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Abstract: We first consider the Multiplicative Error Model (MEM) introduced in financial econometrics by Engle (2002) as 

a general class of time series model for positive-valued random variables, which are decomposed into the product of their 

conditional mean and a positive-valued error term. Considering the possibility that the error component of a MEM can be a 

Weibull distribution and the need for data transformation as a popular remedial measure to stabilize the variance of a data set 

prior to statistical modeling, this paper investigates the impact of the inverse square root transformation (ISRT) on the mean 

and variance of a Weibull-distributed error component of a MEM. The mean and variance of the Weibull distribution and those 

of the inverse square root transformed distribution are calculated for σ=6, 7,.., 99, 100 with the corresponding values of n for 

which the mean of the untransformed distribution is equal to one. The paper concludes that the inverse square root would yield 

better results when using MEM with a Weibull-distributed error component and where data transformation is deemed 

necessary to stabilize the variance of the data set. 

Keywords: Multiplicative Error Model, Error Component, Weibull Distribution, Inverse Square Root Transformation, 

Remedial Measure 

 

1. Introduction 

The MEM can be classified as an autoregressive 

conditional duration (ACD) model where the conditional 

mean of a distribution is assumed to follow a stochastic 

process. The idea of the MEM is well-known in financial 

econometrics since its origination from the structure of the 

Autoregressive Conditional Heteroscedasticity (ARCH) 

model as proposed by Engle [6] and the stochastic volatility 

model introduced by Taylor [22], where the conditional 

variance is dynamically parameterized and multiplicatively 

interacts with an innovation term. 

The MEM is first used within this context by Engle and 

Russell [5] to model the clustering behavior of waiting times 

between financial events, for instance market trading and 

changes in asset prices. Hereafter, let us refer to these waiting 

times as financial durations. The resulting model is referred 

to in the literature as the autoregressive conditional duration 

(ACD) model. According to Engle and Russell [5], the choice 

of a suitable distribution for the error distribution plays an 

important role in ACD modeling as many well-known 

positive support distributions have been used which include 

exponential and Weibull distributions. 

1.1. Rationale 

Data transformations such as replacing a variable by its 

logarithm or by its square root are used to simplify the 

structure of the data so that they follow a convenient 
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statistical model. Transformations according to Montgomery 

[9] are used for three purposes: 

1) To stabilize response variance. 

2) To making the distribution of the response variable 

closer to a normal distribution, and 

3) To improving the fit of the model to the data. 

The first and second goals are concerned with simplifying 

the “error structure” or random component of the data. 

The choice of an appropriate transformation depends on 

the probability distribution of the sample data. More so, the 

relationship between the mean and the standard deviation can 

be used in stabilizing the variance. 

1.2. Background of the Study 

Ohakwe et al [15] studied the effect of square root 

transformation on the error component of the multiplicative 

error model whose distribution belongs to the generalized 

gamma family to determine the effect of the said 

transformation on the basic assumptions of unit mean and 

constant variance; and affirmed the unit means assumption is 

approximately maintained for all the distributions while the 

result showed variations in the variances of the distributions. 

Ohakwe and Ajibade [13] studied the commonly used power 

transformations on the unit-mean and variance of the error 

component of a multiplicative error model which has a gamma 

distribution that requires a variance-stabilization 

transformation and observed that for the transformations, there 

was no relative change in the mean between the transformed 

and the untransformed distributions. While on the variances, it 

was found that there are relative increases for the inverse, the 

inverse square and the square root transformations. 

Onyemachi [18] investigated the impact of square root 

transformation on Weibull-distributed error component of a 

multiplicative error model and confirmed consistence of the 

unit mean and constant variance assumption in the 

transformed and untransformed distributions. 

This study is focused on investigating the impact of the 

inverse square root transformation on the unit mean and 

variance of the error component of a Weibull-distributed 

random variable under the multiplicative error model with a 

necessity that requires a variance-stabilization. 

1.3. Motivation 

Motivated by such strong statistical and empirical relevance, 

the purpose of this study is to verify the assumed fundamental 

statistical structure of the error component (unit mean and 

constant variance) is maintained after the inverse square root 

transformation and also to investigate what happens to 

variances of the transformed and untransformed (i.e., 2
1σ and 

2
2σ ) in terms of equality and non-equality. To examine this, 

the Weibull distribution, a non-normal distribution whose 

distributional characteristics fit 2~ (1, )N σ  is chosen 

considering its flexibility and adaption with asymptotic 

properties relative to multiplicative error modeling. 

 

1.4. Research Importance 

There are various studies on the effects of transformation 

on the error component of the multiplicative error models 

whose distributional characteristics is given to follow the unit 

mean and constant variance criteria. The overall aim of such 

studies is to obtain the conditions for successful 

transformations such as [19, 1, 15, 16, 12]. According to 

Ohakwe et al [15], a successful transformation is achieved 

when the desirable properties of a data set remain unchanged 

after transformation. 

The choice of a suitable distribution for the error 

distribution plays an important role in multiplicative error 

models; thus in the case of MEM, the normality assumption 

of the error component is out of the question. The study will 

test the probability distribution of the error term in the MEM. 

1.5. Research Problem 

In practice many multiplicative time series data do not 

conform to the basic assumptions of a parametric statistical 

analysis; they are not normally distributed, their variances are 

not homogeneous or both. As such, researchers are faced 

with two choices:(i) Adjusting the data to fit the assumptions 

through transformation or (ii) Developing new methods of 

analysis with assumptions which fits the data in its “original” 

form. 

If a satisfactory transformation can be found, it will almost 

be easier and simpler to use it, rather than developing new 

methods of analysis Turkey [23]. The study will provide 

basis to judge the convenience of any data transforming 

method under which transformation can be made without 

necessarily altering the desired properties of the original data 

in the case of non-normally distributed data set. The 

distribution of failures over the lifetime of the product 

population is critically important to the MEMs and reliability 

physicist (small, lightweight and power saving systems 

compared to conventional systems). Using these concepts, 

distribution functions can be developed and used for 

predictive purposes. 

1.6. The Standard Weibull Distribution 

The Weibull distribution is a continuous probability 

distribution that can fit an extensive range of distribution shapes. 

Like the normal distribution, the Weibull distribution describes 

the probabilities associated with continuous data. However, 

unlike the normal distribution, it can also model skewed data. In 

fact, its extreme flexibility allows it to model both left- and 

right-skewed data. Because of its versatility, analysts use it in a 

broad range of settings, such as quality control, capability 

analysis, medical studies, and engineering. It’s frequently used 

in life data, reliability analysis, and warranty analysis to assess 

time to failure for systems and parts. 

There are two forms of the Weibull distribution 

distinguished by the presence of either two or three 

parameters. Unlike the normal distribution, the Weibull 

cumulative density function is expressible in closed form. 

The probability density function of a Weibull-distributed 
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random variable, X and its thk moment as contained in 

Walck [24] is given by 

1

( ) ,

x
x

f x e

η
ηση

σ σ

 − − 
  =  

 
0, 0x σ> > and 0η >     (1) 

with 

( ) 1
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 
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( ) 1E X
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and 

2
2

2
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( ) 2Var X
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η η η η
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The probability density function (pdf) of the two parameter 

Weibull distribution is given by 

1
( )

( ; , )
dF x x

f x
dx

ββη β
η η

−
 

= =  
 

. exp
x

β

η

  
 − 
   

          (6) 

The two parameter Weibull, has a shape ( )η  and scale 

( )β parameters respectively. We shall limit our discussion to 

the standard two parameter Weibull distribution. 

Various applications of the Weibull models for solving a 

variety of problems from many different disciplines dot the 

literature as Okorie et al [17] derived the adjusted Fisk 

Weibull distribution, Meyer [9] presented an insight review 

with a number of historical facts and many forms of the 

distribution as used by practitioners, Murthy et al [11] 

present a monograph containing a wholesome details 

concerning the Weibull distribution and its extensions, Horst 

[8] did a valuable handbook and gave a bird’s eye view of the 

Weibull distribution. 

2. Materials and Methods 

2.1. Theoretical Framework 

The proposed model, on which the study devolves, is the 

multiplicative error model that could be abbreviated as MEM. 

This model specifies an error that is multiplied by the mean. 

Let { }tx  denote a discrete time real-valued stochastic 

process defined on [ )0, +∞ , Nt ∈  where N is the set of N 

natural numbers and let 1tψ − be the information available for 

forecasting tx . { }tx according to Brownlees et al [4] is a 

MEM if it can be expressed as 

t t tx µ ε=                                           (7) 

where conditionally on 1tψ − , tµ is a positive quantity that 

evolves deterministically according to a parameter vector θ . 

( )1,t tµ µ θ ψ −=                                     (8) 

tε is an independently, identically distributed ( . . )i i d

innovation series with non negative support density and 

( ) 1tE ε = with unknown constant variance 

2
1| ~ (1, ),t t Dε ψ σ+

−                             (9) 

Irrespective of the specification of the function (.)µ and of 

the distribution D+
 (any distribution) equations (7), (8) and 

(9) according to Engle [7] must evolve 

1( | )t t tE x ψ µ− =                                (10) 

2 2
1( | )t t tV x ψ σ µ− =                             (11) 

The assumption according to Engle and Russell [4] is that 

the time dependence in the durations can be subsumed in 

their conditional expectations (10), in such a way that |t tx ψ  

is independent and identically distributed. 1tψ − denote the 

information set available at time 1t − . 

The realization of (9) supports such distributions as 

Weibull according to Bandi and Russell [2]. 

The property (10) provides us with a link on (12) which 

gives 

1
1t tψ µ

α
 = Γ + 
 

                              (12) 

where (.)Γ is the gamma function. If 1α = , the Weibull 

distribution becomes an exponential one. Here, .t tµ ψ=  

,t t tx µ ε= 2
1| ~ (1, )t t tDε ψ σ−                 (13) 

The range of the disturbance would naturally run from 

zero to infinity, thereby satisfying (7). 

2.2. Ozdemir Transformation 

Using the power transformation modified for a class of 

distributions based on Box and Cox [3], by Ozdemir [20] 

given as: 

( )
pX , p 0

Y =
log X , p = 0

 ≠



 

Suppose tY = p
tX , then 
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1

p
t tX Y=                                 (14) 

and 

1 1
1 11 1p pt

t t
t

d x
J y y

d y p p

− −
= = =             (15) 

where J  is the absolute value of the Jacobian of the p-th 

power transformation. The pdf of tY , denoted as ( )tf y  is 

then obtained according to Ramachandran and Tsokos [19] as 

( )
1

p t
t t t

t

d x
f y f x y

d y

 
 = =
 
 

                        (16) 

Now, suppose the error component (et) of a Multiplicative 

Error Model (MEM) is assumed to follow a Weibull 

distribution, then the probability density function (pdf) of et 

denoted as f(et) is given as follows: 

( )
σ - 1 σ

t t
t t

e eσ
f e = exp - , e > 0

n n n

       
     

      

        (17) 

whereσ and n are the shape and scale parameters respectively. 

The mean (E(et)=
teµ ) and Variance ( ( )

t

2
t eVar e = σ ) of et 

are given as 

( ) ( )
t

1
t e σ

E e = µ n Γ 1 +=                      (18) 

and 

( ) ( )
t

2
2 2 2 1

e σ σ
σ = n Γ 1+ - n Γ 1+ 

 
                (19) 

Using (16) and (17), the pdf of the p-th transformed 

Weibull distribution is obtained denoted by ( )tf y  

( )
1

σ p
p

σσ
- 1 y

t tn

σ 1
f y = y exp - , y > 0

p n

     
          

    (20) 

If p=1 in (20), we obtain 

( )
σ - 1 σ

t t
t t

yσ
f = exp - , y > 0

n n n

y
y

       
     

      

      (21) 

which established that no transformation is required when 

p=1. 

The pdf of the transformed Weibull t(Y )  variable under the 

inverse square root transformations is thus: 

( ) ( )
σσ

2σ - 1

t t t2
t

1 1
f y = 2σ y exp - , y > 0

n n y

−
     
          

 (22) 

2.3. The K-th Uncorrected Moment of Y denoted as [E(Y
k
)] 

The mean and higher-order raw moments can be used to 

describe the distribution of any random variable fairly well. 

Even the celebrated Central Limit Theorem which forms the 

basis for inferential statistics rely on moments, just to 

mention a few importance of moments in probability and 

statistics. Onyemachi [18] shows that ( )f yt is a proper pdf 

and derived the moments of the transformed Weibull 

distribution: 

The 
thK uncorrected moment of tY  denoted as ( )k

tE Y  is 

obtained as follows 

( ) ( )
1

σ p
p

σσ
- 1 yk k k

t t t t tn
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σ 1
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                      (24) 

thus 

( ) ( )
2

t

2 2
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2p p2p p
n Γ 1+ - n Γ 1+

σ σ

    
    

    
            (25) 

The Expressions for the Means and Variances under the 

inverse square root transformation are given by 

E(Yt)=µt=
1
2

- 1
n Γ 1 -

2σ

 
 
 

 

t

2
yσ =

1
2

2

--1 1 1
n Γ 1- - n Γ 1-

σ 2σ

   
   
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3. Relative Change in Means and 

Variances of the Two Distributions 

In this Section, the means and variances of the transformed 

and the untransformed distributions would be obtained 

followed by to computations of the relative changes in means 

and variances between the untransformed and transformed 

distributions. 

The mean ( )
tεµ  and variance ( )2

tεσ  of the 

untransformed Weibull distribution are respectively given (18) 

and (19). 

Considering the unit mean assumption required for 

modeling, we would calculate the theoretical values of 
tεµ ,

2

tεσ
tyµ and 2

tyσ using values of σ=7, 8,..., 99, 100 and 
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corresponding values of n for which 1.0
tεµ = Ohakwe and 

Ajibade [13]. From (18), for 1.0
tεµ = , without loss of 

generality, we would adopt ( )1
σ

1
n =

Γ 1+
 in order to 

maintain the values of the shape parameters as positive 

integers Ohakwe and Ajibade [13]. That is for every value of 

σ we would use the corresponding values of ( )1

1

1
n

σ

=
Γ +

 

for all the computations involving the untransformed and 

transformed distributions. Table 1 (see appendix) contains 

the means of the transformed and the untransformed 

distributions while their variances are contained in Table 2. 

Considering that the interest in this study is to examine the 

effect of the inverse square root transformations on the 

Weibull distributed error term as regards the mean and the 

variance, we will adopt the same measures used in Ohakwe 

and Ajibade [13] which are the relative change in means and 

variances between the untransformed and the transformed 

distributions in measuring the effect of a transformation. The 

measures are given as follows; for the effect on the mean, the 

two variables of interest are 
tεµ and 

tyµ and the Relative 

Change in mean (RCIM) is 

1.0t t

t

t

y

yRCIM
ε

ε

µ µ
µ

µ
−

= = −                (21) 

where RCIM > 0 indicates increase, RCIM=0 indicates no 

change and RCIM < 0 indicates decrease in mean. 

Furthermore, for the effect on the variance, the 

determinant variables are 2

tεσ and 2

tyσ  and the measure for 

the Relative Change in Variance (RCIV) between the 

transformed and the untransformed distributions is 

t

t

2 2
y ε

2
ε

σ σ
RCIV =

σ

t
−

                         (22) 

where RCIV > 0 indicates increase, RCIV=0 indicates no 

change and RCIV < 0 indicates decrease in variance. 

Whereas the theoretical means of the transformed 

distributions are approximately 1.0 to the nearest whole 

number for all σ≥ 7 as shown in Table 1, we therefore 

compute the RCIM and RCIV values for σ≥ 7. Furthermore, 

the computations of the RCIV are contained in Table 3 (see 

appendix). Finally, the mean values, minimum and maximum 

values of the RCIV for the various transformations are given 

in Table 4. 

4. Results and Discussions 

The results in Table 1 indicate that the unit-mean 

assumption is unaffected by the transformations. This result 

is in agreement with the findings of Ohakwe et al., [15]; and 

Ohakwe and Ajibade [13]. 

For the variances given in Table 2, the variances for the 

inverse square root transformation (VISRT), are lower than 

that of the untransformed distribution. The RCIV values for 

ISRT that indicates reduced variances with factors: -0.8867 – 

(-0.8556), however it is noticeable that the magnitude of 

decreases are approximately the same. Finally, it is important 

to mention that stability of the variances for all the 

transformations is achieved from the point, α≥17, where the 

variances for all the transformations are all approximately 

zero. 

5. Conclusion 

The study discusses inverse square root transformation of 

the Weibull two-parameter distribution of the multiplicative 

error model which has importance in presenting a new way 

of modeling random durations emanating from time varying 

events. The pdf , means and variances of transformed and 

untransformed distributions were obtained. Results affirmed 

that decreasing of value of scale parameter is meaningful and 

effective for inverse and square root transformation Ozdemir 

[20]. Furthermore, the assumption of unit mean was verified 

for all transformations, whereas for the variance it was found 

that there exists relative stability for the inverse square root 

transformation. The paper finally concludes that the inverse 

square root would yield better results when using MEM with 

a Weibull-distributed error component and where data 

transformation is deemed necessary to stabilize the variance 

of the data set. 

6. Recommendation 

The inverse square root transformation is recommended to 

stabilize variance when dataset requires remedial measures to 

suit statistical modeling as evidenced in respect of 

multiplicative error models with class of models considered 

as stochastic process. 

Appendix 

Table 1. Means of the untransformed and Transformed Distributions. 

σ ( )1
σ

1
n =

Γ 1+
 

tεµ  ISRT 

7 1.0690 1 1.0123 

8 1.0619 1 1.0094 
9 1.0560 1 1.0075 

10 1.0511 1 1.0061 

11 1.0470 1 1.0050 
12 1.0435 1 1.0042 

13 1.0405 1 1.0036 

14 1.0379 1 1.0031 
15 1.0356 1 1.0027 

16 1.0335 1 1.0024 

17 1.0317 1 1.0021 
18 1.0300 1 1.0019 

19 1.0286 1 1.0017 

20 1.0272 1 1.0015 
21 1.0260 1 1.0014 

22 1.0249 1 1.0013 

23 1.0239 1 1.0012 
24 1.0229 1 1.0011 
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σ ( )1
σ

1
n =

Γ 1+
 

tεµ  ISRT 

25 1.0220 1 1.0010 

26 1.0212 1 1.0009 

27 1.0205 1 1.0008 
28 1.0198 1 1.0008 

29 1.0191 1 1.0007 

30 1.0185 1 1.0007 
31 1.0179 1 1.0006 

32 1.0174 1 1.0006 

33 1.0169 1 1.0006 
34 1.0164 1 1.0005 

35 1.0137 1 1.0004 

36 1.0134 1 1.0003 
37 1.0131 1 1.0003 

38 1.0128 1 1.0003 

39 1.0125 1 1.0003 
40 1.0122 1 1.0003 

41 1.0120 1 1.0003 

42 1.0117 1 1.0003 
43 1.0115 1 1.0003 

44 1.0113 1 1.0002 

45 1.0111 1 1.0002 
46 1.0109 1 1.0002 

47 1.0107 1 1.0002 

48 1.0105 1 1.0002 
49 1.0103 1 1.0002 

50 1.0101 1 1.0002 

51 1.0099 1 1.0002 
52 1.0098 1 1.0002 

53 1.0096 1 1.0002 

54 1.0094 1 1.0002 
55 1.0093 1 1.0002 

56 1.0091 1 1.0002 

57 1.0090 1 1.0002 
58 1.0089 1 1.0002 

59 1.0087 1 1.0001 

60 1.0086 1 1.0001 
61 1.0085 1 1.0001 

62 1.0083 1 1.0001 

63 1.0082 1 1.0001 
64 1.0089 1 1.0002 

65 1.0087 1 1.0001 

66 1.0086 1 1.0001 
67 1.0085 1 1.0001 

68 1.0083 1 1.0001 

69 1.0082 1 1.0001 
70 1.0081 1 1.0001 

71 1.0080 1 1.0001 

72 1.0079 1 1.0001 
73 1.0078 1 1.0001 

74 1.0077 1 1.0001 
75 1.0076 1 1.0001 

76 1.0075 1 1.0001 

77 1.0074 1 1.0001 
78 1.0073 1 1.0001 

79 1.0072 1 1.0001 

80 1.0071 1 1.0001 
81 1.0070 1 1.0001 

82 1.0069 1 1.0001 

83 1.0069 1 1.0001 
84 1.0068 1 1.0001 

85 1.0067 1 1.0001 

86 1.0066 1 1.0001 
87 1.0065 1 1.0001 

88 1.0065 1 1.0001 

89 1.0064 1 1.0001 
90 1.0063 1 1.0001 

91 1.0063 1 1.0001 

92 1.0062 1 1.0001 
93 1.0061 1 1.0001 

94 1.0061 1 1.0001 

95 1.0060 1 1.0001 

σ ( )1
σ

1
n =

Γ 1+
 

tεµ  ISRT 

96 1.0059 1 1.0001 

97 1.0059 1 1.0001 

98 1.0058 1 1.0001 
99 1.0058 1 1.0001 

100 1.0057 1 1.0001 

Table 2. Variance of the untransformed and Transformed Distributions. 

σ ( )1
σ

1
n =

Γ 1+
 

t

2
εσ  ISRT 

7 1.0690 0.0282 0.0097 
8 1.0619 0.0220 0.0072 

9 1.0560 0.0177 0.0056 

10 1.0511 0.0145 0.0045 
11 1.0470 0.0121 0.0037 

12 1.0435 0.0102 0.0031 
13 1.0405 0.0088 0.0026 

14 1.0379 0.0076 0.0022 

15 1.0356 0.0067 0.0019 
16 1.0335 0.0059 0.0017 

17 1.0317 0.0053 0.0015 

18 1.0300 0.0047 0.0013 
19 1.0286 0.0042 0.0012 

20 1.0272 0.0038 0.0011 

21 1.0260 0.0035 0.0010 
22 1.0249 0.0032 0.0009 

23 1.0239 0.0029 0.0008 

24 1.0229 0.0027 0.0007 
25 1.0220 0.0025 0.0007 

26 1.0212 0.0023 0.0006 

27 1.0205 0.0021 0.0006 
28 1.0198 0.0020 0.0005 

29 1.0191 0.0019 0.0005 

30 1.0185 0.0017 0.0005 
31 1.0179 0.0016 0.0004 

32 1.0174 0.0015 0.0004 

33 1.0169 0.0014 0.0004 
34 1.0164 0.0014 0.0004 

35 1.0137 0.0013 0.0003 

36 1.0134 0.0012 0.0003 
37 1.0131 0.0012 0.0003 

38 1.0128 0.0011 0.0003 

39 1.0125 0.0010 0.0003 
40 1.0122 0.0010 0.0003 

41 1.0120 0.0009 0.0002 

42 1.0117 0.0009 0.0002 
43 1.0115 0.0009 0.0002 

44 1.0113 0.0008 0.0002 

45 1.0111 0.0008 0.0002 
46 1.0109 0.0008 0.0002 

47 1.0107 0.0007 0.0002 

48 1.0105 0.0007 0.0002 
49 1.0103 0.0007 0.0002 

50 1.0101 0.0006 0.0002 

51 1.0099 0.0006 0.0002 
52 1.0098 0.0006 0.0002 

53 1.0096 0.0006 0.0001 

54 1.0094 0.0005 0.0001 
55 1.0093 0.0005 0.0001 

56 1.0091 0.0005 0.0001 

57 1.0090 0.0005 0.0001 
58 1.0089 0.0005 0.0001 

59 1.0087 0.0005 0.0001 

60 1.0086 0.0004 0.0001 
61 1.0085 0.0004 0.0001 

62 1.0083 0.0004 0.0001 

63 1.0082 0.0004 0.0001 
64 1.0089 0.0004 0.0001 

65 1.0087 0.0004 0.0001 
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σ ( )1
σ

1
n =

Γ 1+
 

t

2
εσ  ISRT 

66 1.0086 0.0004 0.0001 

67 1.0085 0.0004 0.0001 

68 1.0083 0.0003 0.0001 
69 1.0082 0.0003 0.0001 

70 1.0081 0.0003 0.0001 

71 1.0080 0.0003 0.0001 
72 1.0079 0.0003 0.0001 

73 1.0078 0.0003 0.0001 

74 1.0077 0.0003 0.0001 
75 1.0076 0.0003 0.0001 

76 1.0075 0.0003 0.0001 

77 1.0074 0.0003 0.0001 
78 1.0073 0.0003 0.0001 

79 1.0072 0.0003 0.0001 

80 1.0071 0.0003 0.0001 
81 1.0070 0.0002 0.0001 

82 1.0069 0.0002 0.0001 

83 1.0069 0.0002 0.0001 
84 1.0068 0.0002 0.0001 

85 1.0067 0.0002 0.0001 

86 1.0066 0.0002 0.0001 
87 1.0065 0.0002 0.0001 

88 1.0065 0.0002 0.0001 

89 1.0064 0.0002 0.0001 
90 1.0063 0.0002 0.0001 

91 1.0063 0.0002 0.0001 

92 1.0062 0.0002 0.0000 
93 1.0061 0.0002 0.0000 

94 1.0061 0.0002 0.0000 

95 1.0060 0.0002 0.0000 
96 1.0059 0.0002 0.0000 

97 1.0059 0.0002 0.0000 

98 1.0058 0.0002 0.0000 
99 1.0058 0.0002 0.0000 

100 1.0057 0.0002 0.0000 

Table 3. Relative Change in Variance (RCIV) of the untransformed and 

Transformed Distributions. 

σ ( )1
σ

1
n =

Γ 1+
 

t

2
εσ  ISRT 

7 1.0690 0.0282 -.6579 
8 1.0619 0.0220 -.6713 

9 1.0560 0.0177 -.6812 

10 1.0511 0.0145 -.6889 
11 1.0470 0.0121 -.6951 

12 1.0435 0.0102 -.7001 

13 1.0405 0.0088 -.7043 
14 1.0379 0.0076 -.7078 

15 1.0356 0.0067 -.7108 

16 1.0335 0.0059 -.7135 
17 1.0317 0.0053 -.7157 

18 1.0300 0.0047 -.7178 

19 1.0286 0.0042 -.7196 
20 1.0272 0.0038 -.7212 

21 1.0260 0.0035 -.7226 

22 1.0249 0.0032 -.7239 
23 1.0239 0.0029 -.7251 

24 1.0229 0.0027 -.7262 

25 1.0220 0.0025 -.7272 
26 1.0212 0.0023 -.7281 

27 1.0205 0.0021 -.7289 

28 1.0198 0.0020 -.7297 
29 1.0191 0.0019 -.7304 

30 1.0185 0.0017 -.7311 

31 1.0179 0.0016 -.7317 
32 1.0174 0.0015 -.7323 

33 1.0169 0.0014 -.7329 
34 1.0164 0.0014 -.7334 

σ ( )1
σ

1
n =

Γ 1+
 

t

2
εσ  ISRT 

35 1.0137 0.0013 -.7339 

36 1.0134 0.0012 -.7344 

37 1.0131 0.0012 -.7348 
38 1.0128 0.0011 -.7352 

39 1.0125 0.0010 -.7356 

40 1.0122 0.0010 -.7360 
41 1.0120 0.0009 -.7363 

42 1.0117 0.0009 -.7366 

43 1.0115 0.0009 -.7370 
44 1.0113 0.0008 -.7373 

45 1.0111 0.0008 -.7376 

46 1.0109 0.0008 -.7378 
47 1.0107 0.0007 -.7381 

48 1.0105 0.0007 -.7383 

49 1.0103 0.0007 -.7386 
50 1.0101 0.0006 -.7388 

51 1.0099 0.0006 -.7390 

52 1.0098 0.0006 -.7393 
53 1.0096 0.0006 -.7395 

54 1.0094 0.0005 -.7397 

55 1.0093 0.0005 -.7399 
56 1.0091 0.0005 -.7400 

57 1.0090 0.0005 -.7402 

58 1.0089 0.0005 -.7404 
59 1.0087 0.0005 -.7406 

60 1.0086 0.0004 -.7407 

61 1.0085 0.0004 -.7409 
62 1.0083 0.0004 -.7410 

63 1.0082 0.0004 -.7412 

64 1.0089 0.0004 -.7413 
65 1.0087 0.0004 -.7414 

66 1.0086 0.0004 -.7416 

67 1.0085 0.0004 -.7417 
68 1.0083 0.0003 -.7418 

69 1.0082 0.0003 -.7419 

70 1.0081 0.0003 -.7421 
71 1.0080 0.0003 -.7422 

72 1.0079 0.0003 -.7423 

73 1.0078 0.0003 -.7424 
74 1.0077 0.0003 -.7425 

75 1.0076 0.0003 -.7426 

76 1.0075 0.0003 -.7427 
77 1.0074 0.0003 -.7428 

78 1.0073 0.0003 -.7429 

79 1.0072 0.0003 -.7430 
80 1.0071 0.0003 -.7431 

81 1.0070 0.0002 -.7432 

82 1.0069 0.0002 -.7432 
83 1.0069 0.0002 -.7433 

84 1.0068 0.0002 -.7434 
85 1.0067 0.0002 -.7435 

86 1.0066 0.0002 -.7436 

87 1.0065 0.0002 -.7436 
88 1.0065 0.0002 -.7437 

89 1.0064 0.0002 -.7438 

90 1.0063 0.0002 -.7438 
91 1.0063 0.0002 -.7439 

92 1.0062 0.0002 -.7440 

93 1.0061 0.0002 -.7440 
94 1.0061 0.0002 -.7441 

95 1.0060 0.0002 -.7442 

96 1.0059 0.0002 -.7442 
97 1.0059 0.0002 -.7443 

98 1.0058 0.0002 -.7444 

99 1.0058 0.0002 -.7444 
100 1.0057 0.0002 -.7445 
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Table 4. Mean values, minimum and maximum of the Relative Change in 

Variance for the Study Transformations. 

Transformation 
Mean Relative Change 

in Variance 
Minimum Maximum 

ISRT -0.7331 -0.74447 -0.6579 
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