction making it 

impossible to overcome current. 

� Cost of maintenance of sliding contact. 

� Significant copper losses in the inductor. 

Nowadays permanent magnet motors have taken the relief 

to motors with wound inductor. For this reason we are led to 

seek solutions combining the advantages of DC motors with 

wound inductor and those with permanent magnets 

particularly in light of interesting advances in the field of 

sliding contacts manufacturing. In this context, a spindle 

motor structure with permanent magnets and simple to 

perform combining the advantages of structures with wound 

inductor and those of permanent magnets is sought. A design 

and modeling program based on analytical method of this 

structure is developed and presented in this paper [1-7]. 

2. Motor Structure 

An engine innovated structure with DC permanent magnet 

axial flux to one pole pair is illustrated in figure 1 and another 

with two pairs of poles is shown in figure 2. 

These two structures are simple to manufacture, compact 

and with concentrated winding. They have the following 

advantages: 

� High power density. 

� Low manufacturing cost. 

� High efficiency (Absence of copper losses to the 

inductor). 

� Modular design: possibility of overcoming power by 

adding additional modules perpendicular to the axis of 

the motor. 

� Ease of control. 

� Possibility of automation of the manufacturing process 

of these motor structures, especially the coils are 

concentrated type which facilitates the procedure for 

their insertions in a single block. 

� The slots are straight and semi open. 
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1. Engine Front View 

 

2. Engine cylindrical Cup 

Figure 1. Structure of engine in novated with one pair of pole. 

 

1. Engine Front View 

 

2. Engine cylindrical Cup 

Figure 2. Structure of the motor innovated with two pole pairs. 

3. Modelling and Sizing of the Motor 

Electric motors sizing problem is usually solved by the 

finite element method [1-5]. A series of simulations is 

necessary in this case to solve the design problem. This 

method is accurate, but it is heavy and therefore it is not 

compatible with optimizations approaches. However, the 

analytical method provides solutions quickly and without 

iterations and provides a comprehensive design tool for 

electrical machines since it is based on simplifying 

assumptions justified. This method leads to design programs 

highly parameterized of electrical devices. So our choice is 

focused on the analytical method to solve the design problem 

of the studied engine structures [1-6]. 

3.1. Modeling of the Back Electromotive Force 

Elementary back electromotive forces in the terminals of 

each two diametrically opposite coils are illustrated in figure 3. 

All rotor coils should be connected in series with a reversal of 

the direction of coil so as to have a continuous resulting 

electromotive force (Figure 3) [5]. 

Flux received by a coil is expressed by the following 

relationship [5]:  

( ) ( )
bN

b e

0

B ds

 πθ= π+  
 

θ=

Φ = θ × θ∫
            (1) 

Relation (1) can be converted to the following equation [5]: 

( )2 2

e i

b e d e

D D
B s 2 B

4 2

− θΦ = × − × × ×         (2) 

Where Be is the flux density in the air-gap, θ is the 

mechanical angle, sd is the heads teeth section, De and Di are 

respectively the internal and external diameters of the motor 

and ds is the surface element through which the magnetic flux. 

The back electromotive force can be derived from the 

following relationship: 

b

sb

d
E 2 P N

dt

Φ
= − × × ×             (3) 

Where P is pole pair number and Nsb is the number of turns 

per coil. 

The expression of the induced back electromotive force 

takes the following form: 

( )2 2

e i

sb e

D D
E P N B

2

−
= × × × ×Ω       (4) 

where Ω the angular speed of the motor. 

This leads to the general expression of back electromotive 

force: 

e
E K= ×Ω               (5) 
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Figure 3. Pace of the back electromotive force. 

3.2. Sizing of the Motor 

The rotor slot width is given by the following relationship: 

e i

encr dentrm dentrim

b

D D 1 2
L sin A A

2 2 N

  + × π= × × − −   
  

  (6) 

where Adentrm is the average angular width of the rotor tooth, 

Adentrim is the average angular width of the rotor inserted tooth 

and Nb number of coils. 

The lower angular width of a slot is expressed by the 

following relationship: 

encr

encr1

i

L

2A 2 Asin
D

2

 
 

= ×  
  
 

             (7) 

The upper angular width of a slot is expressed by the 

following relationship: 

e

encr

encr2

L

2A 2 Asin
D

2

 
 
 = ×
 
 
 

             (8) 

The average angular width of a rotor tooth is given by the 

following relationship: 

dentrm

b

2
A

N

× π= ×α                 (9) 

Where α is the opening ratio of a rotor tooth (α < 1). 

The average angular width of an interposed rotor tooth is 

given by the following relationship: 

dentrim did dentrm
A r A= ×              (10) 

Where rdid the is the ratio between the average angular 

width of an inserted tooth and that of a tooth. 

The average angular width of a slot is given by the 

following relationship: 

encrm dentrm dentrim

b

1 2
A A A

2 N

 × π= × − − 
 

      (11) 

The lower angle of a tooth is given by the following 

relationship: 

dentr1 dentrm encrm encr1
A A A A= − −          (12) 

The upper angle of a tooth is given by the following 

relationship: 

dentr2 dentrm encrm encr2
A A A A= − −          (13) 

The lower angle of an inserted tooth is given by the 

following relationship: 
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dentrim1 dentr1 aencr1

b

2
A A 2 A

N

× π= − − ×         (14) 

The upper angle of an inserted tooth is given by the 

following relationship: 

dentrim2 dentr2 aencr2

b

2
A A 2 A

N

× π= − − ×        (15) 

The angle of dental development (Ad) is given by the 

following equation: 

d

b

2
A

N

× π= ×β                  (16) 

where β is the fulfillment of a rotor tooth coefficient (α < β < 1). 

The height of the teeth is expressed as follows: 

sb dim

d

f encr

N I
H

K L

×
=

× δ×
              (17) 

Idim is the dimensionnig current, Kf is the filling factor and δ 

copper admissible current density. 

The dimensionnig current is expressed by the flowing 

relation:  

( )r v b

dim

d d

R M V
I g sin

r t

 ×
= ε× × + × λ ×  

       (18) 

Where ε< 1 it is usually close to 0.9, and Rr the radius of the 

wheel of the car, Mv is the mass of the car, rd is the reduction 

ratio, td is the car's start time from speed equal 0 to the base 

speed (Vb) of the car, g is the gravity acceleration and λ is the 

angle with the horizontal road. 

The height of the rotor yoke is calculated by applying the 

flux conservation theorem for a maximum flux position in the 

cylinder head: 

e d

cr

e icr

B s
H

D DB

2

= ×
−               (19) 

The tooth height of the heads is calculated by applying the 

flux conservation theorem to avoid saturation: 

( )de de

de

d e i

s sB
H

B D D

−
= ×

+
             (20) 

Where Bd is the flux density in the tooth and sde is the heads 

teeth section. 

The height of magnet necessary for a magnetic induction in 

the gap Be is derived by applying the Ampere theorem on a 

closed contour at a tooth [1-5]: 

r e

a

r e

B e
H

B B

µ × ×
=

−
                (21) 

The height of the inductor head is calculated by applying 

the flow conservation theorem for a maximum flux position in 

the cylinder head [1-5]: 

e d

cs

e ics

B s
H

D DB

2

= ×
−               (22) 

4. Electric Parameters of the Motor 

The inductance of the rotor winding is given by the 

following relationship [11]: 

( )
r

e id e i
d de

2

0 b sb

a enc e i
d

b

D Ds D DH H
22 2L N N

2 e H 2 L D D2
A

N 4

 −  −× × 
  = µ × × + + × × + ×   +× π

 − ×  
  

                 (23) 

The magnetic induction due to the power of the rotor 

winding by the demagnetization current of the magnet (Id) is 

given by the following relationship: 

0 sb d

ei

a

N I
B

H e

µ × ×
=

+
              (24) 

The demagnetization of the magnets is provided that: 

e ei c
B B B− =                  (25) 

where Bc is the demagnetization magnetic induction of the 

magnets. 

The demagnetization current is to not exceeded to avoid 

demagnetization of the magnets. It is expressed by the 

following relationship: 

( )aa r

d c

a r 0 sb

H eH B
I B

H e N

+ ×
= − × + µ × µ × 

         (26) 

where Br is the residual inductionet and µr is the relative 

permeabilty of magnets. 

The length of one turn is expressed by the following 

relationship: 

e e ii
sp encr dentrm encr

D D DD
L 2 L 2 A L

2 2 4

   +    = × − + + × × +      
      

                       (27) 
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The resistivity of copper is expressed by the following 

relationship: 

( )( )cu t br 1 T 20ρ = × − α × −            (28) 

where Tb is the temperature of copper and αt is the 

temperature coefficient at 20 °C. 

Hence the expression for the resistance of the rotor winding 

is deduced by the following equation: 

dim

sp sb b

I
R L N N= ρ× × × ×

δ
           (29) 

The motor electrical constant is deduced from the equations 

(4) and (5). 

( )2 2

e i

e sb e

D D
K P N B

2

−
= × × ×          (30) 

The DC bus voltage is calculated in such a way that the 

vehicle can reach a maximum speed with a low torque 

undulation and without weakening. This voltage is calculated 

assuming that the engine runs at a stabilized maximum speed. 

At this operating point (Figure 4) the electromagnetic torque 

to be developed by the motor is expressed by the following 

equation [10-31]: 

( ) r a cf

udc d b vb fr

max d

T T TP
T T T T T

r

+ +
= + + + + +

Ω     (31) 

The different torques are expressed by the following 

equations: 

b

v
T s

v
= ×                    (32) 

vb
T v= χ×                     (33) 

frT k v v= × ×                    (34) 

r w r v
T R f M g= × × ×                 (35) 

( )va x f 2

a w

M C A
T R V

2

× ×
= × ×           (36) 

( )c vT M g sin= × × λ                (37) 

Figure 4 shows the evolution of useful torque (Tu) and load 

torque (TR) for operation at maximum speed (Ωmax): 

From figure 4, we deduce the expression of the DC bus 

voltage: 

dc e max dc
U K R I= × Ω + ×              (38) 

Where Idc is the current drawn by the motor at maximum 

stabilized speed: 

udc

dc

e

T
I

K
=                    (39) 

 

Figure 4. Evolution of useful torque and load torque for operation at 

maximum speed. 

5. Motor Model 

The transient voltage equation of the engine is given by the 

following equation: 

( ) ( ) ( ) ( )di t
u t R i t L e t

dt
= × + × +            (40) 

where i is the current drawn by the motor. 

The transient back electromotive force is expressed as 

follows: 

( ) ( )ee t K t= ×Ω                 (41) 

The electromagnetic torque is given by the following 

relationship: 

em e
T K I= ×                    (42) 

The iron losses is approximated by the following relation: 

1.5

2 2d cs

fs e cs

b b

M Mf
P q 2 P B 2 P B

50 N N

  = × × × × × + × × ×  
   

 (43) 

P
f

2

×Ω=
× π

                    (44) 

where f is frequency of the elementary back electromotive 

forces, Md is the teeth mass, Mcs is the stator yoke mass, Bcs 

the flux densty in the inductor yoke and q is the quality factor 

of metal sheet. 

Mechanical losses are expressed by the flowing relation: 

m
P s ν k

Ω = × + ×Ω + ×Ω× Ω Ω Ω 
         (45) 
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where s is the dry friction coefficient, ν is the viscous friction 

coefficient and k is the fluid friction coefficient. 

6. Motor Efficiency Optimization 

Problem 

The motor efficiency is expressed by the following relation:  

2

fs mu i R i P P

u i

× − × − −
η=

×
             (46) 

The efficiency can be optimized by Genetic Algorithms 

method. The formalization of the optimization problem is 

summarized as follow [6-12]: 

i

e

dc

2 2

sb

e

cr

Maximiser

100 mm D 250mm

300 mm D 700 mm

U 150V

5A / mm 7A / mm

10 N 200

0.4 Tesla B 1.6Tesla

0.4Tesla B 1.6Tesla

η
≤ ≤
≤ ≤

≤
≤ δ ≤

≤ ≤
≤ ≤
≤ ≤

            (47) 

7. Torque Ripple Minimization 

The torque ripple is directly related to the ripple of the 

resultant back electromotive force. Two parameters strongly 

influence the torque ripple are namely: 

� The α parameter close to 1. This parameter should be the 

maximum possible, but for values of α very close to 1 a 

triggering of short circuits is activated between magnetic 

heads teeth, for that we are going to offer to optimize this 

parameter by finite element method. 

� The β parameter (α < β <1). This parameter affects the 

ripple torque, the length in the axial direction of the 

engine and also leads to local saturation at levels of teeth. 

This parameter setting is also optimized by the finite 

element method. 

A series of simulations of the evolution of the 

electromagnetic torque and saturations at the teeth were 

allowed to set α = 0.7 and β = 0.9 as optimal values 

minimizing torque ripple and local saturations. 

8. Conclusion 

In this paper we presented and studied an innovated DC 

engine structure with permanent magnet and axial flux with 

reduced production cost and high power density. A sizing and 

modeling program highly parameterized is developed. This 

program has led to joint optimization problems of 

performance, torque ripple and local saturations. 

As prospects, this study can be validated by the finite 

element method and experimentally on a realized prototype. 
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