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Abstract: Food prices have experienced enormous movements and volatility in the recent past which can be predominantly 

attributed to climate change. Extreme weather events such as drought, flooding and heat waves have adverse effects on 

agricultural production in areas where agriculture is weather reliant. Among the extreme weather events experienced in Kenya 

is a drought in 2008/09 which led to a record increase in food prices. It is against this backdrop that this study sought to 

investigate the dynamic relationship between maize prices and extreme agro-climatic indicators. The study uses structural 

vector autoregressive (SVAR) tools; Granger causality, Impulse Response Function (IRF) and Forecast Error Variance 

Decomposition (FEVD) to examine the dynamic relationship between extreme weather indicators (minimum and maximum 

temperature and precipitation) and wholesale maize prices. Using different lag length determinant criterion, reduced-form VAR 

(2) is highlighted as the best model to fit the study data past weather and maize prices information over a data period spanning 

from January 2000 and December 2016. The study established that there exists granger causality between maize prices and 

weather variables. Agro-climatic indicators are therefore significant in predicting future maize prices. Principally, this 

significance can be inferred from the reliance of local agricultural production on phenological patterns. Maize price shocks 

exhibited inflationary effects on future maize prices, while a shock in weather variables has depreciating effects after three 

months. With regard to forecast variance, 30-39% of maize price variations resulted from its own shocks. The rest is attributed 

to precipitation (29-39%); maximum temperature (24-26%); and minimum temperature (7-8%). 

Keywords: Structural Vector Autoregressive (SVAR), Granger Causality, Forecast Error Variance Decomposition (FEVD), 

Impulse Response Function (IRF) 

 

1. Introduction 

Since the turn of 21
st
 century, global climate change debate 

has gained traction with many scientific studies undertaken to 

understand the ramifications of this phenomenon. Generally, 

climate change, a phenomenon caused by anthropogenic 

factors and natural processes, has proven to be a challenging 

environmental challenge that has potential significantly 

impact the world economy. However, the dependence of 

agriculture on phonological factors has augmented the 

susceptibility of the sector to climatic patterns especially in 

the developing countries. 

Precisely, climate change, as defined by FAO, is the 

variation in climatic patterns derived from emission of green-

house gases (GHGs) such as carbon dioxide (CO2), nitrous 

oxide (N2O) and methane (CH4) through deforestation, 

combustion, industrialization and urbanization [10]. Climate 

change continues to pose a threat to majority of people across 

the globe due to its effects on agriculture, water resources, 

forests, snow cover and the resulting geological processes, 

such as desertification, flood and landslides. According to 

McPhail et al, climate change leads to rising sea levels, 

extreme rainfall and drought in areas that had hitherto 

experienced normal rainfall and drought, as well as 

unpredictability in weather conditions, thus affecting 

agricultural production the most [24].  

In light of this significance of weather variations on 

agricultural production, it becomes imperative to study the 
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structural relationship between maize prices (the staple crop 

in large parts of Africa and other developing countries) and 

climatic variables, as the latter has been attributed to the 

erratic movements of the former. In spite of remarkable 

technological development, crop potential and production in 

many countries continues to depend highly on weather 

patterns and climate indicators, such as precipitation, 

temperature, soil moisture and vapor pressure. In Kenya, 

maize production, both small scale and large-scale, largely 

relies on rainfall as the source of water since irrigation 

techniques are not employed. 

Agriculture is a key sector in Kenya
’
s economy, 

contributing to approximately 26% of the total Gross 

Domestic Product (GDP), and another 27% of the same, 

through linkages with other sectors. It is the backbone of the 

country’s economy. In terms of employment, agriculture 

employs over 40% of the total population and 70% of 

Kenyans living in rural areas. According to statistics by FAO, 

the small-scale farming sub-sector, which primarily entails 

mixed crop and livestock farming, accounts for over 75% of 

the total agricultural output [10]. Maize is the staple food in 

Kenya and forms the largest bank of calories for majority of 

Kenyans. Specifically, each person is estimated to consume 

approximately 98 kilograms of maize per annum, translating 

to national maize consumption of 30 to 34 million bags 

annually. This makes the issue of maize price more pertinent 

to a majority of Kenyans. 

Given the above insights, a study on specific climatic 

indicators (such as rainfall and temperature) on Kenya
’
s 

maize production forms the starting point to understanding 

the effects of climatic variability on agricultural production, 

and subsequently on food prices. This research work utilizes 

a structural vector analysis approach to investigate the 

influence of climatic unevenness on food prices, which is 

extremely important in forecasting future prices with 

reference to current and past weather conditions. 

As stated by Murungaru, weather aberrations such as 

extreme drought, flooding and high temperature affect all 

sectors of the economy with the agricultural sector suffering 

the most from these variations due to its high reliance on 

weather [27]. Effects of weather related strains vary from one 

region to the other and from one region of the country to the 

other. In 2003, as a result of reduced maize production, 

prices increased, both in rural and urban areas. In a similar 

fashion in 2008, several months of drought induced poor 

harvest which triggered the need to import maize to cover the 

deficit [18]. In 2008 and 2009, productions went down by 20 

percent compared to three previous years [11]. 

In Kenya, food markets have been characterized by rising 

and highly volatile food prices. In 00s, food dynamics were 

particularly worrying as food prices hit the highest level ever 

recorded then, which was principally attributed to changing 

climate. FAOSTAT further indicated that during global 2008 

food crisis, grains prices rose by 60% in one month [12]. 

Recently, food prices spikes in 2011 surpassed those of 2008 

crisis. Jayne et al reckoned that the erratic nature of food 

prices poses a real threat to food security in Kenya, and is 

largely attributable to and dependent on phonological 

patterns [18]. 

Maize production in Kenya, which directly affects prices 

through market forces, is specifically through rain-reliant 

agricultural practices mostly undertaken by rural populace at 

subsistence level, and large scale production in areas such as 

Uasin Gishu, Eldoret, Trans Nzoia, Kitale and Vihiga [28]. 

This makes Kenya’s ability to produce sufficient maize for 

domestic consumption vulnerable to variations in weather 

patterns. Crop production, especially of maize, is faced with 

negative effects of extreme weather shocks believed to be 

corollaries of changing climate. According to Ekpoh, 

extreme weather shocks have direct effect on agricultural 

productivity [8]. McPhail et al, utilized extreme climate 

indicators to investigate the effect of climatic volatility on 

poverty, and concluded that extreme weather events are 

significant factors in defining food price movements [24]. 

Similar to what is happening in other countries, Kenyan 

climate has undergone through a climatic metamorphosis. On 

average, Kimani stated that local temperature has increased 

by 1°C since 1960, translating to a 0:21°C per decade [20]. 

On the other hand, annual rainfall has exhibited an erratic 

trend where long-rains which are normally experienced in 

March and June has been exhibiting a decreasing trend, while 

the short rains experienced between October and December 

has exhibited an increasing trend. Additionally, extreme 

weather events such as flood and drought have intensified; 

becoming more frequent and calamitous. 

High potential maize production areas are largely located 

in the Rift valley highlands covering the following counties: 

Nandi, Uasin Gishu, Trans Nzoia, Nakuru, Bomet and 

Kericho. In these areas, rainfall suitable for maize growing is 

experienced between April and August [19]. The households 

in these “grain basket” counties are typically food secure. 

Over half of national production and 60 percent of long rains 

output come from these counties. Other areas such as Mount 

Kenya region only grow maize for subsistence. Kilavi further 

observed that maize output in these counties principally 

governs domestic maize availability and local prices. Maize 

crop is the predominant crop in the Rift valley and Highland 

counties, with household’s maize plantation averaging 

between 2-15 hectares. Maize requires between 600-900 mm 

of rainfall that is evenly distributed through-out the growing 

period. However, rainfall is more critical during flowering 

and silking stage. Lack of enough moisture during these 

stages can interfere with pollination, which can negatively 

affect production.  

In a nutshell, the aim of this research is to investigate; 

firstly, the importance of weather variations in predicting 

maize price movements; secondly, how long a unit impulse 

of an extreme weather variable affects wholesale maize 

prices; and lastly, the proportion of forecast error of maize 

prices that is as a result of shocks in endogenous variables. 

The outcome of this study will provide actionable insights of 

the relationship between rainfall trends and price movements, 

which are valuable in policy simulation and developing food 

security programmes in developing countries. 
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The other parts of the paper are divided as follows: part 2 

explores the available work related to this study, part three 

explains the outline of VAR model and structural VAR tools. 

Part four presents the empirical results from the analysis, 

while part five provides the conclusion of the study.  

2. Literature Review 

Climatic variations exert strong impact and influence on 

many sectors including, but not limited to, forestry, 

agriculture, road maintenance, public transport, and tourism. 

Granted, agricultural sector is the main socio-economic 

sector that has received the most wrath of climate change. In 

many countries, climate, and the short-run weather, is the 

main determinant, or rather the driving force, of agricultural 

production. 

Presently, there are numerous studies undertaken to 

establish the major causes of heightened price volatilities. 

The causes are divided depending on the stage on the market 

chain. Climatic conditions (weather shocks) are considered as 

the root cause in the supply side, whilst biofuels production 

is the main contributor on the demand side of the market 

chain. However, we acknowledge that the recent variations in 

product prices are as result of combination of factors. 

Understanding the importance of these factors is invaluable 

to policymakers. For instance, Subsidy Programmes 

implemented in 2017 were regulatory approaches and policy 

responses to cushion Kenyans from the maize high prices 

resulting from drought experienced in 2016/2017 in most 

parts of the country. 

Using a thirteen-variable (agro-climatic predictors) 

multiple regression model, Ben, & Abdoussallam examined 

the influence of climatic variability and future variations on 

millet productions in millet growing areas in Niger regions, 

and estimated the effects of climatic variations in millet 

production [3]. From the analysis, the most significant 

predictors were temperature variations, level of precipitation 

during growing seasons and number of rainy days, as well as 

erosion. The study, also projects 13% reduction attributed to 

climate change as a consequence of reduction of the amount 

of rainfall during the growing season which is combined with 

increased temperature. 

Vector autoregressive analysis (VAR) model was first 

introduced in 1980 by Sims. As a result of high predictive 

efficiency and accuracy, the approach has gained traction in 

many fields, and more conspicuously in econometric 

modelling [35]. For instance, Hui employed the approach to 

study the level of pollution in the city of Hong Kong [16]. 

The level of pollution in various areas of Hong Kong were 

modeled using various VAR models such as general VAR, 

Space-Time vector autoregressive (STAR) and structural 

VAR. However, due to efficiency and predictive power, 

STAR model was used to study the level of pollution. Using 

the same approach, Rogers et al used STAR to study the 

demand of electricity in the Republic of Ethiopia in relation 

to consumption, population and gross domestic product 

(GDP) [32]. 

There are other studies that have utilized the structural 

analysis approach-structural vector autoregressive analysis 

model. Lutz used the SVAR to extricate market shocks (both 

demand and supply side) of commodity prices [22]. More 

precisely, Lutz further disentangled the crude oils real prices 

into; supply shocks, global demand for various commodities 

and demand of crude oils. Due to information asymmetry, he 

then employed zero instantaneous response of supply and 

demand of crude oil [22]. The same approach has been 

employed to examine movements in crude oil prices, by 

various scholars such as, [39]; and [24]. 

The application of SVAR has become progressively more 

popular in the recent times. Lutz used the same techniques as 

McPhail to examine the influence of global speculation, 

demand and energy shocks on maize price volatility [22]. 

The conclusion was that energy shocks were the main drivers 

of long-term maize prices volatility. Chen et al extended the 

work by including market movements of gasoline, corn and 

ethanol in the SVAR model with the structural analysis 

obtained through Cholesky decomposition [5]. They 

concluded that biofuel production has short-term effect on 

corn prices. Lutz used the SVAR to extricate market shocks 

(both demand and supply side) of commodity prices [22]. To 

identify the model, they used normalization, recursion and 

identified the model through heteroskedicity. They concluded 

that there were no co-movements between cotton prices and 

other non-agricultural commodities. 

Similarly, Carter et al used SVAR model to investigate the 

influence of United States ethanol prices on corn prices using 

four structural factors: VAR system; inventory supply, 

inventory demand, global economic activities and supply 

storage stock [4]. They established that ethanol production 

had considerably significant effects on global maize prices, 

without which the prices would have been 40% less in 2012. 

Conversely, Baumeister found no substantive evidence to 

establish the influence of oil prices on retail product prices 

using two-variable VAR model [2]. 

According to Dinku et al, monitoring and forecasting 

agricultural production in Kenya can provide insightful 

information about food security and policies and the 

approach that ought to be implemented to improve 

agricultural productivity [7]. Zhang et al employed structural 

vector autoregressive analysis to analyze the climatic effects 

on agricultural production, and consequently food prices 

[39]. Tewari et al evaluated the Granger-causality between 

climatic indicators and soybean price variations during the 

data period stretching from 1975-2013 in US-West Tennessee 

County [37]. 

Expanding the application of SVAR in previous studies, 

this research work has expanded the literature by examining 

the influence of extreme weather shocks and contribution of 

each shock on maize price variations over the period of 

January 2000 and June 2017. This study extends the present 

literature in several ways. First, unlike Tewari et al who 

studied the bivariate Granger causality of soybeans price and 

minimum/maximum temperature, this analysis involves 

monthly minimum/maximum temperature and rainfall which 
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is highlighted as the root cause of food price variations [37]. 

Second, this research work conducts a full structural vector 

autoregressive analysis. Modeling the causal relationship 

among the monthly weather shocks and maize prices may 

reveal important information regarding their 

contemporaneous relationship, using VAR system. The 

impulse response function and variance decomposition from 

the SVAR model can highlight the extent to which the 

weather shocks influence domestic maize price movements. 

3. Research Methodology 

The objective of this paper is to estimate and trace the 

historical effects of extreme weather aberrations on maize 

price movements. The analysis will involve monthly data of 

maize prices in Nairobi, Nakuru, Mombasa and Eldoret over 

a period from January 2010 to December 2016. The climatic 

data applied is monthly minimum and maximum 

Temperature (in centigrade) and rainfall from maize growing 

counties, Trans Nzoia, Uasin Gichu and Embu covering the 

same time period. We use the structural vector autoregressive 

(SVAR) tools to show how extreme climatic shocks affect the 

maize prices at national scale. 

3.1. Construction of Rainfall Deviations and Shocks 

To construct the monthly weather shocks, we reference 

monthly minimum and maximum temperature and rainfall in 

three counties: Trans Nzoia, Uasin Gichu, and Embu counties 

that substantially contribute to maize production in Kenya. 

To suppress seasonality effects we consider monthly 

deviations from the long-term climatic monthly averages 

derived from thirty years’ historical information of respective 

counties. Similar to studies by Lutz; Maccini & Young and 

Rocha & Soares among others, weather deviations are 

constructed by subtracting the natural logarithm of the long-

term or historical average from the current monthly weather 

observations. The resulting measures are weather changes 

essentially indicating the percentage deviation from long-

term averages, and they are measured using log-point 

deviations [23]. 

3.2. Structural Vector Autoregressive (SVAR) Framework 

In addition to description and forecast, VAR models are 

also applied in structural analysis. Restrictions and 

assumptions are imposed on the system about casual 

structure under analysis, and hence the impact of an 

unexpected standard deviation of shocks of a specific 

variables on itself and other variables in the system are 

summarized. Causal relationships are analyzed and presented 

using impulse response functions (IRFs) and forecast error 

variance [38]. Specifically, this paper involves determining 

Granger causality tests, the calculation of impose response 

functions (IRFs) and tracing the proportion forecast error that 

is attributable to each variable in the model. 

We assume that maize prices variations in Kenya are 

adequately represented by the structural equation below. A 

generalized vector autoregressive model of	Y� given by Y� = A� + A�Y� + μ
 
where A�	 is a k constant vector, Y�  is a k vector of 

realizations of endogenous variables and A�  is an 

interrelation matrix among the endogenous variables where i	 > 	0  and m�  is a vector of independent and identically 

distributed (i.i.d) random vectors (white noise) with mean 

zero and with a positive definite covariance matrix. Fackler 

and Sims proposed a structural vector autoregressive model 

using econometric analysis as it is imperative to examine the 

dynamic relationship between endogenous variables. In 

general, SVAR system can be represented as a function of 

backshift operator (L) as follows: Y� = D(L)Y� + e� 
Where	D(L) 	= 	A���		A�	(L) and e� represent the residuals 

of reduced VAR model. Generally, the SVAR model has 

many parameters which make interpretation difficult due to 

complex interactions between the endogenous and exogenous 

variables. Owing to these assertions, the dynamic nature of 

reduced-form VAR system is usually summarized using the 

structural-analysis tools: Granger Causality, Impulse 

Response Function (IRF) and Forecast Error Variance 

Decomposition (FEVD). 

3.3. Determination of Lag Length 

We follow Lutkepohl’s interactive procedure that involves 

the following steps: specification, model estimation, and 

diagnostic checking [21]. For this study, model specification 

involves selecting the optimal VAR order, p. Granted, 

determination of lag length is an important preliminary step 

in model building and structural analysis. In this study, we 

employ the commonly used information criteria to choose the 

optimal lag order. These include Akaike In-formation 

Criterion (AIC) proposed by Akaike , Hannan-Quinn (HQ) 

proposed by Hannan, & Quinn, and Bayesian information 

criterion (BIC) suggested by Schwarz . Under the normality 

assumption the following criteria are used:  

AIC(h) = ln �� 	�
�,� � + 2T hk" 

BIC(h) = ln �� 	�
�,� � + ln(T)T hk" 

HQ(h) = ln �� 	�
�,� � + ln	(ln	(T))T hk" 

where T is the number of observation and p is the optimal lag 

length and ∑ 	�,�'  is the maximum 

Likelihood estimate (MLE) of ∑ 	.	�,� 	 Nevertheless, 

consistency of information criteria in determining the lag 

length has a limitation in that it requires the existence of a 

true model, which unfortunately does not exist in reality [38]. 
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To this effect, Shibata constructed the asymptotic optimality 

properties of AIC [34]. Apart from the above criteria, Brandt 

and Bessler proposed an alternative method to determine the 

number of autoregressive lags in multivariate time series. The 

statistics is expressed as follows: 

m(k) = 	− * T − 12 − hk,-.ln� 	�
�,�/ 0 − .ln�	�

�,�1 02 

where h is the autoregressive optimal lag order and k is the 

number of endogenous variables. The statistics is effective in 

determining lag length in multivariate time series. It is 

asymptotically χ41	" distributed (k" degrees of freedom). After 

determining the optimal lag length, VAR system is re-

estimated and the insignificant lags are disregarded from the 

model. 

3.4. Model Checking 

There is a gallery of procedures available for checking the 

adequacy of VAR models. However, they should be 

employed cautiously to ensure consistency of inferences. 

Some of the methods use estimated residuals to test whether 

they conform to white noise assumption. Others, use non-

normality, autocorrelation and conditional heteroscedasticity 

tests [21]. However, for this study, analysis residual 

autocorrelation will be used to test the adequacy of VAR 

system using the multivariate Portmanteau test. The 

procedure tests the null hypothesis that all the cross-

correlations matrix of selected VAR model innovations is not 

different from zero. H� 	= 	E	(e�	e6��
) 	= 	0  where i	 =	1, 2, 3… against the alternative hypothesis that at least one 

auto covariance, hence autocorrelation, is not equal to zero. 

To increase the efficiency of the statistics, Hosking 

modified Portmanteau test, to match the estimated and actual 

distribution. The proposed statistic is as follows: 

Q(p) = T" 	� 1T − j tr .�	�
>

6�	�
�

���	�
> �	�

>
��0�

>��  

The choice of h is important and it should be larger than p 

to get a considerably good approximation. However, using a 

too large h will reduce the power of the test. 

3.5. Stationarity and Stability Test 

Determination of the stationarity of individual time series 

is important as it ascertains the order of integration, and in 

presence of non-stationarity, the series are differenced to 

make them stationary. The method of classifying non-

explosive processes is that, processes that are stationary are 

denoted by I(0), while process that become stationary after 

first, and second differences are denoted by I(1)  and I(2) 
respectively. Augmented, Dickey-Fuller (ADF) statistic is 

used to ascertain whether the process is stationary. 

A k-dimensional VAR system Y�  is said to be weakly 

stationary if; firstly, the expectation of the random vector Y� 
is a vector of constants, and secondly cov(Y	) 	= 	E(Y −

μ)	(Y − μ)6 	= 	∑ 	B  is a k	 × k  positive definite matrix. 

Hence,Y�	is said to be weakly stationary if the expectation 

and covariance are time invariant, in other words, the first 

two moments do not depend on time. Implicitly, this requires 

the first two moments of the random vector to exist. 

A reduced VAR model is said to be stable provided if the 

Eigen values of A� are less than unit in absolute terms. The 

Eigen values must satisfy the following equation det(I"λ − A�) = 0 

and equal to the inverse of roots to characteristic equation, det(I" − A�z) = 0 

Hence, the reduce form of VAR is stationary, a stable 

system is stationary while the reverse is not true, provided 

the roots of the equation lies outside a complex unit circle. 

3.6. Structural Analysis Tools 

The typical VAR (h) model is characterized by many 

parameters, making it difficult to make interpretations due to 

complexity resulting from interactions and dependence 

between the structural variables in the system. To circumvent 

this, the dynamic properties of VAR	(h) are often summarized 

using structural tools of analysis namely; (i) Granger 

causality tests, (ii) impulse response functions (IRFs) and 

(iii) forecast error variance decompositions (FEVD). Below 

is a brief description of the above structural analysis 

methods: 

3.6.1. Granger Causality 

Granger proposed the principle of granger causality to 

describe the significance of macroeconomic variables in 

predicting other variables [13]. Previously, the concept of 

causality was understood as the asymmetrical relationship 

between variables. In a bivariate model of variables X and Y, 

Tsay postulates that Y causes X if bivariate prediction is 

more accurate compared with univariate, where accuracy is 

measured using forecast error [38]. Using forecast variance 

Granger defined causality [13] as; δ"(X|V) < δ"(X|V − Y)	 
This means that the forecast variance of X given all the 

available information V, is less than the variance when X 

with information less the information embedded in variable 

Y. In this case Y is said to Granger cause X. That 

notwithstanding, the application of the test is subjective in 

the sense that the research decides the relevance of the 

information. 

3.6.2. Impulse Response Function (IRF) 

The impulse response function is used to analyze the 

dynamic effects of the VAR system when the model receives 

as shock. The dynamic response of market prices (wholesale 

maize prices) to the changes in weather indicators can be 

examined through impulse response analysis. It uses moving 

average (MA) representation of the VAR model to trace the 
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dynamic effects of shocks to the system on each variable 

under investigation [36]. Here, our interest is the dynamic 

response of wholesale market prices to the shocks of monthly 

maximum and minimum temperature and precipitation. 

Consider Moving average representation of the reduced-

form VAR (p) system at time t	 + 	s. 
Ny�(�PQ)y"(�PQ)R = Nμ�μ"R + Sθ��� θ��"θ�"� θ�""U Nε��ε"�R + ⋯+ SθQ�� θQ�"θQ"� θQ""U Sε�(�PQ)ε"(�PQ)U 

Therefore, a generalized structural temporal multiplier is:  

θQ
> = ∂y
(�PQ)ε>�  

The structural impulse response functions (IRFs) is a plot 

of θQ
>	against s, where; 	j	 = 	1, 2. Typically, the plots is the 

summary of how impulse of the structural shocks at time t 

impacts the level of Y�	at time t + s for different value of s. 

3.6.3. Forecast Error Variance Decomposition (FEVD) 

The other practical question addressed by structural VAR 

model is how much of the forecast error variance (FEV) or 

mean squared prediction error (MSPE) of Y�PQ	  on time 

horizon s = 1, 2, 3, 4, 5, 6 … is accounted for by each 

structural shock. In a stationary time series model, the limit 

of FEVD, as s ⟶ ∞  is the variance decomposition 

of	Y�	because the forecast error covariance matrix or MSPE 

converges to unconditional covariance matrix of Y�. Thus, for 

stationary systems, one may construct MSPE decomposition 

for horizon infinity [17].  

In other words, FEVD is applied to trace the proportion or 

percentage of variations of innovations in forecasting of Y� 

and Y" at the time t + s based on the available information at 

time t that is as a result of variability in the structural shock 

of e1 and e2 along the forecast horizon [6]. This 

decomposition is achieved through Wold representation for Y�PQ, as follows: This may be interpreted that not a single 

structural shock affects Y� in the long-run. y�PQ = μ + μ�PQ +Ψ�μ�PQ�� +⋯+ΨQ��μ�P� +	ΨQμ� +	ΨQ��μ��� 

The most accurate linear forecast of Y�PQ	 based on the 

available information at time t is y]�PQ|� = μ + ΨQμ� +	ΨQP�μ��� 

Hence, the forecast error is given by: 

y
� − y]�PQ|� =�θ
>�ε
�PQ +⋯+ θ
>Q��	ε
�P�"
>^�  

The forecast error variance of i can therefore be written as 

a function of structural shocks: 

var`y
� − y]
�PQ|�a = δ
"(s) = �δ
" b(θ
>(�)	)" +⋯+ (θ
>(Q��)	)"c"

^�  

Therefore the fraction of forecast error from y
(�PQ)	 
attributable to ε
 (where i, j = 1,2 in case of bivariate VAR) 

ρ
>(s) = δ
" b(θ
>(�)	)" +⋯+ (θ
>(Q��)	)"c∑ δ
" b(θ
>(�)	)" +⋯+ (θ
>(Q��)	)"c"
^�  

4. Empirical Results 

This chapter presents the findings of this work. The findings 

are presented and outlined with reference to the objectives of 

the study, as stated in the previous chapters. The specific aims 

were to model the variables using vector autoregressive model, 

and employ the structural tools to determine the dynamic 

relationship between the endogenous variables. Analysis was 

carried out in R software environment using "vars", "MTS", 

and "MSBVAR" packages. 

4.1. Description of the Data 

The information of maximum and minimum temperature 

for individual weather station in Uasin Gichu, Trans Nzoia 

and Embu were obtained from the Department of 

Meteorological, in the Ministry of Environment and Natural 

Resources. In addition, monthly average of the selected 

weather stations was calculated to represent the local climatic 

condition in maize growing areas. Monthly data of historical 

maize prices (Whole prices) were obtained from the Ministry 

of Agriculture, Livestock and Fisheries. We applied Kenya
’
s 

consumer price index (CPI) (January 2000), retrieved from 

Kenya National Bureau of Statistics (KNBS), to adjust the 

price for inflation. 

4.2. Descriptive Statistics 

With regard to maize prices, Nairobi had the highest mean 

price per bag of Kshs. 2,046.01 and maxi-mum price 

nationally of Kshs. 4,225.00, which was equal to the highest 

price registered in Eldoret. Contrary, the smallest mean price 

was registered in Eldoret, Kshs. 1,803.42. However, as 

indicated in Table 1 below, the monthly prices in Kenya 

exhibited high dispersion indicated by high standard 

deviations and range. Uasin Gichu County was the coolest 

while Embu County was the hottest, with reference to both 

minimum and maximum temperature. Trans Nzoia followed 

by Embu registered the highest average level of precipitation, 

110.45 and 99.20 millimeters respectively. In addition, Embu 

experienced the highest maximum rainfall during the study 

period. 
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Table 1. Descriptive Statistics of Maize prices and Weather Indicators. 

Variable Location Mean Standard Deviation Minimum Maximum 

Maize Prices Nairobi 2046.01 803.16 677.00 4225.00 

 Eldoret 1803.42 800.47 480.00 4225.00 

 Momabasa 1949.86 784.93 729.00 4030.00 

 Nakuru 1860.15 705.21 729.00 4060.00 

Min Temperature Uasin Gichu 11.07 1.13 7.30 13.90 

 Trans Nzoia 12.48 1.04 9.50 18.70 

 Embu 14.37 1.05 12.10 16.50 

Max Temperature Uasin Gichu 23.64 1.34 21.10 27.50 

 Trans Nzoia 26.25 1.97 12.50 33.10 

 Embu 23.15 4.47 12.50 29.10 

Rainfall Uasin Gichu 92.18 70.44 0.00 327.70 

 Trans Nzoia 110.45 72.85 0.00 301.50 

 Embu 99.20 114.51 0.00 744.20 

Note: Prices (KShs per 90 Kgs Bag), Temperature (in centigrade), and Rainfall (in mm) 

4.3. Stationarity and Stability Test 

Prior to structural analysis, the stationarity of the 

variables under investigation was determined to avoid 

inconsistent estimates and spurious regression which is a 

common problem in time series analysis. Augmented 

Dickey-Fuller (ADF) test was used to determine the 

stationarity of time series, presented as shown in Table 2 

below. All the variables, at least from empirical results, are 

stationary in their level form. The VAR system is stable 

considering that all Eigen values of the companion matrix 

are less than unit: 0.8957, 0.6523, 0.6523, 0.3781, 0.3781, 

0.1800, 0.1800 and 0.0616. Hence, the system is invertible 

providing an infinite-moving average (MA) representation 

for viable impulse response function and forecast variable 

decomposition interpretations.  

Table 2. Augmented Dickey-Fuller (ADF) Test for Stationarity. 

Variables 
Integration 

of order 

Dickey-Fuller 

Values 
P-values 

Maize Prices I(0) -3.4156 0.013 

Minimum Temperature I(0) -6.2741 0.010 

Maximum Temperature I(0) -5.3208 0.010 

Rainfall I(0) -7.5487 0.010 

 Note: I (0) = Integrated of order zero.  

4.4. VAR Order Selection and Estimation Results 

Given the sensitivity of the structural analysis to lag 

length, several information criteria, namely; BIC, AIC, HQ, 

M(p) were used to determine the optimal lag length of four-

variable VAR. Apart from AIC, other selection criteria 

suggested second-order VAR (Results in Table 3). The results 

are in line with what Akaike [1] postulated; Akaike 

information Criterion (AIC) and Bayesian criterion tend to 

underestimate the lag length in some situations. To affirm the 

selection, Multivariate Ljung-Box (Multivariate Portmanteau 

statistic) confirmed the adequacy of the model since the 

residuals of the second-order VAR are white noise, they 

behave well in all cases. In other words, VAR (2) 

successfully removes dynamic dependence among the 

structural variables.  

Table 3. Order Selection Statistics for Vector Autoregressive (VAR) Model. 

p BIC AIC HQ M(p) P-values 

1 -4.6606 -4.6606 -4.6606 0.0000 0.0000 

2 -6.9200 -7.1803 -7.0750 496.4919 0.0000 

3 -6.6870 -7.2075 -6.9969 17.4077 0.3065 

4 -6.3672 -7.1480 -6.8322 17.2810 0.3676 

5 -6.0660 -7.1070 -6.6859 20.1037 0.2156 

6 -5.6954 -6.9966 -6.4703 7.8843 0.9522 

7 -5.3935 -6.9549 -6.3233 19.0613 0.2655 

8 -5.0638 -6.8855 -6.1486 14.1224 0.5896 

9 -4.8437 -6.9257 -6.0835 31.0308 0.0133 

10 -4.6337 -6.9759 -6.0285 31.7895 0.0106 

11 -4.2899 -6.8923 -5.8396 10.9502 0.8126 

12 -3.9957 -6.8584 -5.7003 17.8831 0.3308 

Residual analysis or diagnostic check is of great 

importance in model building. However, the adequacy of the 

model is determined depending upon the objective of the 

study. For this analysis, we considered whether the model 

removed serial cross-correlation in VAR (2) residuals. To 

affirm the selection, Multivariate Ljung-Box (Multivariate 

Portmanteau statistic) was applied to confirm the adequacy of 

the model, the residuals of the second-order VAR were white 

noise (See Table 4). 

Table 4. Multivariate Ljung Box Test Statistics of VAR (2) Adequacy. 

p Q(h) d.f p-values 

1 1.64 16 1.00 

2 10.63 32 1.00 

3 23.17 48 0.99 

4 35.62 64 0.99 

5 51.69 80 0.98 

6 67.04 96 0.97 

7 102.88 112 0.72 

8 124.24 128 0.58 

9 136.50 144 0.66 

10 153.42 160 0.63 

11 169.39 176 0.63 

12 189.00 192 0.55   

4.5. Granger Causality 

It is worth stating that estimation of pairwise Granger 

causality is exceedingly sensitive to lag length. This 

informed implementation of several information criteria to 
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determine the order of unrestricted VAR model. The optimal 

length of order two, VAR (2), resulted to the stated granger 

causality relations as presented in Table 5. All the F-

Statistics, where the null hypothesis is weather variable fails 

to granger cause prices, are statistically significant at 5% 

probability level. The results evince that there is a causality 

between wholesale maize prices and all the weather variables 

over the period of study. Technically, maize prices are better 

predicted when the selected weather variables are factored. 

Table 5. Results of Granger Causality Test for Weather Variables. 

Null Hypothesis F-Statistics P-Values 

Rainfall Shocks /⟶	Prices 6.2782 2: 2740	 C	10i  

Min Temp Shocks /⟶	Prices 4.7744 9: 4451	 C	10i  

Max Temp shocks/⟶	Prices 3.5201 3: 1471	 C	10"  

H0; A/⟶ B, where /⟶ means "A fails to Granger cause B.” 

4.6. Structural Impulse Response Functions (IRF) 

Typically, the response is presented graphically as 

illustrated in Figure 1 and tracks the impact of a change by 

one standard deviation of endogenous variable innovations 

on current and future values of itself and other endogenous 

variables through a dynamic structure of VAR system. Figure 

1 is an IRF of 12 months’ period future values. The graphs 

depict the following: (1) tracks maize price response to its 

own instantaneous one standard deviation increase (shown on 

Top right panel). It has positive effects that are persistent and 

remain positive throughout the years. This implies that prices 

shocks have inflationary effects on prices with the highest 

recorded after two months. (2) The response of maize prices 

to minimum temperature shocks (shown in Top Left Panel) is 

positive during the first three months and then decreases into 

negative effect to the fifth month and then starts to increase. 

This suggests that an increase in minimum temperature leads 

to an in increase in maize prices for the first three months and 

then effects stabilize after five months. (3) The response of 

maize prices to maximum temperatures (shown in bottom left 

panel) declines immediately and builds up after the second 

month and there after decreases continuously. This indicates 

that maximum temperature has a negative effect on maize 

prices during the data period. (4) Conspicuously, the rainfall 

shock (shown in the bottom right panel) has a positive effect 

which increases for the first two months with the highest 

recorded during the second month and then erratically 

reduces to negative effects and level off after the fourth 

month. 

 

Figure 1. Impulse Response Function of Prices on Weather Variables. 

4.7. Variance Decomposition of Forecast Errors 

Illustratively, a shock in a specific variable will definitely 

affect itself and transmit to other variables in the VAR system 

through a dynamic structure. 

As illustrated in Table 6, during the first month, 32.1% and 

53.1% of the changes in wholesale maize price emanated 

from maize price itself and maximum temperature variables 

respectively, while the rest is largely explained by minimum 

temperature (13%). In the second month, 40.3%, 28.9% and 



87 Samuel Waiguru Muriuki et al.:  Structural Vector Autoregressive (SVAR) Analysis of  

Maize Prices and Extreme Weather Shocks 

21.5% of the changes in maize prices are attributed to 

changes in the level of precipitation, maximum temperature 

and maize price shocks respectively. During the third month, 

much of the changes in maize prices is explained by rainfall, 

accounting to 38.7%. In the same month, the change of maize 

prices that resulted from maize prices shock itself, maximum 

temperature and minimum temperature was 26.0%, 28.0% 

and 7.4% respectively. Henceforth, the proportion of forecast 

variance attributable to each endogenous variable remained 

fairly stable: maize prices between 30-39%, minimum 

temperature between 7-8%, maximum temperature between 

24- 26% and rainfall between 29-35%. This shows that maize 

price dynamics them-selves, maximum temperature and 

rainfall variations are the principal determinants of maize 

price movements in Kenya. 

Table 6. Forecast Variance Error Decomposition of Maize Price in Kenya. 

Months Std. Error Maize Prices Min Temp. Shocks Max Temp. Shocks Rainfall Shocks 

1 0.1235 32.0725 13.8233 53.1300 0.9743 

2 0.2199 21.4785 9.3427 28.8679 40.3109 

3 0.2465 25.9454 7.4350 27.9464 38.6732 

4 0.2566 30.7473 7.1050 26.2858 35.8620 

5 0.2658 33.7810 7.4933 25.0247 33.7010 

6 0.2724 35.8390 7.5016 24.3692 32.2902 

7 0.2778 36.9696 7.4801 24.1975 31.3528 

8 0.2822 37.5030 7.4199 24.4473 30.6300 

9 0.2854 37.8258 7.29009 24.7369 30.1473 

10 0.2875 38.0507 7.18299 24.9494 29.8170 

11 0.2890 38.2039 7.13709 25.0905 29.5686 

12 0.2900 38.3059 7.1597 25.1597 29.3747 

 

5. Conclusion 

The statistical analysis exhibited essential empirical 

evidences of co-movements between maize prices and 

weather indicators in Kenya. With regard to summary 

statistics, Nairobi and Eldoret indicated the highest and 

lowest maize prices respectively. Trans Nzoia recorded the 

highest amount of rainfall and level of temperature. The data 

is fitted to a reduced-form VAR (2), which efficaciously 

removed dependence among the systems residuals, the 

adequacy of the model was paramount in carrying out 

structural analysis. From the analysis, weather variation, and 

more so the rainfall, is important in predicting future maize 

prices. The importance of weather information in predicting 

maize prices is in agreement with the available literature. The 

result of impulse response function shows the representation 

of a response of a process in autoregressive system to a one 

standard deviation of its innovations and that of other 

processes in the system. With regard to forecast error 

decomposition, during the first month, price fluctuations are 

largely attributed to price itself and maximum temperature, 

and variations in the second month is largely inferable from 

the level of precipitation. After the third month, the 

proportion attributable to each variable stabilizes and are 

approximately ranked (significance in predicting maize 

prices) as follows: prices, precipitation, maximum 

temperature, and minimum temperature. 
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