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Abstract: This paper examines and discusses a comparative analysis of hypothetical data by using bootstrap methods. The 

residual and wild bootstrap methods, including their rescaled versions were applied on the data collected from a normal 

distribution with different ability levels to check whether they are significant at various assessment conditions. The wild 

bootstrap compared in this paper are from Mammen and Redamarche distributions. In addition their kernel density plot is used 

to ascertain the trends and the performance at the lower ends of the distributions for each bootstrap model and also the trend as 

sample size tends to infinity. To achieve this, each of the forms were represented by using at least one functional model each 

from hypothetical data sets of a particular bootstrap data generating process (DGP) method to illustrate how 8640 scenerios 

were estimated. The result shows that the Hypothetical Rescaled Residual (HRR) is found to be preferable to the Hypothetical 

Unrescaled Residual (HR) while Hypothetical Wild Redamarche Model (HRWR) is found to be preferable to the Hypothetical 

Wild Mammen model (HRWM) with reference to their bias, standard error and root mean square error (RMSE) at different 

levels of significance, that is, B=99, N(0,1), n1 & n3 = 10000, RMSE = -0.0004 &-0.0025 respectively. Aslo, B=99, N(0,1), n3 

= 10000, RMSE = -0.0004. Even though at B=99, N(0,1), n2 = 10000, RMSE for HRWM (0.0601) is higher than HRWR 

(0.0595). In fact, across all the models, rescaled residual functional model out performed all other functional models 

considered in this paper. Also, the trends at the lower ends of the distributions for each bootstrap model shows that the 

empirical distributions of true distributions follow the chi-square distribution and also tends to normal distribution as sample 

size tends to inifinity. 

Keywords: Rescaled, Bootstrap, Hypothetical Models, Mammen Distributions, Redamarche Distributions 

 

1. Introduction 

The basic idea of bootstrap testing is that, when a test 

statistic of interest has an unknown distribution, that 

distribution can be characterized by using information in the 

data set that is being analyzed. Bootstrapping is the practice 

of estimating properties of an estimator by measuring those 

properties when sampling from an approximating 

distribution. One standard choice for an approximating 

distribution is the empirical distribution of the observed data. 

This can give to models which can be restricted and 

unrestricted. When something is unrestricted, it means there 

are no restrictions placed on it. A restriction is a rule about a 

way that something can be used. It is a new definition that 

has been introduced, to define the sensitivity of a particular 

variable. It is also, a limitation which cannot be exceeded or 

rules which cannot be broken. 

In this research, restricted models will be considered and 

for a model to restricted; it will be rescaled. Rescaling is 

mathematical operation that changes the measurement scale 

of a variable, stabilizing variance, normalizing, and 

linearizing a relationship. 

Given, 

yt =X tβ + µ t; E(µt/Xt) = 0, E(µSµ t = 0) ∀ s≠ t, µt ~NID (0; σ2) (1) 

where the dependent variable, yt is a linear combination of 

the parameters (but need not be linear in the independent 

variables), n is the number of observations, β is a k-vector, 

and the 1 × k vector of regressors X t, which is the t
th

 row of 

the n × k matrix X, is treated as fixed and µ is an n × 1 vector 

of independent identically distributed errors with mean 0 and 

variance σ
2
. The true distribution of µ is not known. 

The corresponding dependent variables from the bootstrap 

methods are given by; 

yb = Xβ* + et                                   (2) 
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For each vector yb the estimator is recomputed and the 

sampling distribution of the estimator is estimated by the 

assumed distribution and empirical distribution respectively, 

of these estimates computed over a large number of yb. 

Generally, restriction on the models makes bootstrap tests 

more reliable, because the parameters of the bootstrap DGP 

are estimated more precisely. The interest in this study was 

ignited by [1], [2]; [3], which called for more research on the 

parametric bootstrap method and for comparative studies of 

parametric and nonparametric approaches. Therefore, This 

paper examines and discusses a comparative analysis on 

hypothetical data by using bootstrap methods. In this study, 

the residual and wild bootstrap methods, including their 

rescaled versions were applied on the data collected from a 

normal distribution with different ability levels to check 

whether they are significant at various assessment conditions. 

In addition their kernel density plot is used to ascertain the 

trends and the performance at the lower ends of the 

distributions for each bootstrap model. To achieve this, each 

of the forms were represented by using at least one functional 

model each from hypothetical data sets of a particular 

bootstrap data generating processes (DGPs) method to 

illustrate how 8640 scenerios were estimated. In addition to 

the standard errors (precision), bias and root mean square 

error, the trends of the bootstrap distribution methods of the 

sample will be established from a normal distribution of 

different forms as sample size tends to infinity. 

2. Literature Review 

[4], established that there are many bootstrap methods that 

can be used for econometric analysis, such as, regression 

models with independent and identical distribution (iid). [5], 

[6], in their paper "The wild bootstrap, tamed at last”, 

discovered that based on an extensive Monte Carlo study on 

the spatial and cross- sectional data, the wild bootstrap test 

was proposed for the evaluation of linear regression models 

based on restricted residuals. Also, the wild bootstrap 

consistently performs better than non-bootstrap 

heteroskedasticity consistent covariance matrix (HCCM) - 

based methods. Critical values for the tests than asymptotic 

theory was used by several authors including [7], [5], [6], [8], 

[9], [10], [11], [12], [13], [14], [15]), [16], in the linear 

regression estimation. [17], studied the efficiency of the 

Residual and Parametric Bootstrap Techniques. [18], after 

augmenting the data with normal underlying variables, 

compute with Gaussian distribution for latent variable using 

parametric bootstrap method. Also, the bit regression 

algorithm of [18], was included in the computation. This 

function generates a sample from the posterior distribution of 

a probit regression model using the data augmentation 

approach of [18]. [19] key insight was to observe that after 

pivoting [18] once, it can improve the confidence intervals 

for the mean. Other authors like [20] applied non-parametric 

data dependent bootstrap for conditional moment model in 

simple linear regression. [21] in his study of boostrap used 

simulation methods for bayesian econometric models: 

inference, development and communication. For example, 

many authors applied Geweke's spectral bootstrap measures 

to describe causal interactions among different areas in the 

linear regression of an unknown parameter. Using simulation 

methods for regression, each group of parameters and latent 

variables is simulated conditional on all the others [20]; [21]. 

Bootstrap and Other Resampling Methods in Regression 

Analysis was discussed in detail by [22]. [23] studied the 

exact likelihood analysis of the multinomial probit and 

normal regression models. To evaluate the inference in the 

regression models of representative samples, a number of 

authors have studied the single period case, [23], and [24]). 

[1]; [3] emphasis on the importance of acurrate statistical 

inference on different bootstrap data generating functional 

models. [25] gives a thorough review and comparison of the 

approaches in calculating standard errors in many areas of 

study including econometrics, regression, statistics, 

biometrics and so on. 

3. Research Methodology 

The hypothetical data set for this paper was collected from 

Normal distribution of disferrent ability levels under various 

assessment conditions using bootstrap methods; 

A. The residual bootstrap method whose algorithm is as 

follows; 

i. Fit the model, retain fitted values  and the residuals 

. 

ii. Create synthetic response variables  

where j is selected randomly from the list (1, …, n) 

for every i. 

iii. Refit the model using the fictitious response variables 

y*i, and retain the quantities of the parameters, , 

estimated from the synthetic y*i. 

iv. Repeat steps 2 and 3 a statistically significant number 

of times. 

Unless the quantity to be bootstrapped is invariant to the 

variance of the error terms, if not, it is advisable to rescale 

the residuals so that they have the correct variance. The 

simplest type of rescaled residual is 

��� ≡ � �
�	
�

�/�
�̂�                           (3) 

The first factor here is the inverse of the square root of the 

factor by which 1/n times the sum of squared residuals 

underestimates σ
2
. A somewhat more complicated method 

uses the diagonals of the ‘hat matrix’ 

X(X
T
X)

−1
X

T
                              (4) 

to rescale each residual by a different factor, which will be 

adopted in this paper. The residual bootstrap DGP using 

rescaled residuals generates a typical observation of the 

bootstrap sample by the equation 

��∗ � ���� � ��∗, 	��∗~��������              (5) 

The bootstrap errors here are said to be ‘resampled’ from 
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the empirical distribution function, or EDF, of the üt. This 

function assigns probability 1/n to each of the üt. Thus, each 

of the bootstrap error terms can take on n possible values, 

namely, the values of the üt, each with probability 1/n. 

B. The wild bootstrap 

The residual bootstrap is not valid if the error terms are not 

independently and identically distributed, but two other 

commonly used bootstrap methods are valid in this case. The 

first of these is the ‘wild bootstrap’, which was proposed by 

[22] for regression models. The idea of wild bootstrap is, like 

the residual bootstrap, to leave the regressors at their sample 

value, but to resample the response variable based on the 

residuals values. That is, for each replicate, one computes a 

new ��∗. For a model like (5) with independent but possibly 

heteroskedastic errors, the wild bootstrap DGP is 

��∗ � ���� � ���̂�� �∗, 	��∗~!"��0,1�              (6) 

where ���̂��	 is a rescaled form of the tth residual �̂�, and  �∗ 
is a random variable with mean 0 and variance 1. One 

possible choice for ���̂�� is just �̂� , but a better choice is 

���̂�� � 	 %&'
��	('�)/*

	                            (7) 

where ht is the tth diagonal of the ‘hat matrix’ (4). According 

to [15], When the ���̂�� are defined by (7), they would have 

constant variance if the error terms were homoskedastic. 

There are various ways to specify the distribution of the  �∗. 
This method assumes that the 'true' residual distribution is 

symmetric and can offer advantages over simple residual 

sampling for smaller sample sizes. Different forms are used 

for the random variable  �∗, but two forms will be considered; 

� The Rademacher distribution, [22]: 

                      (8) 

� The Mammen distribution, [26]; [27]: 

       (9) 

NOTATIONS 

HR - Hypothetical Residual Functional Model; 

HRR - Hypothetical Rescaled Residual Functional Model; 

HRWR - Hypothetical Rescaled Wild Functional Model 

from the Rademacher distribution; 

HRWM - Hypothetical Rescaled Wild Functional Model 

from the Mammen distribution. 

4. Analysis and Discussion of Results 

Under this section the bootstrap methods applied are the 

residual bootstrap and wild bootstrap. Each of the forms were 

represented by using at least one functional model each from 

hypothetical data sets of a particular bootstrap DGP method 

to illustrate how the values in tables 1, 2, and 3. 

Recall (1), yb = Xβ* + et: which is equivalent to (10) will 

be used to estimate original hypothetical data sets with fixed 

sample size. 

i. The results gotten from the Unrescaled Residual 

bootstrap when applied on the hypothetical data sets 

with fixed sample size is as follows;: 

Hypothetical Model: SLR Equation Estimated from the 

Unrescaled Residual bootstrap: 

HYPt = bo + b1A+ b2B+ et                     (10) 

Hypothetical Unrescaled Residual Model (HR), B=499, 

N(,0.9), n2=1000: 

HYPt = 24.42316 b1 + 0.06562462 b2          (11) 

Standard	error �0.7652269461� �0.034622�
Bias �0.08955� �0.034510�

RMSE �0.034513�
 

ii. The results gotten from the rescaled residual bootstrap 

when applied on the hypothetical data sets with fixed 

sample size is as follows; 

The residual bootstrap DGP using rescaled residuals 

��∗ � ���� � ��∗, 	��∗~��������                  (12) 

where 

��� ≡ X(X
T
X)

−1
X

T
 

Hypothetical data set: SLR Equation Estimated from (12) 

Rescaled Residual Model (HRR), B=499, N(0,0.9), n2=1000; 

HYPt = 24.14231687 b1 + 0.05696246 b2       (13) 

Standard	error �0.777766946� �0.0274100�
Bias �0.09031� �0.034201�

RMSE �0.032124�
 

iii. The results gotten from the wild bootstrap DGP when 

applied on the hypothetical data sets with fixed sample 

size is as follows; 

The wild bootstrap DGP is 

��∗ � ���� � ���̂�� �∗, 	��∗~!"��0,1�           (14) 

where 

���̂�� � 	 %&'
��	('�)/*

	                        (15) 

Rescaled wild model (HRWR) from Rademacher 

distribution B=499, N(0,0.9), n2=1000, 

using (14) 

HYPt = 23.94231687 b1 + 0.04696246 b2        (16) 

Standard	error �0.1163713� �0.0339067�
Bias 																			�0.06124�				 �0.03511�
RMSE																																													 �0.01439�

 

Rescaled wild model (HRWM) from Mammen distribution 

B=499, N(0,0.9), n2=10000 using (14) 

HYPt = 23.8652b1 + 0.04145213 b2              (17) 
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Standard	error (0.3726646) (0.06010302)

Bias 																	(0.19800)									 (0.035627)

RMSE																																															 (0.03568)

 

Majority of the interest on this paper lies on the RMSE 

(Table A3) since it is the square root of the squared bias and 

squared standard error put together. 

5. Summary and Interpretation of 

Results 

The interpretation of the Bias, Standard Error and Root 

Mean Square Error estimated from a hypothetical data set 

will enable determine the present the effects of the factors of 

sample size and bootstrap level. Extreme values in the ranges 

stated above were truncated and special consideration was 

given to the plotting range and the layout. Even though very 

low estimates were also observed, results in these ranges are 

presented in order to demonstrate the trends and the 

performance at the lower ends of the distributions for each 

bootstrap model. 

Table (A1-A3) shows the bias, standard error and root 

mean square respectively, of the three ability levels for the 

bootstrap. In fact, two cases were considered first-correlation 

between residual original values and rescaled residual values; 

secondly- correlation between wild values and wild values 

from different distributions were considered. Although the 

magnitude of bias varied across the bootstrap methods (HR, 

HRR, HRWR, and HRWM), the pattern of relative effects of 

these factors was generally consistent within each bootstrap 

method (or model). It can be seen that sample size and test 

length of bootstrap level had large effects on RMSE (which 

takes care of the bias and standard error) of the simple linear 

regression (SLR). The ability levels had relatively small or 

mixed effects under various assessment conditions. RMSE 

was smaller for larger sample sizes and bootstrap levels, 

especially in HRR. 

It can also be seen that, across different combinations, that 

as different test lengths (n1, n2, n3) of ability levels, and the 

sample size increased, the bias obtained from all the 

bootstrap models; decreased at almost all estimated points, 

which is to be expected because of the property of estimation 

bias. It can also be noted that although the RMSE at the two 

ends of the estimate was large (in absolute value), the curves 

from different bootstrap models were closer to one another 

when the sample size was 10000 than when the sample size 

was 10. Across all the conditions considered, models HRWM 

and HRWR yielded much larger RMSE than the other 

models at almost all the estimates. Model HRWM produced 

the largest RMSE. The smallest and the second smallest bias 

were associated with models HRR and HR across almost all 

estimates. Therefore, for the bootstrap models, the pattern 

was clear that lower sample sizes and bootsrap levels were 

associated with larger RMSE while higher sample sizes, 

rescaled were related to lower bias. This is not surprising, 

because the fitted distribution with the higher sample sizes 

even when bootstrapped was more similar to the distribution 

of the original data. However, it does not mean the higher 

sample sizes were always associated with the smaller bias 

along all the estimated values. It is pertanent to note that the 

difference between the models are so large, not to be 

approximately used for further prediction (see Table 3). For 

example, B=99, N(0,1), n1 & n3 = 10000, RMSE = -0.0004 

&-0.0025 respectively. Aslo, B=99, N(0,1), n3 = 10000, 

RMSE = -0.0004. Even though at B=99, N(0,1), n2 = 10000, 

RMSE for HRWM(0.0601) is higher than HRWR (0.0595). 

HRWR still have the minimum across all other points of 

estimation under various assessment conditions. The possible 

reason could be that model HRWR was over smoothing in 

that parameter estimates. As to the factor of ability levels, no 

substantial effect on bias was observed across the conditions 

examined. A general observation is that across different 

group proficiency levels, as the sample size, bootstrap level 

increased, the bias reduce meanwhile, the differences among 

the different restricted parametric bootstrap models were 

becoming more similar. The corresponding figures (B1-B3) 

provide information to evaluate the relative effects of sample 

size, bootstrap level and ability levels on the bias, standard 

error and RMSE of the SLR, which reveals the distribution of 

hypothetical data set to be a Chi- Square distribution. 

Interpretation of the hypothetical data set in econometric 

terms; using the restricted models, for example the (4.4) - 

HRR result indicates positive relationship between HYPt and 

b2. The positive sign of the b1 shows a great improvement in 

the HYPt dataset as suggested by economic theory. The high 

coefficient of determination and multiple R-squared shows 

that the model is a reasonable fit of the relationship among 

the variables. It also confirms its efficiency in prediction. The 

alternative hypothesis that the hypothetical data set is 

significant is accepted. The best set of parameters found in 

MLE are under the function that is minimized with first 

argument and the vector of parameters over which 

minimization is to take place, which makes the result a scalar. 

Since, convergence is one, this indicates that the iteration 

limit matrix had been reached. Likewise, the other 

hypothetical rescaled models follow the same pattern. 

6. Conclusion 

The result shows that the rescaled residual method using 

the diagonals of the hat matrix is a bit better than all other 

functional bootstrap models considered in this paper when 

some observations have high leverage. Though, leverage in 

regression analyses aimed at identifying those observations 

that are far away from corresponding average predictor 

values. It is good to note that leverage points do not 

necessarily have a large effect on the outcome of fitting 

regression models. The result have also shown that wild 

bootstrap tests based on Rademacher distribution usually 

perform better than wild bootstrap tests that use Mammen 

distribution which is in conformity with the result gotten by 

[5] especially when the conditional distribution of the error 

terms is approximately symmetric. Both methods seems to 

perform best when n is very large. Generally, inference based 
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on rescaled residual (RR) is extra-ordinary reliable but RR 

performed quite poorly when sample size (n) is small. Even 

though very low estimates were also observed, results in 

these ranges are presented in order to demonstrate the trends 

and the performance at the lower ends of the distributions for 

each bootstrap model using the kernel density plot. The 

results of the plots at the lower ends of the distributions for 

each bootstrap model showed that hypothetical data set is a 

Chi-square distribution. Figure B3 represents the behavior of 

the hypothetical data set as sample size tend to infinity under 

various assessment conditions and it shows that the data set 

tends to a normal distribution and a very suitable platform for 

precision and further research works. This paper suggest that 

further studies should carried out to verify whether there was 

an interaction effect between the factor and the bootstrap 

DGP method considered in this paper. 

Appendices 

Appendix A: Tables A1-A3 

Table A1. Comparison of Bias in the SLR for Parametric Bootstrap Models in a hypothetical data set. 

bootstrap Level 
Ability 

Level 
Sample Size 

Bootstrap Models Bootstrap Models 

HR HRR Diff HRWM HRWR Diff 

B=99 N(0,1) 

n1 

200 0.1224 0.1224 0.0000 0.1189 0.1190 - 0.0001 

1000 0.0319 0.0318 0.0001 0.0498 0.0495 0.0003 

10000 0.0160 0.0164 -0.0006 0.0337 0.0337 0.0000 

n2 

200 0.0783 0.0781 -0.0002 0.0812 0.0816 -0.0004 

1000 0.0204 0.0203 0.0001 0.0647 0.0647 0.0000 

10000 0.0344 0.0342 -0.0002 0.0165 0.0168 0.0003 

n3 

200 0.0829 0.0824 0.0005 0.1240 0.1236 0.0004 

1000 0.0356 0.0353 0.0003 0.0601 0.0603 -0.0002 

10000 0.0177 0.0176 0.0001 0.0331 0.0332 -0.0001 

B=499 N(0,0.9) 

n1 

200 0.0224 0.0226 -0.0002 0.1197 0.1196 0.0001 

1000 0.0259 0.0258 0.0001 0.0336 0.0336 0.0000 

10000 0.0329 0.0326 0.0003 0.0165 0.0164 0.0001 

n2 

200 0.0765 0.0763 -0.0002 0.0812 0.0809 0.0003 

1000 0.0597 0.0597 0.0000 0.0347 0.0351 -0.0004 

10000 0.0334 0.0330 0.0004 0.0166 0.0166 0.0000 

n3 

200 0.0748 0.0747 -0.0001 0.0829 0.0829 0.0000 

1000 0.0345 0.0342 -0.0003 0.0356 0.0351 0.0005 

10000 0.0331 0.0330 0.0001 0.0177 0.0175 0.0002 

B=1999 N(1,0.25) 

n1 

200 0.0813 0.0812 0.0001 0.0885 0.0880 0.005 

1000 0.0333 0.0333 0.0000 0.0352 0.0349 0.003 

10000 0.0172 0.0170 0.0002 0.0173 0.0173 0.000 

n2 

200 0.0828 0.0826 0.0002 0.1048 0.1048 0.000 

1000 0.0332 0.0332 -0.0000 0.0355 0.0356 -0.0001 

10000 0.0170 0.0171 0.0001 0.0267 0.0267 0.0000 

n3 

200 0.0814 0.0814 0.0000 0.1032 0.1030 0.0002 

1000 0.0308 0.0306 0.0002 0.0565 0.0568 -0.0003 

10000 0.0289 0.0286 -0.0003 0.0176 0.0176 0.0000 

Note. Bold values used as examples in the paper. 

Table A2. Comparison of Standard Error of the SLR for Parametric Bootstrap Models in a hypothetical data set. 

bootstrap Level Ability Level Sample Size 
Bootstrap Models Bootstrap Models 

HRR311A R311H Diff HWRR HWRM Diff 

B=99 N(0,1) 

n1 

200 0.0813 0.0744 0.0069 0.0885 0.0891 -0.0006 

1000 0.0333 0.0279 0.0054 0.0352 0.0352 0.0000 

10000 0.0172 0.0129 0.0043 0.0173 0.0173 0.0000 

n2 

200 0.0828 0.0758 0.0070 0.1048 0.1049 -0.0001 

1000 0.0332 0.0270 0.0062 0.0355 0.0359 -0.0004 

10000 0.0170 0.0130 0.0040 0.0267 0.0268 -0.0001 
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bootstrap Level Ability Level Sample Size 
Bootstrap Models Bootstrap Models 

HRR311A R311H Diff HWRR HWRM Diff 

n3 

200 0.0814 0.0729 0.0085 0.1032 0.1042 -0.0010 

1000 0.0308 0.0236 0.0072 0.0565 0.0563 0.0002 

10000 0.0289 0.0252 0.0037 0.0176 0.0178 -0.0002 

B=499 N(0,0.9) 

n1 

200 0.1224 0.1036 0.0188 0.1189 0.1139 0.0050 

1000 0.0311 0.0248 0.0063 0.0498 0.0443 0.0055 

10000 0.0140 0.0038 0.0102 0.0337 0.0307 0.0030 

n2 

200 0.0783 0.0737 0.0046 0.0312 0.0121 0.0191 

1000 0.0204 0.0150 0.0054 0.0647 0.0573 0.0074 

10000 0.0340 0.0312 0.0028 0.0165 0.0067 0.0098 

n3 

200 0.0829 0.0638 0.0191 0.1240 0.1193 0.0047 

1000 0.0356 0.0274 0.0082 0.0601 0.0539 0.0062 

10000 0.0177 0.0075 0.0102 0.0331 0.0301 0.0030 

B=1999 N(1,0.25) 

n1 

200 0.1224 0.1165 0.0059 0.1197 0.0985 0.0212 

1000 0.0598 0.0537 0.0061 0.0336 0.0248 0.0088 

10000 0.0329 0.0296 0.0033 0.0165 0.0052 0.0113 

n2 

200 0.0765 0.0549 0.0216 0.0812 0.0760 0.0052 

1000 0.0597 0.0498 0.0099 0.0347 0.0287 0.0060 

10000 0.0334 0.0225 0.0109 0.0166 0.0135 0.0031 

n3 

200 0.0748 0.0691 0.0057 0.0829 0.0612 0.0217 

1000 0.0345 0.0277 0.0068 0.0356 0.0248 0.0108 

10000 0.0331 0.0298 0.0033 0.0177 0.0163 0.0114 

Note. Bold values used as examples in the paper. 

Table A3. Comparison of RMSE of the SLR for Parametric Bootstrap Models in a hypothetical data set. 

bootstrap Level Ability Level Sample Size 
Bootstrap Models Bootstrap Models 

HRR311A R311H Diff HWRM HWRR Diff 

B=99 N(0,1) 

n1 

200 0.1224 0.1228 -0.0004 0.1189 0.1114 0.0075 

1000 0.0119 0.0025 0.0094 0.0498 0.0489 0.0009 

10000 0.0120 0.0099 0.0021 0.0337 0.0294 0.0043 

n2 

200 0.0783 0.0706 0.0077 0.0812 0.0768 0.0044 

1000 0.0404 0.0391 0.0013 0.0647 0.0530 0.0117 

10000 0.0340 0.0294 0.0056 0.0165 0.0169 -0.0004 

n3 

200 0.0829 0.0854 -0.0025 0.1240 0.1154 0.0086 

1000 0.0356 0.0233 0.0123 0.0601 0.0595 0.0006 

10000 0.0177 0.0164 0.0013 0.0331 0.0284 0.0047 

B=499 N(0,0.9) 

n1 

200 0.1224 0.1106 0.0118 0.1197 0.1101 0.0096 

1000 0.0598 0.0575 0.0023 0.0336 0.0133 0.0203 

10000 0.0399 0.0339 0.0060 0.0165 0.0113 0.0052 

n2 

200 0.0765 0.0708 0.0057 0.0812 0.0699 0.0113 

1000 0.0597 0.0389 0.0208 0.0347 0.0321 0.0026 

10000 0.0334 0.0297 0.0037 0.0166 0.0097 0.0069 

n3 

200 0.0748 0.0611 0.0137 0.0829 0.0746 0.0083 

1000 0.0345 0.0321 0.0024 0.0356 0.0143 0.0213 

10000 0.0331 0.0263 0.0068 0.0177 0.0130 0.0047 

B=1999 N(1,0.25) 

n1 

200 0.1063 0.0993 0.0070 0.0885 0.0819 0.0066 

1000 0.0518 0.0460 0.0058 0.0352 0.0331 0.0021 

10000 0.0297 0.0249 0.0048 0.1048 0.1029 0.0019 

n2 

200 0.0828 0.0774 0.0054 0.0173 0.0135 0.0038 

1000 0.0332 0.0309 0.0023 0.0355 0.0323 0.0030 

10000 0.0170 0.0126 0.0044 0.0267 0.0235 0.0032 

n3 

200 0.0714 0.0663 0.0051 0.1032 0.0968 0.0064 

1000 0.0318 0.0263 0.0055 0.0565 0.0544 0.0021 

10000 0.0018 -0.0022 0.0040 0.0176 0.0132 0.0044 

Note. Bold values used as examples in the paper. 
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Appendix B: Tables B1-B3 

 

Figure B1. Kernel Density Plot representing the behavior of the Data Set as 

Sample Size Equals to Ten Under Various Assessment Conditions. 

 

Figure B2. Kernel Density Plot Representing the Behavior of the Data Set 

as Sample Size equals to one Hundred Under Various Assessment 

Conditions. 

 

Figure B3. Kernel Density Plot representing the behavior of the Data Set as 

Sample Size tend to Infinity Under Various Assessment Conditions. 
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