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Abstract: In this study, we investigate the non-linearity of the Japanese business cycle based on the theoretical concept of the 

limit cycle. To analyze the time series of capital stock and GDP simultaneously based on the theoretical relationships predicted 

by the limit cycle, we incorporate the capital coefficient into a Kaldor-type dynamic model and apply the threshold 

autoregressive (TAR) model to it to investigate fluctuations in the coefficient that are concurrent to the underlying oscillation of 

the limit cycle. The estimation results indicate that these time series are subject to the three-regime TAR model and that the 

middle regime has divergence and the outside regimes have convergence, suggesting that the process has a non-linear 

phenomenon typically caused by limit cycles. 
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1. Introduction 

In endogenous business cycle theory, many studies have 

utilized non-linear economic dynamics such as chaotic 

dynamics and limit cycle theory to model business cycles. 

These authors have succeeded in explaining the seemingly 

irregular fluctuations in actual time series. The basic idea of 

utilizing limit cycles in business cycle theory was first 

demonstrated by Kaldor (1940) and later mathematically 

formulated by Chang and Smith (1971) and Varian (1979). 

Since then, the theoretical interest of economists has expanded 

this literature (e.g., Lorentz (1993)). 

Concurrent with the expansion of the theoretical 

investigation, empirical interest has investigated the existence 

of non-linearity in actual macro-economic time series data. 

Tong and Lim (1980) and Tong (1983) indicated that several 

non-linearities including the limit cycle in macro-economic 

time series are explained by the threshold autoregressive 

(TAR) model. Potter (1995) and Koop and Potter (1999) 

applied the TAR model to GDP and macro-economic time 

series data from the United States and United Kingdom, while 

Kraeger and Kugler (1993) and Sarantis (1999) applied it to 

the time series of the exchange rates between the United States 

dollar and Japanese yen as well as the United States dollar and 

Euro. 

In this study, we apply the TAR model to investigate the 

non-linearity of the Japanese business cycle based on the 

theoretical concept of the limit cycle introduced by Kaldor 

(1940). Kaldor constituted a business cycle model 

characterized by a two-dimensional limit cycle by introducing 

a sigmoid-shaped investment function based on the profit 

principle of investment. In a limit cycle, national income (or 

GDP) and the level of capital stock are inter-related in the 

closed orbit and continuously oscillating in the 

two-dimensional space. Therefore, in statistical analysis, both 

time series should be analyzed simultaneously based on the 

causal relationships predicted by the theory. 

However, while non-linearity tests utilizing the TAR model 

have been conducted on a single time series, to our knowledge, 

the analysis has remained one-dimensional thus far. To 

address this methodological limitation, we introduce a new 

variable into the Kaldor model, the so-called capital 

coefficient, and consider the process of capital adjustment. By 

applying the TAR model to this coefficient, we investigate the 

fluctuations in the coefficient concurrent to the underlying 

oscillation of the limit cycle. 

For the empirical investigation, we specifically address the 

connotations of limit cycles predicted by continuous time 

theoretical models and the macro-economic time series 
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presented in discrete time periods by investigating the 

dynamic consequences of a discrete time version of the model. 

Bischi et al. (2001) and Agliari et al. (2007) introduced a 

discrete time Kaldor-type business cycle model and 

investigated interesting phenomena unexpected from 

continuous time dynamics. According to their investigations, 

we consider the implications of applying theoretical 

consequences predicted by a continuous time model to time 

series data. 

The rest of the paper is organized as follows. In section 2, a 

Kaldor-type dynamic model is presented and the conditions 

for the existence of the limit cycle are examined. In section 3, 

a discrete time version of a Kaldor-type model is introduced 

and the concept of limit cycles in discrete time is explained. In 

section 4, we introduce the capital coefficient for the 

preparation of the empirical study. The method of the 

empirical analysis (applying the TAR model) and its results 

are presented in sections 5 and 6, respectively. Section 7 

concludes. 

2. Kaldor’s Business Cycle Model and 

Limit Cycles 

Let us consider a simple dynamic national income 

adjustment model: 

)],(),([ KYSKYIY −=
•

α ,            (1) 

KKYIK δ−=
•

),( ,               (2) 

where Y is (gross) national income, K  is capital stock, 

),( KYI  is the (gross) investment function, and ),( KYS  

is the saving function. The parameter α  is a constant 

adjustment variable and δ  is the depreciation rate of capital. 

The investment function that Kaldor incorporated into his 

model is a sigmoid-shaped function based on the profit 

principle of investment. This non-linear function depends on 

both the level of national income and the level of capital stock. 

Investment I is assumed to be an increasing function of 

national income because an increase in national income, under 

a given level of capital stock, increases the sales of products 

and profits of firms, which generate an incentive to invest. 

However, the marginal propensity to invest decreases if the 

actual income level diverges from its equilibrium level. In the 

case of higher current income, higher investment cost and 

anticipation of the end of the boom reduce the investment 

incentive, whereas the level of production can rise without 

increasing investment because of the existence of unused 

capital stock in the case of lower national income. 

Furthermore, investment is assumed to be a decreasing 

function of capital stock because the induced investment 

effect of national income does not occur in the presence of 

unused capital stock. The investment function of this type, 

therefore, adjusts current capital stock to its normal level, 

which means that as the level of current capital stock K

increases, the investment function shifts downward. 

Derivative representations of the properties of these 

assumptions on the investment function, in sum, are 

0,0 <> KY II  and for the certain level of the national 

income
*Y 1, if actual national income is less than that level 

(i.e., 
*YY < ), then 0>YYI ; on the contrary, if actual 

national income is larger than that level (i.e., 
*YY > ), then

0<YYI . 

For the saving function, it is assumed that saving is a linear 

increasing function of national income as well as an increasing 

function of capital stock. Derivative expressions of the 

properties of these assumptions are 0,10 ><< KY SS . 

A fixed point of the system is a solution that satisfies 

0==
••
KY  in equations (1) and (2). 

0),(),( =− KYSKYI ,                 (3) 

0),( =− KKYI δ .                 (4) 

We examine the properties of the solution in the system of 

equations (3) and (4) by applying the Poincare–Bendixson 

theorem (see Appendix A). Here, if the solution locus of the 

system is characterized by limit cycles, the level of national 

income and capital stock are continuously fluctuating, 

implying the existence of long-lasting business cycles. 

The procedure for applying the Poincare–Bendixson 

theorem is as follows2. First, the existence of a stable point 

with saddle point stability is excluded. A condition that 

satisfies the unstable nature of the stable point is then 

examined. Finally, the phase of the system of differential 

equations and existence of compact and invariable set “D” are 

examined. As a more precise investigation is described in 

Appendix A, only the results are presented here. 

To exclude the possibility of the saddle point stability of the 

fixed point(s), 0>− ∗∗
YY SI is required in the neighborhood 

of the fixed point. Furthermore, for the instability of the fixed 

point )()( δα −−>− ∗∗∗
KYY ISI . From the assumptions 

mentioned above, 0<KI , which makes the right-hand side 

of the equation positive. The national income-induced 

investment effects YI , therefore, should be considerably 

higher3. 

In Kaldor’s model, a set 

{ }11 0,0|),( KKYYKYD ≤≤≤≤=  is compact 

according to the assumptions and the vector space is inward 

                                                   

1 We assume that the fixed point
*Y is sufficiently smaller than the level of full 

employment income in order to secure the fluctuations of national income. 

2 For a detailed analysis, see Appendix A. 

3 Based on the assumption concerning the non-linear investment function stated 

above, YI  decreases as Y moves far enough from the stable point, which makes 

)( YY SI −  negative when the level of national income is small or large 

enough. The existence of closed orbits, therefore, is not excluded. 
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pointed at the boundary of the set. Figure 1 shows the typical 

phase diagram and “D” set of the Kaldor model. 

 

Figure 1. Phase and “D” set of the Kaldor model. 

3. Limit Cycles in Discrete Time 

In the following sections of statistical investigation, we 

utilize a time series data set, which implies that the dynamic 

model underlying the investigation is supposed to be a discrete 

time model. A limit cycle in discrete time is defined as follows 

see Tong and Lim (1980). 

Let nx  denote a 1×k  dimensional state that satisfies the 

equation 

( )1−= nn xfx .                      (5) 

A limit point in the vector space is defined as follows. A 

1×k  dimensional vector 
*x  is called a limit point if there 

exists 
*

0 xx ≠ such that, starting with 0=n , nx  tends to 

*x  as n  tends to infinity: 
*lim xxn

n
=

+∞→
. 

A limit cycle in discrete time is defined as follows. Let C  

denote the set of 1×k  dimensional vector ic , 

TTi ,,,1 ⋅⋅⋅= being a positive integer ∞≤ . 

1) C  is called a limit cycle of period T  if there exists 

Cx ∉0 , such that as +∞→n , nx  ultimately falls to 
*x :

*xxn → , 2) ( ) Ticfc ii ,,3,21 …== − , 

Ticc iiT ,,2,1 …==+ , and 3) T is the smallest such 

positive integer. 

The discrete time version of the Kaldor model that appeared 

in Bischi et al. (2001) and Agliari et al. (2007) is 

)](),([1 ttttttt YSKYIYY −=−+ α ,              (6) 

tttttt KKYIKK δ−=−+ ),(1 ,               (7) 

where the suffix t represents the time period. The saving and 

investment functions are further assumed by using the 

following fixed coefficients: 

ttt YYS σ=)( ,                     (8) 

)arctan()(),( µ
δ

σµβσµ −+−+= ttttt YKKYI ,   (9) 

where σ represents the propensity to save ( )10 << σ , µ
is expected income ( µ=e

tY ), and δσµ is the “normal” 

level of capital stock. 

In equation (9), two components are considered; the first 

one is proportional to the difference between “normal” capital 

stock and current stock, according to the adjustment 

coefficient β ; the second one is an increasing and non-linear 

function of the difference between current income and its 

“normal” level. By using these two components, equation (9) 

generates the basic properties of the investment function of the 

profit principle. 

By substituting these two functions into the dynamic model 

(6) and (7), we obtain the two-dimensional difference 

equations of the non-linear dynamic model: 

])arctan()([1 ttttt YYKYY σµ
δ

σµβσµα −−+−+=−+ ,                     (10) 

ttttt KYKKK δµ
δ

σµβσµ −−+−+=−+ )arctan()(1
.                     (11) 

The fixed points of the dynamic model are obtained by 

setting equations (10) and (11), with 01 =−+ tt YY  and 

01 =−+ tt KK : 

YK
δ
σ=  ,                         (12) 

)arctan())(1( µµ
δ
βσ −=−+ YY .        (13) 

Bischi et al. (2001) examined the uniqueness and stability 

of the fixed point ),( δσµµ ⋅ on these systems of equations 

and showed that the fixed point is unique if 

)(1 βδδσ +≥> , while if ββδα 2)( +≥ , Hopf 

bifurcation occurs and stable oscillations along a limit cycle 

0=Kɺ

0=Yɺ

1K

1Y*Y

*K
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are generated4. 

4. Capital Coefficient and Capital 

Adjustment in the Kaldor Model 

By introducing the capital coefficient’ YK to the 

Kaldor-type dynamic model, the two-dimensional oscillations 

of the limit cycle are indicated by fluctuations in the 

coefficient in a single dimension. Figure 2 shows the relations 

between fluctuations in the capital coefficient YK and 

underlying oscillations of the limit cycles in the ),( YK  

space. 

 
Figure 2. Capital coefficient and limit cycle. 

The assumptions on the investment function mentioned 

above mean that an increase or decrease in investment shifts 

capital stock to the level that ensures a certain capital 

operation rate, which is determined by reflecting the “normal” 

level of national income. Continuous fluctuations in the 

capital coefficient are thus generated in the Kaldor model 

from the underlying limit cycle in the YK − space. 

5. Method of the Empirical Analysis    

As an assumption of an empirical analysis of a limit cycle, 

let ��  be an observable variable. We consider the data 

generating process (DGP) as follows: 

�� = �′�� + ��,                         (14) 

where ����  represents the deterministic components. When 

the data have a nonzero mean (  � =  �
  and �� = 1), the 

demeaned data are used. When the data have a nonzero mean 

and a trend ( � = [�
 �
]�, �� = [1  t]�), we use the demeaned 

and detrended data. �� follows the three-regime TAR process:  

�� = � �
���
 + �� , �� ���
 ≤ �
�����
 + �� , �� �
 < ���
 ≤ �������
 + �� , �� ���
 > ��
�,         (15) 

where �� is a zero mean error and �
 and �� are thresholds. 

                                                   

4 See Bischi et al. (2001). 

We assume �
 < ��. The existence of the stationarity of �� 

requires that −1 < �
 < 1  and −1 < �� < 1 . The 

stationary three-regime TAR process has the feature such that �� moves toward 0 when ���
 ≤ �
 and ���
 > �� even if �� > 1 or �� < −1 in the middle regime. 

For example, we consider the process with �
 = �� = 0.5, �� = 1.05, �
 = −2, and �� = 2. When we set the error term 

to 0, ��  and ���
  draws the phase diagram displayed in 

Figure 3. From this diagram, it is evident that the origin is only 

one and unstable fixed point. When the process is in the 

outside regime, it moves to the middle regime. When the 

process is in the middle regime, it gradually moves to the 

outside regime. Accordingly, the relationship between �� and ���
 has two period cycles typically characterized by a limit 

cycle. 

 

Figure 3. The phase diagram of �� and ���
. 

However, we have to test for the stationarity of the process 

before we estimate the TAR model. We first test for a unit root 

against the three-regime TAR process. If a process has a unit 

root, it does not have a limit cycle because the process is 

divergent and does not display cyclical behavior. On the 

contrary, if the process is characterized by the three-regime 

TAR one, especially with the divergent middle regime �� > 1 

or �� < −1 , the process has cyclical behavior inside and 

outside the thresholds, as shown in Figure 3. 

To test for a unit root, we consider the following regression 

model: 

∆�� = $
���
%&���
 ≤ �
' + $����
%&�
 < ���
 ≤ ��' +$����
%&���
 > ��' + ∑ )*∆���+ + ,�+*-
 ,      (16) 

where I&∙' is the indicator function such that I&∙' is 1 if &∙' is 

true and 0 otherwise, and ,� is a zero mean error. We test for 

the null hypothesis of a unit root with $
 = $� = $� = 0 . 

Similar tests are those of Bec et al. (2004), Kapetanios and 

Shin (2006), and Park and Shintani (2014). As shown by these 

authors, the tests based on a three-regime TAR model have a 

better power for the process compared with standard tests. In 

particular, the tests of Kapetanios and Shin (2006) and Park 

and Shintani (2014) restrict the middle regime to �� = 1. 

Moreover, while the test of Bec et al. (2004) allows for 

different intercepts and lag parameters in each regime, our 

model is based on the tests introduced by Kapetanios and Shin 

(2006) and Park and Shintani (2014), but it allows for �� > 1 

in the middle regime. 

0=Kɺ

0=Yɺ

1K

1
Y*Y

*K
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K
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By denoting ) = ()
, ⋯ , )+)�  and ∆���++ = (∆���
, ⋯ , ∆���+)�, (16) is rewritten as 

∆�� = 3��4 + ,�,                              (17) 

where 3� = (���
%&���
 ≤ �
', ���
%&�
 < ���
 ≤��', ���
%&���
 > ��', ∆���+� )� and θ = ($
, $�, $�, )�)�. 
Let 46  be the OLS estimator of θ  and ,�̂  be the OLS 

residual of ,� in (17). When thresholds are given, the statistic 

to test for the null hypothesis is given by 

W(γ) = 
:;< $=�[>(∑ 3�3��)�
>�]�
$=?�-
 ,           (18) 

where $= = ($=
, $=�, $=�)� is the OLS estimator of ρ and R is 

the 3 × (p + 3)  matrix such that R46 = $= . For unknown 

thresholds, we compute (18) for each possible threshold and 

take the largest value across all possible thresholds. Then, the 

following supremum-type statistic is used: 

sup G(�) = supH∈[HJKL ,HJMN] G(�).         (19) 

When we employ (19), we first arrange the values of �� in 

ascending order. Second, we select �OPQ = �([R?/


])  and �OTU = �([VR?/


]), where [ ] is the integer part. Furthermore, 

we allow for the existence of at least 10% of the observations 

for the inside and outside regimes. For the setting, �
 includes 

equally spaced 100 points between the 5% and 45% quantiles 

of the arranged values and �� includes equally spaced 100 

points between the 55% and 95% quantiles. This test is based 

on Maki (2009) and Maki and Kitasaka (2014). 

Table 1 shows the critical values of the tests. The 

asymptotic critical values approximated by T=1,000 are 

obtained from 10,000 replications. We present three models: 

Model 0 contains no deterministic terms; Model 1 contains an 

intercept in the DGP; and Model 2 contains both an intercept 

and a trend in the DGP. 

Table 1. Critical values. 

 
10% 5% 1% 

Model 0 17.19 19.39 24.24 

Model 1 17.54 19.57 24.37 

Model 2 19.35 21.69 26.58 

6. Empirical Evidence 

We investigate whether YK  has a limit cycle, where K 

and Y represent capital stock and GDP, respectively. We use 

private capital stock and real GDP as K and Y, respectively, 

and employ seasonally adjusted data both in level and in 

logarithm. The quarterly data obtained from Nikkei Needs 

consist of 176 observations from 1970Q1 to 2013Q4. We 

employ Model 2 to determine the maximum lag length for 

p=12 and then exclude the insignificant augmentation terms 

until the last term is significant. 

Table 2 presents the results of the unit root tests. We use 

heteroskedastic-robust test statistics. The table shows that test 

(19) rejects the null hypothesis of a unit root at the 5% 

significance level, whereas the standard Dickey–Fuller-type 

test does not. These results provide strong evidence that both 

level and log data have a TAR process. 

Table 2. Unit root test results. 

 
TAR ADF 

Level 25.09(**) -2.36 

Log 25.21(**) -2.647 

(**) indicates the 5% significance level. 

Table 3 presents the estimation results of the TAR model 

(16). The thresholds are estimated by minimizing the sum of 

the squared residuals over [�OPQ , �OTU ], where  �OPQ  and �OTU are set to the 5% and 95% quantiles of the residuals, 

respectively. For the level data, the estimates of the outer 

regime parameters $
  and $�  are -0.051 and -0.048, 

respectively. From the estimates, the DGP satisfies the 

stationary condition. Additionally, the estimate of the middle 

regime parameter $� is 0.015. This finding indicates that the 

middle regime has divergence and the outside regimes have 

convergence. We obtain similar results for the log data. For 

both types of data, the estimates of $
  and $�  satisfy the 

stationary condition and the estimate of $� is larger than zero. 

Therefore, the results are consistent with the feature of 

non-linear phenomena including limit cycles described in 

section 5.  

Table 3. TAR estimation results. 

 
WX  WY  WZ  [X  [Y  \  MR% 

Level -0.051 0.015 -0.048 -8.159 12.10 0.813 51.70 

 
(0.017) (0.009) (0.013) 

    Log -0.052 0.013 -0.048 -0.102 0.139 0.010 53.97 

 
(0.020) (0.008) (0.012) 

    
Heteroskedastic-robust standard errors are given in parentheses. s represents the standard deviation of the error term. MR% denotes the percentage of 

observations in the middle regime. 

The difference equation system without stochastic terms is 

derived from the empirical results for the level data on table 3 

as5, 

                                                   

5 The authors are largely indebted to the referee comments for the following 

investigations. They wish to thank again anonymous referees of this journal. 

1 1

1 1

1 1

(1) 8.159 0.949

(2) 8.159 u 12.10 1.015

(3) 12.10 0.952

t t t

t t t

t t t

u u u

u u

u u u

− −

− −

− −

≤ − ⇒ =
− < ≤ ⇒ =

> ⇒ =
.     (20) 

Based on this system of equations, we can draw the 

following phase diagram: 
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Figure 4. The phase diagram of the estimated difference equation system. 

It is obvious that the fundamental dynamics of the phase 

diagram is the same as that of figure 3. By implementing the 

simulation method on the difference equation system with the 

starting point of 12.1, the following diagram is obtained. 

 

Figure 5. A simulated result of the difference equation system. 

The graph exhibits more complicated behavior than 

two-period cycles. Hence, these estimation results suggest that 

the process has a non-linear phenomenon caused typically by 

limit cycles. 

7. Conclusions 

In this study, we investigated the non-linearity of the 

Japanese business cycle based on the theoretical concepts of a 

limit cycle. To analyze the time series of capital stock and 

GDP simultaneously based on the theoretical causal 

relationships predicted by a limit cycle, we applied the TAR 

model to the capital coefficient and investigated fluctuations 

in the coefficient that are concurrent to the underlying 

oscillation of the limit cycle. 

The estimation results indicate that these series are subject 

to a three-regime TAR model and that the middle regime has 

divergence and the outside regimes have convergence. These 

results are consistent with the features of a limit cycle, 

suggesting that the process has a non-linear phenomenon 

caused typically by limit cycles. 
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Appendix A 

A-1. Jacobian matrix of the dynamic system 

To investigate the uniqueness and stability of the fixed 

points (
∗∗ KY , ), by applying Taylor expansion on equations 

(3) and (4) and linearizing them at the fixed point, we obtain a 

Jacobian matrix as follows: 










−
−−

= ∗∗

∗∗∗∗
∗

δ
αα

KY

YKYY

II

SISI
J

)()(
,        (A1) 

where ),(),,( ∗∗∗∗∗∗ == KYIIKYJJ YY , and 
∗∗∗
KYK SSI ,,

are shown in the same manner, too. 

The trace and determinants of the matrix are 

)()( δα −+−= ∗∗∗∗
KYY ISItrJ

,        (A2) 

∗∗∗∗∗∗∗ −−−−= YKKKYY ISIISIJ )())((det αδα
.  (A3) 

If we indicate the characteristic equation as 

0det2 =+− ∗∗ JtrJ λλ ,           (A4) 

we get two characteristic roots associated with equation (A4) 

2

det4)(
,

2

21

∗∗∗ −±
=

JtrJtrJλλ .       (A5) 

From the relationship of the coefficients and solution in the 

equation, it can also be shown that 

2121 det, λλλλ ⋅=+= ∗∗ JtrJ . 

A-2. Limit cycles in the Kaldor model 

We can find the existence of limit cycles in the system of the 

equation by applying the Poincare–Bendixson theorem. Here, 

if the solution locus of the system is characterized by limit 

cycles, the level of national income and capital stock are 

continuously fluctuating, implying the existence of 

long-lasting business cycles. 

Consider a system of differential equations on 
2R  as 

follows: 

-15
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),( 211 xxfx =
•

,                  (A5) 

),( 212 xxgx =
•

.                 (A6) 

Let the trajectory starting from the initial condition

),( 0

2

0

1

0 xxx =  be )( 0xtφ . A limit set appears in the 

Poincare–Bendixson theorem according to the following 

definition. 

DEFINITION (Limit Set): The ω limit set of a point 

Wx ∈  is defined as all the points Wl ∈  such that for the 

sequence ∞→it , lx
iti

=
∞→

)(limφ . The α limit set is also 

defined in the same way for the sequence −∞→it . 

Generally speaking, there are three kinds of limit sets in the 

model, namely a stable fixed point, a closed orbit, and a saddle 

loop, which consists of a single saddle point and two unstable 

fixed points. If the uniqueness condition of the solution is 

assured, the limit set is either a fixed point or a closed orbit. If 

the ω limit set is an isolated closed orbit, it is called a stable 

limit cycle. If the α limit set is an isolated closed orbit, it is 

called an unstable limit cycle. 

If we call the system of differential equations indicated by 

equations (A5) and (A6) X , its vector space notation is 

indicated as follows: 

2
21

1
21 ),(),(

x
xxg

x
xxfX ∂

∂+∂
∂=

�

. 

Domain D on 
2R is diffeomorphic to a disk and assumed 

to be piecewise differentiable on boundary D∂ . Furthermore, 

the number of singular points in the interior of domain D is 

assumed to be finite. 

Consider the dynamic system X in the neighborhood of 

domain D  and assume that X is transverse in boundary D∂ . 

If we call an orbit that passes through point P on the 

boundary of D DP ∂∈  )()( Pt tφγ = , then the limit set of 

the orbit )(lim t
t

γ
∞→

 is stated as follows (Lefschetz (1962]). 

Theorem (Poincare–Bendixson): A limit set of orbit γ  

)(lim t
t

γ
∞→

is one of the three cases shown below. 

γ reaches the singular point monotonically or by rotating 

around it. 

γ  twines the closed orbit
1S  and a limit set

)(lim)( t
t

γγ
∞→

+ =Λ  is the closed orbit of circumference 
1S . 

A limit set )(lim)( t
t

γγ
∞→

+ =Λ  is a saddle loop or 

sequences of saddle loops. 

Proof: See Lefschetz (1962). 

The intuitive explanation of the theorem and its application 

runs as follows. In domain D , vector space X
�

 points 

inward on boundary D∂ . This means that once an orbit enters 

into domain D , it will stay inside the domain thereafter. 

If the fixed point is stable, the solution orbit γ reaches the 

fixed point monotonically or by rotating around it (case a). If 

the fixed point(s) is (are) unstable, the possible limit set is only 

a closed orbit (case b) or a saddle loop (case c). In these cases, 

if the fixed point is unique, all the limit sets in the domain 

converge to the closed orbit, because in the case of a saddle 

loop, at least one more fixed point should exist. 

The procedure for applying the Poincare–Bendixson 

theorem is as follows. First, the existence of a stable point with 

saddle point stability is excluded. A condition that satisfies the 

unstable nature of the stable point is then examined. Finally, 

the phase of the system of differential equations and existence 

of compact and invariable set “D” are examined. 

Exclusion of saddle point stability 

To exclude the saddle point stability of the stable point, 

0det 21 >⋅=∗ λλJ  in equation (A1) is needed. Therefore, 

det ( )( ) ( ) 0Y Y K K K YJ I S I I S Iα δ α∗ ∗ ∗ ∗ ∗ ∗ ∗= − − − − >    (A7)  

is assumed here. 

Instability of the stable point For the instability of the stable 

point, the trace and determinant of the equation must be 

positive, i.e. 
1 2 1 20,det 0trJ Jλ λ λ λ∗ ∗= + > = ⋅ > : 

)()( δα −−>− ∗∗∗
KYY ISI .            (A8) 

From the assumption mentioned above, 0
K

I < , which 

makes the right-hand side of the equation positive. Therefore, 

the national income-induced investment effects must be 

considerably higher. 

The assumption on the non-linear investment function 

stated above means that YI  decreases as Y moves away from 

the stable point, which makes )( YY SI −  negative when 

national income is small or large enough. 

Existence of the compact D set 

In the Kaldor model, a set 

{ }1 1( , ) | 0 ,0D Y K Y Y K K= ≤ ≤ ≤ ≤  is compact because of 

the assumptions of the model and the vector space is inward 

pointed at the bound of the set. In this manner, a limit cycle 

may exist. 

Appendix B. Dynamic phase and the vector space of the 

dynamic system 

To examine the phase of the system, we put 0=
•

K  in 

equation (1) and differentiate to obtain 

0
0

>
−

−=
=

• δK

Y

Kat I

I

dY

dK
.          (A9) 

Equation (A9) implies that the 0=
•

K  locus is upward 

sloping. Similarly, by putting 0=
•
Y  in equation (2) and 

differentiating, we obtain 
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KK

YY

Yat SI

SI

dY

dK

−
−−=

=
•

0

.             (A10) 

Equation (A10) takes both a positive and a negative sign. 

However, the locus has a positive slope near to the stationary 

point and a negative slope far from the stationary point. 
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