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Abstract: This paper proposes a new numerical method for the solution of the Initial Value Problems (IVPs) of first order 

ordinary differential equations. The new scheme has been derived via the transcendental function of exponential type. The 

analysis of the properties of the method such as local truncation error, order of accuracy, consistency, stability and convergence 

were investigated. Two illustrative examples/test problems were solved successfully to test the accuracy, performance and 

suitability of the method in terms of the absolute relative errors computed at the final nodal point of the associated integration 

interval via MATLAB codes. It is observed that the method is found to be of third order convergence, consistent and stable. 

The numerical results obtained via the method agree with the exact solution. Moreover, it is also observed that the method is an 

improvement on Fadugba-Falodun scheme. Hence, the proposed numerical method is a good approach for solving the IVPs of 

various nature and characteristics in diverse areas of Ordinary Differential Equations (ODEs). 

Keywords: Accuracy, Consistency, Convergence, Initial Value Problem, Local Truncation Error, Order of Accuracy,  

Region of Stability, Stability 

 

1. Introduction 

Many scientific and technological problems in natural and 

engineering are modeled mathematically by both partial and 

ordinary differential equations. For instance, in physics heat 

flow and wave propagation phenomenon are well defined by 

partial differential equations. Hence, there are various natural 

and physical phenomena in which differential equations play 

a vital role. In as many as possible engineering and scientific 

fields, it is a known fact that several mathematical models 

emanating from the real life situations cannot be solved 

explicitly, one has to compromise at numerical approximate 

solutions of the models achievable by various numerical 

techniques of different characteristics. One numerical 

technique may differ from the other in terms of its 

convergence, order of accuracy, local errors, stability, 

efficiency and computational complexity. Development of 

numerical methods for the solution of initial value problems 

in ordinary differential equations has attracted the attention 

of many researchers in recent years. There are numerous 

methods that produce numerical approximations to solution 

of initial value problems in ordinary differential equations 

such as Euler’s method which was the oldest and simplest 

method originated by Leonhard Euler in 1768, Improved 

Euler method, Runge Kutta methods described by Carl 

Runge and Martin Kutta in 1895 and 1905 respectively. 

Many authors have derived new numerical integration 

methods, giving better results than a few of the available 

ones in some literature [1-15], just to mention a few. 

In this paper, the analysis of the properties of the proposed 

method is investigated. The rest of the paper is organized as 

follows: Section Two presents the derivation of the proposed 

method. In Section Three, analysis of the properties of the 

method is investigated. Section Four presents two illustrative 

examples. Section Five concludes the paper. 
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2. Derivation of the Proposed Numerical 

Method 

This section presents the derivation of the proposed 

numerical method via the transcendental function of 

exponential type of the form 

���� = ∑ ��	�� +	���
�����                             (1) 

For the solution of the initial value problem; 

�� = ���, ��, ����� = ��, �	�	��, ��, −∞ < � < ∞                                        (2) 

From equation (1), we have 

���� = 	�� + ��� + ���� + ���
�                     (3) 

Where ��, ��, ��	�� 	�� are undetermined constants. 

Consider the integration interval of [a, b] which can be 

partitioned as follows 

� = �� < �� < �� < ⋯ < �" = �                     (4) 

The step length, h is defined as 

ℎ = �$
�%& 	or	 )
*&                                     (5) 

Alternatively, 

ℎ = �"+� − �", � = 0,1,2, …0 − 1                (6) 

Expanding equation (3) at � = �", yields 

���"� = 	�� + ���" + ���"� + ���
�$                 (7) 

Similarly, for � = �"+�, one gets 

���"+�� = 	�� + ���"+� + ���"+�� + ���
�$12      (8) 

Let, 

����"� = �"                                        (9) 

�����"� = �"���                                   (10) 

������"� = �"���                                    (11) 

Differentiating (7) with respect to ��"� yields 

����"� = �� + 2���" − ���
�$                     (12) 

Differentiating (12) with respect to ��"� yields 

�����"� = 2�� + ���
�$                                (13) 

Similarly, the third derivative of ���"� gives 

������"� = −���
�$                                     (14) 

Using (9), (10), (11), (12), (13) and (14), one obtains 

����"� = �� + 2���" − ���
�$ = �"                     (15) 

�����"� = 2�� + ���
�$ = �"���                      (16) 

������"� = −���
�$ = �"���                        (17) 

Therefore, 

�� + 2���" − ���
�$ = �"                      (18) 

2�� + ���
�$ = �"���                              (19) 

−���
�$ = �"���                                  (20) 

From equation (20), we obtain 

�� = 
3$�4�567$ = −��$�"���                           (21) 

Using (21) in (19), yields 

2�� + 8−��$�"���9�
�$ = �"��� 
2�� − �"��� = �"��� 
2�� = �"��� + �"��� 
�� = ��(�"��� + �"���)                          (22) 

Substituting (21) and (22) into (18), yields 

�� + 2:12 8�"��� + �"���9; �" + �"��� = �" 

�� + 8�"��� + �"���9�" + �"��� = �" 

�� = �" − 8�"��� + �"���9�" − �"���                (23) 

The undetermined constant ��, ��	�� 	��  are given by 

(23), (22), and (21) respectively. 

We defined the mesh point �" as 

�" = �� + �ℎ                               (24) 

Also 

�"+� = �� + �� + 1�ℎ                     (25) 

This implies that 

�"+� − �" = �� + 1�ℎ − �ℎ = �ℎ + ℎ − �ℎ = ℎ 

Therefore, 

�"+� − �" = ℎ                          (26) 

In this paper we set �� = 0, 

Thus (24) and (25) become 

�" = �ℎ                               (27) 

�"+� = �� + 1�ℎ                     (28) 

respectively, 

Subtracting (7) from (8) yields 

���"+�� − ���"� = 	�� − �� + ����"+� − �"� 
+����"+�� − �"�� + ���
��$12
�$� 
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= ����"+� − �"� + ����"+�� − �"�� + ���
��$12��
��$� (29) 

But from (26), we have 

�"+� − �" = ℎ 

Also, 

�"+�� − �"� = �� + 1��ℎ� − ��ℎ� 

= ��� + 2� + 1�ℎ� − ��ℎ� 

= ���ℎ� + ℎ��2� + 1� − ��ℎ� 

= �2� + 1�ℎ�                                         (30) 

Substituting (26) and (30) into (29), yields 

���"+�� − ���"� = ��ℎ + ���2� + 1�ℎ� +����
�"+��<−�
"<� = ��ℎ + ���2� + 1�ℎ� + ����
"<��
< − 1��       (31) 

From equation (21), with �" = �ℎ 

�� = −�"<�"���                               (32) 

Also, 

�� = �" − 8�"��� + �"���9�ℎ − �"���                     (33) 

Substituting (22), (32) and (33) into (31) yields 

���"+�� − ���"� = 8�" − 8�"��� + �"���9�ℎ − �"���9ℎ + 12 8�"��� + �"���9�2n + 1�ℎ� + 8−�"<�"���98�"<��
< − 1�9 

= ℎ�" − �ℎ�8�"��� + �"���9 − ℎ�"��� + 12 8�"��� + �"���9�2n + 1�ℎ� − �"�����
< − 1� 
= ℎ�" − �ℎ��"��� − �ℎ��"��� − ℎ�"��� + �"���2 �2� + 1�ℎ� + �"���2 �2� + 1�ℎ� − �"�����
< − 1� 

= ℎ�" + ℎ� >−��"��� − ��"��� + �"���2 �2� + 1� + �"���2 �2� + 1�? + �"����1 − �
< − ℎ� 
���"+�� − ���"� = 	ℎ�" + ℎ� @−��"��� − ��"��� + ��"��� + �"���2 + ��"��� + �"���2 A 

+�1 − �
< − ℎ��"��� 
���"+�� − ���"� = 	ℎ�" + <4� 8�"��� + �"���9 + �1 − �
< − ℎ��"���                                                 (34) 

Using the fact that 

���"+�� − ���"� ≡ 	�"+� − �"                (35) 

Thus, 

�"+� − �" = ℎ�" + <4� C�"��� + �"���D + �1 − �
< − ℎ��"��� (36) 

The newly derived numerical method via the 

transcendental function of exponential type for the solution 

of the initial value problem in ordinary differential equations 

is given by 

�"+� = �" + ℎ�" + <4� C�"��� + �"���D + �1 − �
< − ℎ��"��� (37) 

Remarks 2.1 

Equation (37) is called the proposed numerical method. 

Equation (37) is derived from transcendental function of 

exponential type. 

Equation (37) is an improvement of Fadugba-Falodun 

scheme given by 

�"+� = �" + ℎ�" + 8ℎ + ��
< − 1�9�"��� 

3. Analysis of the Properties of the 

Method 

This section presents the analysis of the properties of the 

method as follows: 

3.1. Local Truncation Error Analysis 

The analysis of local truncation error indeed decides the 

order of convergence for any numerical technique designed 

to solve the initial value problem in ODEs. In order to check 

the order of the technique, we subtract the algorithm of the 

numerical technique (37) from the well-known Taylor’s 

series expansion for 	����  in powers of h which has been 

described below. 

Consider the Taylor’s series expansion of the form 

���" + ℎ� = ���"� + ℎ� + <4�! ���� + <F�! ���� + <GH! ���� + O�ℎJ� (38) 

The newly derived numerical integration method of the 

form 

�"+� = �" + �1 − �
<��"��� + ℎ��" − �"���� + <4� C�"��� + �"���D (39) 
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The local truncation error denoted by LTE is defined as 

LTE	 = 	���" + ℎ� − �"+� = 	���"� + ℎ� + ℎ�2! ���� + ℎ�3! ���� + ℎH4! ���� + O�ℎJ� 
−@�" + �1 − �
<��"��� + ℎ8�" − �"���9 + ℎ�2 8�"��� + �"���9A 

= 	���"� + ℎ� + <4�! ���� + <F�! ���� + <GH! ���� − :�" + �1 − �
<��"��� + ℎ8�" − �"���9 + <4� 8�"��� + �"���9; + O�ℎJ�      (40) 

Replacing the term	�
< by Maclaurin’s series, one obtains 

LTE = 	���"� + ℎ� + ℎ�2! ���� + ℎ�3! ���� + ℎH4! ���� 
−>�" + @1 − :1 − ℎ + ℎ�2! − ℎ�3! + ℎH4! + ⋯;A�"��� + ℎ8�" − �"���9 + ℎ�2 8�"��� + �"���9? + O�ℎJ� 

LTE = 	���"� + ℎ� + ℎ�2! ���� + ℎ�3! ���� + ℎH4! ���� 
−:�" + :1 − 1 + ℎ − ℎ�2! + ℎ�3! − ℎH4! + ⋯;�"��� + ℎ�" − ℎ�"��� + ℎ�2 �"���+ℎ�2 �"���; + O�ℎJ� 

= 	���"� + ℎ� + ℎ�2! ���� + ℎ�3! ���� + ℎH4! ���� 
−:�" + ℎ�"��� − ℎ�2! �"��� + ℎ�3! �"��� − ℎH4! �"��� +⋯+ ℎ�" − ℎ�"��� + ℎ�2 �"���+ℎ�2 �"���; + O�ℎJ� 
LTE = 	���"� + ℎ� + <4�! ���� + <F�! ���� + <GH! ���� − C�" + ℎ�" + <4� �"��� + <F�! �"��� − <GH! �"���D + O�ℎJ�           (41) 

Under local assumption, the term up to 	ℎ�  have been 

cancelled and we are left with the following expression 

LTE = 14! 8ℎH���� − ℎH�"���9 + O�ℎJ� 
LTE = <G�H 8���� − �"���9 + O�ℎJ�                     (42) 

Thus, the leading term of the local truncation error 

involve 	ℎH  which confirms the third order accuracy of the 

numerical integration method given by (37). Hence, the 

proposed numerical integration has the convergence of the 

third order. 

3.2. Consistency Analysis of the Method 

For a numerical method to be consistence, it is important 

for the truncation error to be zero when the step size, h, gets 

smaller and ultimately reaches to zero. Among many, one of 

the ways of analyzing consistency of a numerical technique 

is to check that whether 

lim<→� TUV< = 0                              (43) 

From (42), we have that 

lim<→� <G�H C���� − �"���D ℎW = lim<→� <F�H C���� − �"���D = 0 (44) 

Equation (43) has been established. From (44), it is 

seen/observed that the proposed numerical integration 

method has consistency property. Further, it is also known 

that any technique having order of accuracy greater than zero 

is considered to be consistent. Based on this fact, consistency 

of the proposed technique can safely be claimed since third 

order accuracy of the proposed technique has already been 

proved in the previous section. 

3.3. Stability Analysis of the Scheme 

Numerical methods are said to be numerically stable if 

they are capable of damping out the small fluctuations 

carried out in input data. The notion of stability may be taken 

in different contexts: it may be associated with the specific 

numerical technique used, or the step size, h used in 

numerical computation or with the particular problem being 

solved. 

For stability analysis of the proposed numerical integration 

method (37), one of the popular ways is to apply it to the 

problem 

�� = −X�, ��0� = 1                          (45) 

which has the theoretical solution of the form 

���� = �
Y�, X > 0                           (46) 
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Where λ is in general, a complex constant. 

For the integration interval ��" , �"+��, where	# � �"+� �
�"; the exact solution at the point � � �"+� is 

���"+�� � �
Y�$12 

� �
Y�$ . �
Y< 

���"+�� � ���"�. �
Y<                       (47) 

Where h is defined as ��"+� � �" � #� . The numerical 

approximation obtained using the proposed technique gives 

�"+� � �" 
 #��X�"� 

#�
2! ��X�

��" 

#�
3! ��X�

��" 

�"+� � �" C1 � 	X# 
 Y4<4
�! � YF<F

�! D               (48) 

Let 

B � 1 � 	X# 
 Y4<4
�! � YF<F

�!               (49) 

Then 

�"+� � B�"                             (50) 

Comparing (47) and (50), this shows that the factor B is 

merely an approximation for the factor �
Y<  in the exact 

solution. Truly, the factor B is the four-term approximation 

for the maclaurin’s series for �
Y<  for small λh. The error 

growth factor B can be controlled by ‖B‖ � 1, so that the 

errors may not magnify. Thus, the stability of the proposed 

numerical integration method requires that 

^1 � 	X# 
 Y4<4
�! � YF<F

�! ^ � 1              (51) 

Setting z = λh, then (51) becomes 

^1 � 	X_ 
 `4
�! �

`F
�!^ � 1                  (52) 

By means of (52), the stability region of the scheme is 

plotted in the Figure 1. Hence, the proposed numerical 

integration method (37) is found to be conditionally stable 

with the region of linear stability given below. 

Remark 3.1 

The proposed numerical method is said to have 

convergence for any given, well-posed initial value problem 

since it satisfies both consistency and stability properties as 

discussed above. 

3.4. Algorithm of the New Numerical Method 

An approximate solution to the initial value problem 

�� � ���, ��, ����� � ��, � ∈ b, �	�	��, �� 
At the equal space points at ��, ��, ��, … , �" is given by 

�"+� � �" 
 #�" 

#�
2 8�"

��� 
 �"���9 
 �1 � �
< � #��"��� 

�"+� � �� 
 �� 
 1�#, for	� � 0�1�0 � 1 

Where 

# � �"+� � �" � )
*
&  

�� and �� are given initial conditions. 

 

Figure 1. Stability region (shaded) for the numerical integration method. 

4. Illustrative Examples 

It is usually necessary to demonstrate the suitability and 

applicability of the newly developed method. In this course, 

the algorithm of the scheme has been successfully translated 

into MATLAB programming language and implemented with 

a problem emanated from real life situations. The 

performance of the method has been checked by comparing 

its accuracy and efficiency with the exact solution. The 

efficiency was determined from the number of iterations 

counts and number of functions evaluations per step while 

the accuracy is determined by the size of the discretization 

error estimated from the difference between the exact 

solution and the numerical approximations. 

Test Problem 1 

Consider the initial value problem of the form 

, (0) 1,0 1, 0.1y y y x h′ = = ≤ ≤ =              (53) 

Whose exact solution is obtained as: 

( )
x

y x e=                                      (54) 

With different values of the step length 

0.1,0.01,0.001,0.0001h = . 

The comparative results analyzes of the method 'YN' and 

the exact solution 'YXN' is shown in Table 1. 
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Table 1. The comparative results analyzes of the Fadugba Scheme 'YN' and the exact solution 'YXN' with different values of 'h'. 

'h' 'XN' 'YN' 'YXN' 'EN' 

0.1 1.0000000000 2.7180768002 2.7182818285 0.0002050283 

0.01 1.0000000000 2.7182816042 2.7182818285 0.0000002243 

0.001 1.0000000000 2.7182818282 2.7182818285 0.0000000002 

0.0001 1.0000000000 2.7182818285 2.7182818285 0.0000000000 

 

 

Figure 2. The comparative results analyses using Table 1. 

 

Figure 3. Error incurred in the numerical method. 

Test Problem 2 

Let us assume that a colony of 1000 bacteria is multiplying 

at the rate of r � 0.8  per hour per individual (that is; an 

individual produces an average of 0.8 off spring every hour). 

How many bacteria are there after 1 hour? It is assumed that 

the colony grows continuously and without restriction. 

It is possible to model this growth with a differential 

equation of first order of the form: 

e&�f�
ef � g0�h�                                       (55) 

with initial condition 

0�0� � 1000                                       (56) 

Equations (55) and (56) become 

e&�f�
ef � g0�h�, 0�0� � 1000, g � 0.8              (57) 

where 0�h�  is the population size at time h . The exact 

solution to (55) subject to (56) is obtained as 

0�h� � 1000e�.jk                               (58) 

The comparative results analyses of the method ‘YN’ and 

the exact solution 'YXN' were shown in Table 2 below. 

Table 2. The comparative results analyses of the method 'YN' and the exact 

solution 'YXN'. 

'h' 'YXN' 'YN' Error 

0.1000 2225.54093 2225.46233 0.07860 

0.0500 2225.54093 2225.53068 0.01025 

0.0125 2225.54093 2225.54076 0.00017 

 

Figure 4. The comparative results analyses using Table 2. 

 

Figure 5. Error incurred in the numerical method. 

5. Concluding Remarks 

In this paper, a new numerical method has been 

successfully developed via a transcendental interpolating 

function of exponential type for the solution of initial value 

problems of first order. The proposed numerical method is 

found to be of third order convergence, consistent and stable. 

Two illustrative examples have been solved to test the 

performance of the technique in terms of the absolute relative 

errors computed at the final nodal point of the associated 

integration interval via MATLAB codes. It is observed from 

Table 1 that the smaller the step length the more accurate is 

the proposed numerical method. It is also observed from 
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Figure 2 that the value of the method coincides with the exact 

solution for h = 0.0001. It is clearly seen from Table 2 that as 

the computation progresses with different step lengths, the 

error incurred via the proposed numerical method reduces. 

Hence, proposed numerical method can be considered a good 

candidate to be included in the family of linear explicit 

numerical techniques employed for the purpose of finding 

numerical solutions of various physical and natural systems. 

Some extensions and modifications of the methodology 

can be explored by further research. A natural extension is 

the applications of the proposed numerical method for the 

solution of some special initial value problems differential 

equations with point of singularity. 
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