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Abstract: Stellar models consisting of spherically symmetric distribution of charged matter locally anisotropic in strong 

gravitational fields have been widely considered in the frame of general relativity. These investigations require the generation 

of exact models through the resolution of the Einstein-Maxwell system of equations. The presence of charge produces values 

for redshifts, luminosity and mass for the stars different in relation to neutral matter. Some applications for dense charged 

matter we have them in the description of quark stars, spheres with linear or non-linear equation of state, hybrid stars and 

accreting process in compact objects where the matter acquires large amounts of electric charge. In this paper, we studied the 

behavior of relativistic compact objects with anisotropic matter distribution considering Van der Waals modified equation of 

state proposed in 2013 for Malaver and a gravitational potential Z(x) that depends on an adjustable parameter α in order to 

integrate analytically the field equations. They generalize the ideal gas law based on plausible reasons that real gases do not act 

ideally. New exact solutions of the Einstein-Maxwell system are generated and the physical variables as 

the energy density, radial pressure, mass function, anisotropy factor and the metric functions are written in terms of elementary 

and polynomial functions. We obtained expressions for radial pressure, density and mass of the stellar object physically 

acceptable with two different values of the adjustable parameter. The proposed models satisfy all physical features of a realistic 

star. 

Keywords: Relativistic Compact Objects, Gravitational Potential, Einstein-Maxwell System, Radial Pressure,  

Anisotropy Factor, Matter Distribution, General Relativity, Einstein Field Equations 

 

1. Introduction 

The study of the relation between ultracompacts objects and 

the gravitational collapse is one of the most fundamental and 

important factors in astrophysics and has attracted much 

researchers and scientists due to formulation of the general 

theory of relativity. On the other hand, one of the most important 

problems in general theory of relativity is to obtain exact 

solutions for Einstein field equations [1, 2]. These solutions 

include many applications in astrophysics, cosmology, string 

theory and so on [2]. Various types of mathematical 

formulations permit us solving Einstein´s field equations in 

order to explain behaviour of objects in strong gravitational 

fields such as neutron stars, quasars and white dwarfs [3-5]. 

From the development of Einstein´s theory of general 

relativity, the description of compact objects has been a 

central issue in relativistic astrophysics in the last few 

decades [2, 6]. Recent experimental observations in binary 

pulsars [6] suggest that it could be quark stars. The existence 

of quark stars in hydrostatic equilibrium was first suggested 

by Itoh [7] in a seminal treatment. The study of strange stars 

consisting of quark matter has stimulated much interest so 

that it could be represented as most energetically favorable 

state of baryon matter [8]. 

In the construction of the first theoretical models of 

relativistic stars, some works are important such as 

Schwarzschild [9], Tolman [10], Oppenheimer and Volkoff 
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[11]. Schwarzschild [9] found exact solutions to the Einstein's 

Field Equations and Tolman [10] proposed a method in order 

to obtain explicit solutions of static spheres of fluid in terms of 

known analytical functions. Oppenheimer and Volkoff [11] 

have deployed Tolman's solutions in order to investigate about 

gravitational balance of neutron stars. It is noticed that 

Chandrasekhar's contributions [12] in modelling for production 

of white dwarfs under relativistic effects and research of Baade 

and Zwicky [13] establish the concept of neutron stars as 

relativistic star of very dense matter. 

Also, it is noticed that the frame of the general relativity is 

very important which includes the presence of anisotropy in the 

pressure [14-26] for description of the behavior of relativistic 

gravitating matter and is defined as t rp p∆ = − where rp  is the 

radial pressure and tp  is the tangential pressure. Bowers and 

Liang [27] extensively discuss the effect of anisotropy in general 

relativity. The existence of anisotropy within a star can be 

explained by the presence of a solid core, phase transitions, a 

type III super fluid, a pion condensation [28] or another physical 

phenomenon by the presence of an electrical field [29]. Many 

researchers have used a great variety of mathematical techniques 

to try in order to obtain solutions of the Einstein-Maxwell field 

equations since it has been demonstrated by Komathiraj and 

Maharaj [30], Thirukkanesh and Maharaj [31], Maharaj et al. 

[32], Thirukkanesh and Ragel [33, 34], Feroze and Siddiqui [35, 

36], Sunzu et al.[37], Pant et al. [38] and Malaver [39-42]. These 

investigations show that the system of Einstein-Maxwell 

equations plays an important role to describe ultracompacts 

objects. 

Thirukkanesh and Maharaj [31], Komathiraj and Maharaj 

[8], Malaver [43], Bombaci [44], Dey et al [45] and Usov [29] 

consider linear format of this equation of state for quark stars. 

Feroze and Siddiqui [35] present a quadratic format equation 

of state for matter distribution and demonstrate special forms 

for gravitational potential and electric field intensity. Mafa 

Takisa and Maharaj [46] found new exact solutions to the 

Einstein-Maxwell system of equations through a polytropic 

equation of state. Thirukkanesh and Ragel [6] have studied 

special models of anisotropic fluids using polytropic equation 

of state, which have consistency with reported experimental 

observations. In addition, Malaver [47] obtained new exact 

solutions to the Einstein-Maxwell system through Van der 

Waals modified equation of state with polytropic exponent. 

Mak and Harko [48] presented a relativistic model of strange 

quark star through the suppositions of spherical symmetry 

and conformal Killing vector. 

The aim of this paper is to generate a new class of anisotropic 

matter with Van der Waals modified (VDWM) equation of state 

proposed for Malaver [49] in a static spherically 
symmetric space-time using a gravitational 
potential Z(x) which depends on an adjustable 
parameter α. We have obtained some new classes of 
static spherically symmetrical models for an 
uncharged anisotropic matter distribution where the 
variation of the parameter modifies the radial 
pressure, energy density and the mass of the 
compact objects. 

This paper has been organized as follows: In 
Section 2, Einstein’s field equations will be 
presented. In section 3, a particular choice of 
gravitational potential Z(x), allows us to solve 
field equations and we have obtained new models for 
uncharged anisotropic matter. In Section 4, a 
physical analysis of the new solutions is performed. 
Finally, in Section 5, we make a conclusion about 
obtained and discussed results. 

2. The Field Equations 

Consider a spherically symmetric four-dimensional space-

time so that whose line element is given in Schwarzschild 

coordinates by 

2ν 2λ 2 2 2 2sin2 (r) 2 (r) 2ds = e dt + e dr + r (dθ + θdφ )−    (1) 

at which ν(r)  and λ(r)  are considered as two arbitrary 

functions. Einstein-Maxwell system of field equations in 

uncharged perfect fluids are formulated as follows: 

( )2λ 2λ

2

1 2
1

'λ
e + e = ρ

rr

− −−                        (2) 

( )2λ 2λ

2

1 2
1

'

r

ν
e + e = p

rr

− −− −                       (3) 

2 2
te p

r r

λ ν λν ν ν λ− ′ ′ ′′ ′ ′ ′+ + − − = 
 

                (4) 

so that ρ is the energy density, rp  is the radial pressure and 

tp  is the tangential pressure, ∆ is the anisotropy and primes 

denote differentiations with respect to r. By transformations 

proposed by Dugapal and Bannerji [50] as 2x = cr , 

2λ(r)Z(x)= e−  and 2 2 2ν(r)A y (x)= e  where A and c are 

arbitrary constants, then the Einstein-Maxwell system has the 

equivalent form as follows: 

1
2Z

Z ρ
=

x c

− − ɺ                                   (5) 

1
4Z rpy Z

=
y x c

−−
ɺ

                               (6) 

4 4Z 2xZ tpy y
xZ +( + ) +Z =

y y c

ɺɺ ɺ
ɺ ɺ                     (7) 

1
4 1 2

y y Z
xZ + Z x =

y y x c

  − ∆+ + 
 

ɺɺ ɺ
ɺ                    (8) 

at which dots denote differentiations with respect to x. 

According to Durgapal and Bannerji [50], the mass within 

a radius r in the sphere leads to: 

3/2

0

1

4c

x

M(x)= x ρ(x)dx∫                            (9) 
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In this paper, we assume the VDWM equation of state 

2

1
rp

γραρ
βρ

= +
+

                               (10) 

proposed by Malaver [49]. In eq. (10) ,α β  and γ  are 

arbitrary constants and ρ  is the energy density. 

3. The New Models 

In this work, we have chosen the form of the 

gravitational potential ( )Z x  as 2( ) (1 )Z x axα= −  where a 

is a real constant and α is an adjustable parameter. This 

potential is well behaved and regular at the origin in the 

interior of the sphere. We have considered the particular 

cases for α=1/2, 2. For the case α=1/2, using ( )Z x  in 

eq.(5), we obtain 

5
3

4
ac axρ  = − 
 

                                 (11) 

Substituting (11) into eq.(10), the radial pressure can be 

written in the form 

2 2 2

5
3

1 5 4
(3 )

52 4
1 3

4

r

ac ax

p a c ax

ac ax

γ

β

 − 
 = − +
 + − 
 

          (12) 

Using (11) in (9), the expression of the mass function is 

( ) 3/24
( )

8

a ax
M x x

c

−
=                     (13) 

With (11) and (12), eq. (6) becomes 

( )( )
( )
( )( )

2
2

2 2

5 2

2 32 2 25 12 4 32 2 2

Cx Dx E ay A c aB Cx D

y ax a c axa cx a c a c ax

β
ββ β β

+ ++= + − +
− + −− − + −

ɺ
                            (14) 

where for convenience we have let 

( )2

5

2
A

a c

γ
β

∗ =
+

( )
( )

3 2 3 2 2 2 2 2

2

5 2 20 8 20 40 8

8 2

a c a c a c a c ac
B

a c

β β β β γ

β

− + − + − − +
=

+
4 2 325 50C a c a cβ= − − , 3 2 250 100D a c a cβ= +  

and 

2 24 16 8 32 32E a c a c acβ β γ= − + + −  

Integrating eq. (14), we have 

( ) ( ) ( )( )
2

32 2 22
1( ) 5 12 4 2

Cx Dx E
A a c axB

y x c a cx a c ax e
ββ β

∗
 + +− 

+ −  = − − −                                   (15) 

1c  is the constant of integration. 

The anisotropy factor is defined as t rp p∆ = −  and for α=1/2 ∆  is given for 

( )
( ) ( )( )

( )
( ) ( )( )

( )
( )( )( ) ( )

( )
( )( )

4 2 2 23

2 2 22

3 2 2 2
2 2 2

2 2 22
2

25 1 10 210

5 12 4 2 32 2 5 12 4 25 12 4

10 2

32 2 5 12 4 2 2 16 2 2
1

4 1
2

A a c A A a c Cx DA a cB

a cx a c ax a c a cx a c axa cx a c

A a c Cx Dx E a B Cx DxaB Cx DB a Ba

a c a cx a c ax ax a c ax

cx ax

β ββ
β β β β ββ β

β

β β β β

∗ ∗∗

∗

− +
+ −

− − − + − − −− −

+ + ++−+ + − +
+ − − − − + −

 ∆ = − 
 

( )
( )( )

( )
( )

( ) ( )
( )
( )( )

( )( )
( )
( ) ( )

3

2 2

2 3

2
2

2

2
2

2

2 2

2

16( 2) 2 16 2 2 16 2 2

2

32 2 2 32 2 2

1 5
1 1 2

2 5 12 4

E

a c ax

Cx Dx E aCx D aC

a c ax a c ax a c ax

Cx Dx E aCx D

a c ax a c ax

A a c aB
ac a x x

a cx a c

β

β β β

β β

β
β β

∗

 
 
 
 
 + 
 

+ − 
 

+ + +
 − + −

+ − + − + −
 
  + ++  + − +  + − + −    

 − − + +  − −  ( ) ( )
( )
( )( )

2

2

2

2 1

2 32 2 2 432 2 2

Cx Dx E aCx D
ac a cx

ax a c ax a c axβ β

  + ++  − + + −  − + − + −    

       (16) 

The metric functions 2e λ and 2e ν can be written as 

2

2

1

1
1

2

e

ax

λ =
 − 
 

                                                                                 (17) 
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( ) ( ) ( )( )
2

2 16 2 222 2 2 2
1 5 12 4 2

Cx Dx E
A a c axB

e A c a cx a c ax e
βν β β

∗
 + +− 

+ −  = − − −                                                      (18)

With α=2, the expression for the energy density is 

( )12 20ac axρ = −                                                                                  (19) 

Replacing (19) in (10), we have for the radial pressure 

( ) ( )
( )

2
2

2 2

2

12 20
2 12 20

1 12 20
r

c a a x
p c a a x

c a a x

γ

β

−
= − +

+ −
                                                       (20) 

and the mass function is 

( ) 3/2
2 1

( )
a ax

M x x
c

−
=                                                                               (21) 

The eq. (6) becomes 

( )( )
( )

( )( )

2
2

2 2

20 2 2

2 1 4 2 1 2 120 12 1 2 2 1 2 1

Hx Ix J ay Fa c Ga Hx F

y ax a c axa cx a c a c ax

β
ββ β β

+ ++= + − +
− + −− − + −

ɺ
                                       (22)

Again for convenience 

( )2

5

4 2 1
F

a c

γ
β

=
+  

( )
( )

3 2 3 2 2 2 2 2

2

160 4 160 4 40 5 1

4 2 1

a c a c a c a c ac
G

a c

β β β β γ

β

− − − − − − −
=

+
 

4 2 3800 400H a c a cβ= − − , 3 2 2400 200I a c a cβ= +  

and 2 28 2 4 1J a c a c acβ β γ= + + + +  

Integrating eq. (22), we have 

( ) ( ) ( )( )
2

4 2 1 2 12
2( ) 20 12 1 2 1

Hx Ix J
F a c axG

y x c a cx a c ax e
ββ β

 + +− 
+ −  = − − −                                             (23) 

The metric functions 2e λ , 2e ν and the anisotropy factor ∆  can be written as 

( )
2

2

1

1 2
e

ax

λ =
−

                                                                             (24) 

( ) ( ) ( )( )
2

2 2 2 1 2 122 2 2 2
2 20 12 1 2 1

Hx Ix J
F a c axG

e A c a cx a c ax e
βν β β

 + +− 
+ −  = − − −                                               (25) 

( )

( )
( ) ( )( )

( )
( )( )( )

( )
( )( )( )

( )
( )

( )
( )( )

2 4 2 2 23

2 2 22

3 2 2 2 2 2 2

2 2 22

2

400 1 10 280

20 12 1 2 1 2 1 20 12 1 2 120 12 1

20 4 22

2 1 20 12 1 2 1 2 1 2 1 2 1

4 1 2

F a c F Fa c Hx IFa cBG

a cx a c ax a c a cx a c axa cx a c

Fa c Hx Ix J G a Ga a G Hx IxaG Hx I

a c a cx a c ax ax a c ax

cx ax

β ββ
β β β β ββ β

β

β β β β

− +
+ −

− − − + − − −− −

+ + − ++
+ + − +

+ − − − − + −
∆ = −

( )
( ) ( )

( )
( )

( )( )
( )

( )( )

( )( )
( )

( )( )

( )

3

2 2

2 3

2
2

2

2

2

2 1 2 1

22

2(2 1) 2 1 2 1 2 1 2 1 2 1

2

4 2 1 2 1 2 2 1 2 1

20 2
4 1 2 1 2

20 12 1

J

a c ax

Hx Ix J aHx I aH

a c ax a c ax a c ax

Hx Ix J aHx I

a c ax a c ax

Fa c a
ac ax x

a cx a c

β

β β β

β β

β
β β

 
 
 
 
 + 
 

+ − 
 

+ + +
 − + −

+ − + − + −
 
  + ++  + − +  + − + −    

− − + +
− − ( )( )

( )
( )( )

2

2

2

2
4 4

2 1 4 2 1 2 1 2 2 1 2 1

Hx Ix J aG Hx D
ac a cx

ax a c ax a c axβ β

  + ++  − + + −  − + − + −    

                         (26) 
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4. Physical Properties of the Models 

All physical acceptable solutions must satisfy the 

following conditions [6,15]: 

(i) Regularity of the gravitational potentials is in the origin. 

(ii) Radial pressure must be finite at the centre and it 

vanishes at the surface of the sphere. 

(iii) rp > 0 and ρ >0 in the origin. 

(iv) Decreasing of the energy density and the radial 

pressure with increasing of the radius. 

(v) The radial and the tangential pressure are equal to zero 

at the centre r=0. 

(vi) In the surface of the sphere, it should be matched with the 

Schwarzschild exterior solution, for which the metric is given by 

( )
1

2 2 2 2 2 2 22 2
1 1 sin

M M
ds dt dr r d d

r r
θ ϕ

−
   = − − + − + +   
   

                                         (27) 

For the case α=1/2, 2 (0) 1e λ = , 

( ) ( ) ( ) ( )2 22 0 32 22 2
1 12 4 2

E

A B a c
e A c a c e

ν ββ
∗ += − − −  in the origin 0r =  and  

( ) ( )2 ( ) 2 ( )

0 0
0r r

r r
e eλ ν

= =

′ ′
= =  

This indicates that the potential gravitational is regular in 

the origin. 

In the centre r = 0, (0) 3acρ =  and  

( ) 2 29 3
0

2 1 3
r

ac
p a c

ac

γ
β

= +
+

 

both are positive if a > 0. In the surface of the star r=R, we 

have ( ) 0rp r R= =  and  

6

15
R

ac
=  

From (13) we have: 

( )2

3
4

( )
8

ac acr
M r r

−
=                         (28) 

and the total mass of the star is 

72
( )

25 15
M r R

ac
= =                          (29) 

Setting and matching conditions for r=R can be written as 

( )2 2 22
1

M
A y cr

R

 − = 
 

                          (30) 

1

2
2

2 1
1

1
1

2

M

R
acR

−
 − = 
   − 

 

                         (31) 

With the purpose of satisfying the causality condition, the 

radial sound speed that is defined as 
2 r

sr

dp
v

d ρ
=  should be 

within the limit 20 1srv≤ ≤  in the interior of the star [51]. In 

this model, we have: 

2

2

5
(3 )

4 5
1 3

4

r
sr

dp
v ac ax

d
ac ax

γ
ρ

β

= = − +
  + −  

  

 

and we must impose the condition 

2 2 3 3 2 3 3 4 4 2 2 2 2 5 5 2 4 4 4 6 6 2 6

2
2 2 2

135 5 225 25 125
3 18 27 (15 ) ( )

4 4 16 8 640 1
5

1 3
4

ac a c a c a c a c a c r a c a c r a c r

ac a c r

β β γ β β β β β

β β

+ + + − + + + + −
≤ ≤

 + − 
 

 

The metric for this model is 

( ) ( ) ( )( ) ( )
2 4 2

2 22 2 16 2 22 2 2 2 2 2 2 2 2 2 2
1 2

2

5 12 4 2 sin
1

1
2

Cc r Dcr E

A B a c acr dr
ds A c a c r a c acr e r d d

acr

ββ β θ θ φ
∗

 + + −
+ −

= − − − − + + +
 − 
 

            (32)

With α=2, 2 (0) 1e λ = , 

( ) ( ) ( )2 2 12 22 (0) 2 2
2 12 1 1

J

a cF G
e A c a c e

βν β
 
 

+  = − − −
 

in the origin and  

( ) ( )2 ( ) 2 ( )

0 0
0

r r

r r
e e

λ ν
= =

′ ′
= =  
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again the gravitational potential is regular in 0r = . 

In addition, we have in the centre (0) 12acρ =  and 

2 2 12
(0) 288

1 12
r

ac
p a c

ac

γ
β

= +
+

 

In the boundary of the star r=R, we have ( ) 0p r R= =  

and 
3

15
R

ac
= . 

This is a new value found for the radius of the star. From 

(21), we obtain 

( ) ( )3 22 1M r acr acr= −                                (33) 

and the total mass of the star is 

36
( )

25 15
M r R

ac
= =                             (34) 

Setting and matching conditions for r=R can be written as 

( )2 2 22
1

M
A y cr

R

 − = 
 

 

and 

( )
1

2
2

2 1
1

1 2

M

R
acR

−
 − = 
  −

 

For this case, the condition 20 1srv≤ ≤ , implies that 

( )

2 2 3 3 2 3 3 4 4 2 2 2 2 5 5 2 4 4 4

6 6 2 6

2
2 2 2

(48 1152 6912 (3840 34560 80 ) (57600 3200 )

32000 )
0 1

1 12 20

ac a c a c a c a c a c r a c a c r

a c r

ac a c r

β β γ β β β β
β

β β

+ + + − + + + +

−≤ ≤
+ −

 

and the metric for this model is 

( ) ( ) ( )( )
( )

( )
2 4 2

2 22 2 2 1 12 2 2 2 2 2 2 2 2 2 2
2 2

2

20 12 1 2 1 sin

1 2

Hc r Icr J

F G a c acr dr
ds A c a c r a c acr e r d d

acr

ββ β θ θ φ

 + + −
+ −

= − − − − + + +
−

                 (35) 

In figures 1 and 6, it is observed that the radial pressure is 

finite and decreasing from the center to the surface of the star 

in the two studied cases. In figures 2 and 7, the energy 

density is continuous, also is finite and monotonically 

decreasing function. In figures 3 and 8, the mass function is 

strictly increasing, continuous and finite. The variation of the 

measure of anisotropy in the two cases is shown in figures 4 

and 9. In figure 4 for the model with α=1/2, the degree of 

anisotropy reaches a minimum value near at 8 km and then 

remains finite and continuous throughout the interior of the 

star. In the figure 9, for the case α=2, the measure of 

anisotropy is increasing and continuous in the stellar interior. 

In both cases, the anisotropy ∆ vanish at the center and this 

means that the radial and tangential pressures should be equal 

in r=0. The figures 5 and 10 show that the condition 
20 1srv≤ ≤  is maintained throughout the interior of the star 

and satisfy the causality, which is a physical requirement for 

the construction of a realistic star [51]. 

The figures 1, 2, 3, 4, 5 represent the graphs of pr, ρ, M (x), ∆ 

and v
2
sr, respectively with α=γ=1/2, β=1, a=0.024, c=1 and a 

stellar radius of r=10 km. 
 

 

Figure 1. Radial pressure vs radial coordinate for α=γ=1/2, β=1 where 

a=0.024 and c=1. 
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Figure 2. Energy density vs radial coordinate for α=γ=1/2, β=1 where 

a=0.024 and c=1. 

 

Figure 3. Mass function vs radial coordinate for α=γ=1/2, β=1 where 

a=0.024 and c=1. 

 

Figure 4. Measure of anisotropy vs radial coordinate for α=γ=1/2, β=1 

where a=0.024 and c=1. 

 

Figure 5. Radial speed sound vs radial coordinate for α=γ=1/2, β=1 where 

a=0.024 and c=1. 

The figures 6, 7, 8, 9, 10 represent the graphs of pr, ρ, M 

(x), ∆ and v
2
sr, respectively with α=2, γ=1/4, β=1, a=0.012 

and a stellar radius of r=7.1 km. 

 

Figure 6. Radial pressure vs radial coordinate for α= 2, β=1, γ=1/4 where 

a=0.012 and c=1. 

 

Figure 7. Energy density vs radial coordinate for α=2, β=1, γ=1/4 where 

a=0.012 and c=1. 
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Figure 8. Mass function vs radial coordinate for α= 2, β=1, γ=1/4 where 

a=0.012 and c=1. 

 

Figure 9. Measure of anisotropy vs radial coordinate for α= 2, β=1, γ=1/4 

where a=0.012 and c=1. 

 

Figure 10. Radial speed sound vs radial coordinate for α= 2, β=1, γ=1/4 

where a=0.012 and c=1. 

 

5. Conclusion 

In this paper, we have generated a new class of models 

with a Van der Waals modified equation of state which could 

describe the behavior of a anisotropic matter distribution in 

an static spherically symmetric space-time where the 

gravitational potential Z depends on an adjustable parameter 

α. All the obtained models are physically reasonable and 

satisfy the physical characteristics of a realistic star as are the 

regularity of the gravitational potentials at the origin, 

cancellation of anisotropy in r=0, radial pressure finite at the 

centre and decreasing of the energy density and the radial 

pressure from the centre to the surface of the star. These 

solutions match with the Schwarzschild exterior metric at the 

boundary for each value of adjustable parameter. 

We can compare the values calculated for energy 

density, mass and radius with some experimental results. 

For α=1/2, the radius and the total mass of the star is given 

by 
6

15
R

ac
=  and 

72
( )

25 15
= =M r R

ac
. A compact 

object with this mass and radius could have a real 

existence. Experimental observations suggest a strange 

star model for 4U 1820-30 which has a radius of 10 km 

and a central density ρ0 = 3.179364432×1015g/cm-3 [52]. 

With α=2, we obtained a radius of 7.1 km which could 

correspond to a model for SAX J 1808.4-3658 with ρ0 = 

4.808527413×1015g/cm-3 [52, 53]. The models presented 

in this article may be useful in the description of 

relativistic compact objects, strange quark stars and 

configurations with anisotropic matter and can be obtained 

strange stars models of mass and densities comparable to 

the experimental results. 
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