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Abstract: There has been renewed interest in the flow behaviour within tubes with periodically varying cross-section with 

the recognition that they can be used as particle separation devices. In this paper, we present a numerical study of the effect of 

tube geometry on creeping flow of viscous incompressible fluid through sinusoidally constricted periodic tube which is 

axisymmetric but longitudinally asymmetric. The boundary element method is used to solve for the flow in the tube by 

specifying the pressure drop across the ends of the tube. The boundary element equations have been formulated for an infinite 

periodic tube by writing the velocity in terms of the integrals over the tube boundary and is used to calculate the force on the 

tube boundary, to obtain the detailed velocity distribution within the tube and to determine the effect of amplitude and 

wavelength of corrugation on the structure of the flow. We have found that the highest axial velocity is at throat region and 

lowest axial velocity is at expansion region. Also, we have discovered that the maximum radial velocity occurs at diverging 

cross-section and minimum radial velocity occurs at converging cross-section. The tangential force on the tube wall is 

examined for different amplitudes and wavelengths of corrugation and observed that the tangential force is greater in the 

constricted region than in the expansion region. The physical quantities (such as velocity and force) increase with increasing 

amplitude and decrease with increasing wavelength. Finally, we have compared our results with the work of Hemmat and 

Borhan [3] and have found good agreement with them. 

Keywords: Creeping Flow, Numerical Study, Periodic Tube, Sinusoidal Cross-Section, Boundary Element Method 

 

1. Introduction 

Fluid dynamics comprehends excellent opportunity to study 

the flow of fluids through axisymmetric and periodically 

constricted periodic tube and this has been an engrossing topic 

in recent times [1-6]. This type of research has been used 

widely in different sectors such as separation of colloidal and 

sub-colloidal particles through micro-fluid and nano-fluidic 

devices [7]. It can also be used in modeling transport process 

in porous media [8]. Nowadays researchers are using this flow 

system to examine the analysis of flow in shriveled velum, 

simulated lung and arterial prostheses etc. [3]. 

In early 1800’s Hagen [9] and Pouseuille [10] examined the 

Newtonian flow through axisymmetric periodic tube. Since 

then, many scientists expanded their attention to subsume non-

Newtonian flows [11] in an open channel [12], tubes with 

corner [13] and tube with restrictions [11] etc. All of the 

scientist overrates mostly a flow through axisymmetric tube 

but they have taken their consideration in the fact that the 

radius of this tube varies periodically with respect to its length 

[1-6]. 

There have been many experimental and theoretical 

studies of flow through periodically constricted capillaries. 

On the experimental side, Forrester and Young [14], 

Deibar and Schowalter [2], Leneweit and Auerbach [15], 

studied the fluid flow through periodic tube with different 

cross section for a wide range of Reynolds number, i.e., 

for higher as well as for lower Reynolds number and 

visualized the flow structure for low and high Reynolds 
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number. In contrast, Nishimura et al. [16] experimentally 

observed the flow structure within sinusoidally constricted 

periodic tube only for higher Reynolds number. 

On the theoretical side Chow & Soda [1] and Sisavath 

et al. [8] studied the flow through sinusoidally periodic 

tube and obtained asymptotic series solution of the 

Navier-Stokes equation at moderate Reynolds number. 

They have found good agreement with the result of Deiber 

and Schowalter [2]. A number of numerical techniques, 

such as spectral methods [3], iterative method [4], and 

finite difference technique [5] have also been used to 

solve the full Navier-Stokes equation. 

The creeping flow through sinusoidally constricted 

periodic capillary has been studied by Hemmat and Borhan 

and solved governing equation (Stoke’s and continuity 

equation) by using boundary element method to find the 

detailed velocity distribution within one-wave section. 

Recently, Islam et al. [17] studied the creeping flow through 

different periodic tube such as co-sinusoidal, parabolic, 

triangular and saw-tooth tube profiles. They formulated the 

BEM over an infinite periodic tube with pressure condition 

and obtained velocity distribution in the tube profiles. 

However, they didn’t study the detailed velocity distribution 

for a sinusoidal tube profile which is considered to be 

axisymmetric but longitudinally asymmetric. 

Hence in this paper, we have investigated the creeping 

flow through sinusoidally constricted periodic tube profile 

which is axisymmetric but longitudinally asymmetric. We 

have studied low Reynolds number flow in order to examine 

the effect of geometric parameters, such as amplitude, 

wavelength of corrugation on the flow structure. We have 

formulated boundary element method for infinite number of 

wave-sections with pressure condition. 

2. Mathematical Formulation 

Consider the creeping flow of an incompressible 

Newtonian fluid through an infinite axisymmetric periodic 

tube. An infinite sinusoidally constricted capillary is 

considered so that we have used pressure difference 

boundary condition. The flow is governed by a pressure 

gradient /P L∆ , where P∆ is the dimensional pressure 

drop across the wavelength of the tube and L is the 

wavelength of one wave-section of the tube. 

 

Figure 1. Schematic view of an infinitely long, cylindrical periodically 

constricted capillary ( ) ( ).h z h z kL= +  

The surface of the tube is ˆˆ ( )z h z= +z ry , where r̂ and ẑ

are unit vectors in the radial and longitudinal directions, 

respectively, ( )h z defines the tube profile. The governing 

equations in the absence of inertial effects (small Reynolds 

number, Stokes Flow) can be written in dimensional 

variables as 

1
p

µ
=u2222∇∇∇∇ ∇∇∇∇ , 0⋅ =u∇∇∇∇  

where ( , )r zu  is the fluid velocity, ( , )p r z= is the fluid 

pressure and µ is the viscosity of the fluid. 

For an axisymmetric problem, we have 

ˆ ˆ
r z

∂ ∂= +
∂ ∂

r z∇∇∇∇
. 

We have considered no slip boundary conditions on the 

tube surface S , so that ( ) 0=u x for S∈x . 

On introducing the non-dimensional variables,  

z
z

L
=

,

r
r

L
=

, 0

p
p

P
=

, 0( )LP

µ= u
u

 

the governing equations for the viscous flow can be written 

in non-dimensional form as 

2 p=u∇ ∇∇ ∇∇ ∇∇ ∇
, 0⋅ =u∇∇∇∇  

while the no slip boundary conditions become, 

0=( )u x
 for S∈x  

The fundamental solutions of Stokes equation are [18] 

1 1
( ) ( ) )  ( ) ( ) ( ) ( )

4 4
s s

dS ( , dS ,
π π

= ⋅ − ⋅∫ ∫G F Hu x y x y y y x y u y                                                    (1) 

1 1
( ) ( ) )  ( ) ( ) ( ) ( )

8 4
s s

dS ( , dS ,
π π

= ⋅ − ⋅∫ ∫G F Hu x y x y y y x y u y                                                    (2) 

where, dS is the surface area element of the boundary S at 
y  and V is the interior region of the tube. In addition, 

ˆ( ) ( ) ( )= ⋅∑F y y n y is the force per unit area exerted on the 

fluid by the boundary at y (boundary force), where ( )∑ y is 

the stress tensor which is defined as 

ji
ij ij

j i

uu
p

x x
δ

 ∂∂
= − + + 

 ∂ ∂ 
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and the normal vector, ˆ( ) ( , )r zn n=n y  is directed outward 

from the control volume, V . Also ( , )G x y  and ( , )H x y  are 

functions of the sample point x  and source point y  which 

are defined as follows 

3

ˆ ˆ
( , )

ij i j

ij

x x
G

δ
= +

∈ ∈
x y  and 

5

ˆ ˆ ˆ
( , ) 6

i j k

ij k

x x x
H n= −

∈
x y    (3) 

where, ˆ∈= x  and ˆ .=x y - x  

The tangential force on the tube is defined as 

t z r r zF F n F n= −  

where, zF  and rF are the z-and r- components of ( )F x , the 

force per unit area exerted on the fluid by the wall. 

3. Numerical Computation 

We have used Boundary Element Method (BEM) to solve 

for the flow in the tube. The advantage of this technique is 

that discretisation need only be performed over the boundary 

(not over the whole domain) since the velocity field can be 

written in terms of integrals over the boundary (as in Eqs. 

(1)–(2)). If the total flux through the tube has been specified, 

then the velocity profile across the ends of one wave section 

can be calculated. Since the velocity on the boundary of one 

wave section is then everywhere known, the boundary 

element equations (1) can be solved in one representative 

wave section to calculate the force on the tube surface, ( )xF . 

Once this force is known, the tangential force on the tube 

surface, tF  can be calculated and the fluid velocity can be 

calculated anywhere within the tube using (2). Since the tube 

is periodic, this one wave section gives a representation of 

the flow in each section of the tube. Indeed, this technique 

has been used in previous studies [3]. 

In a laboratory situation, it is more common to specify the 

pressure drop across the ends of the tube, rather than the flux. 

In this case, the boundary element equations cannot be solved 

for just one representative wave section as the velocity 

profile across the ends of one wave section cannot be 

calculated so that the velocity on the boundary of one wave 

section (the left of Eq. (1)) is not known everywhere. For this 

reason, we consider an infinitely long tube, see Figure 1 (b), 

and formulate the boundary element equations over the entire 

length of the tube. In this way, the velocity profile at the end 

cross-sections of the tube does not influence the calculation. 

We have written the boundary force as a periodic 

component by introducing 

ˆ( ) ( ) ( )z′ ′ ′ ′= +F fy n y y                               (4) 

where 

( )ˆ ˆ( ) ( ) ,f h z z′ ′ ′= f r zy ( )ˆ ˆ( ) , ( )h z z k+= f r z  

is periodic over the length of the tube ( )k Z∈ . Here the fluid 

velocity on the surface of tube is zero, u(x) = 0 for S∈x and 

for the long periodic tube, the term ,i jG  in equation (3) 

approach zero. Here, we consider axisymmetric tube shapes. 

That’s why we have to reduce the surface integrals in Equation 

(1) and (2) into line integrals by performing the azimuthal 

integration analytically in a cylindrical coordinate system. For 

an infinite periodic tube, equation (1) can be written as 

( )
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         (5) 

where M  and Q  are related to G  and H  through an angular 

integration as described in Chapter 2 of Pozrikidis [18], and 

where 0 0( , )r zx  is a fixed point located right on the boundary 

in the zeroth wave-section of the capillary, ˆ( , )z r kz′ ′ ′ = +y y  

is the variable point on boundary in the kth wave section of 

the capillary, ( , )z ry  is the variable point on the boundary in 

the zeroth wave section of the capillary, dl  is the differential 

arc length of the trace of the boundary and  

2

0
( ) [ ( )] 1

z

l z h d′= ∈ + ∈∫  

The contributions from the 4th, 5th and 6th terms in the 

right hand side of equation (5) are zero, since the velocity is 

zero on the tube surface and the function ( , )Q x y  approaches 

zero at the end cross-sections for a long tube. Using equation 

(4) in equation (5), we can write the z-component velocity 

equation as follows: 

(1/2) (1/2) (1/2)

( 1/2) ( 1/2) ( 1/2)

( /2)

2

( 1/2)

( ) ( ) [ ( ) ( )] ( ) ( , ) ( ) ( ) ( , )[ ( ) ( )]

1
( ) ( , ) ( ) 4

2

x y y y y x y y y x y y y

y x y y

l l l

z zz z z zz z zr r r

l l l

l

zr r

l

u dl zn f dl n dl zn f

dl n hπ

− − −

−

= + + + +

 + +  
 

∫ ∫ ∫

∫

M  N M

N

               (6) 
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where the last term in the right hand side of equation (6) comes from the 2nd and 3rd terms in the right hand side of equation 

(5), and where 

[ ] [ ]

[ ] [ ]

1 1

1 1

ˆ ˆ ˆ ˆ( , ) ( , ) ( , ) ( , )) ( , ) ( , ) ( , )
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zz zz zz zz zz zz zz

k k

zr zr zr zr zr zr zr

k k

M M k M k k M k M k
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∞ ∞
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= =

= =

∞

= + + + − = + − − +
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     (7) 

where the ijM  are defined in Chapter 2 of Pozrikidis [18]. Since 
1

M
k
∼  for large k [18], care must be taken in interpreting 

the sums in equation (7). By considering a force balance over one wave section of the tube and determining the behavior of the 

integrals in (6) at large k, we find that for large k 
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Subtracting Eq. (8) from Eq. (6), we obtain 
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where ��
��(�, �), ( , )zz

′ x yN  and ( , )zr
′ x yN are defined below and now converge like 

3
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Setting the fluid velocity on the tube surface to zero results in equations 

(1/2) (1/2)

2

( 1/2) ( 1/2)

1
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2
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where 
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A similar treatment of the r-component of equation (1) results in equation (10). 

The r-component of equation (1) is 
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where, 
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In order to solve equations (9) and (10) for obtaining 

components of surface force, the surface of the tube is 

discretized along the z-axis into N elements and the line 

integrals are approximated using the trapezoidal rule. 

Although the functions ( , )ijM x y  are singular when y x= , 

the singularities are integrable in the sense of the Cauchy 

principal value. Therefore, the integrals are evaluated by 

subtracting the immediate neighborhood of the singular point 

from the integration domain, integrating the kernel 

analytically in the region, and then adding the result to the 

integral computed numerically over the remainder of the 

domain. For pressure drop p∆  across one wave section, 

integral equations (9) and (10) represent a linear system of 

2N algebraic equations for the 2N unknown components of 

the force distribution on the tube surface, ( , )z rf f f= . 

These equations are solved using an International 

Mathematics and Statistics Library (IMSL) routine. As 

described above, once the force on the tube surface is known, 

it can be used to calculate tangential force on the tube wall 

and the velocity distribution inside the tube domain. 

4. Results and Discussion 

In this section, the detailed velocity and tangential force 

distribution for a wide range of dimensionless amplitude and 

wave-length of corrugation are enumerated. The flow 

structure within the capillary was analyzed elaborately. 

 

Figure 2. Profile of the sinusoidally constricted capillary. 

Figure 2 represents the profile of a sinusoidally constricted 

periodic tube in the upper region only, since the tube is 

axisymmetric. We have analyzed our detailed velocity 

distribution in throat region and expansion region within this 

periodic tube. 

At first, the effect of corrugation amplitude on the 

velocity field is considered. Figures 3, 4 and 5 show the 

axial velocity profiles at different axial positions for 

distinct corrugation amplitudes, 0.1A = 0.3A = , 0.6A =  

respectively and for a fixed wavelength 1.0L = . From 

Figure 3, we can easily identify that the axial velocity 

profile is nearly parabolic and the axial velocity profiles at 

different cross-sectional areas are indistinguishable for a 

fixed wavelength. As the profile amplitudes slightly 

increases ( 0.3A = , 0.6A = ), the axial velocity profiles in 

various cross-sectional areas are slightly distinguishable 

which can be seen in Figures 4 and 5. 

 

Figure 3. Axial velocity profiles at different axial positions for 0.1A =  and 

1.0L = . 
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Figure 4. Axial velocity profiles at different axial positions for 0.3A =  and 

1.0L = . 

 

Figure 5. Axial velocity profiles at different axial positions for 0.6A =  and 

1.0L = . 

 

Figure 6. Axial velocity profiles at different axial positions for 0.3A =  and 

5.0L = . 

 

Figure 7. Axial velocity profiles at different axial positions for 0.3A =  and 

10.0L = . 

 

Figure 8. Effect of corrugation amplitude on the axial component of velocity 

at 0..25z =  and 0.25z = −  for 1.0L = . 

 

Figure 9. Effect of corrugation amplitude on the axial component of velocity 

at 1.25z = −  and 1.25z =  for 5.0L = . 

Figures 4, 6 and 7 show the axial velocity profiles at 

different axial positions for different wavelengths 1.0L = , 
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5.0L =  and 10.0L =  respectively with fixed amplitude

0.3A = . Needless to say that the axial velocity profile 

exhibit almost similar behavior at different cross-sections for 

fixed wavelength 1.0L = (Figures 3, 4, 5). But after 

increasing the wavelength it is quite fare to declare that axial 

velocity profile at different axial positions started to decrease 

with increasing wavelength and each velocity curves are 

more distinguishable than each other’s. 

 

Figure 10. Effect of corrugation amplitude on the axial component of 

velocity at 2.50z =  and 2.50z = −  for 10.0L = . 

Now, we have considered the effect of corrugation 

amplitude on the axial component at the throat ( 0.25)z = −
and expansion ( 0.25)z = regions for wavelength of 

corrugation 1.0L = , which is shown in Figure 8. The solid 

lines are for the expansion region while the dashed line are 

for the throat region. It can be easily identified that the axial 

velocity profile in the throat region is started to increase 

where as the axial velocity profile in the expansion region is 

started to decrease, after increasing corrugation amplitude. 

Figures 9 and 10 represent the axial velocity profile at throat 

and expansion regions for wavelengths 5.0L = and 10.0L =
respectively. The solid lines are for the expansion region while 

the dashed line are for the throat region. Here, we can observe 

that after increasing the wavelength, the axial velocity curves at 

both throat and expansion region for different amplitudes can be 

differentiated from each other than the previous one’s (see 

Figure 3) and the effect of the curves are more distinguishable. 

Also, we can find that axial velocity is started to decrease when 

the wavelength is increased. 

Figure 11 shows the radial component of velocity across the 

converging ( 0.5z = ) and diverging ( 0.0z = ) cross sections of 

the capillary for a range of amplitudes. The solid lines are for the 

diverging region while the dashed line are for the converging 

region. This figure shows that when the corrugation amplitudes is 

increased, maximum radial velocity started to plod away from the 

tube wall for wavelength 1.0.L =  But when we increase the 

wavelength from 1.0.L = to 5.0L = , radial velocity at 

converging region is started to increased but it is decreased in the 

diverging region. This phenomenon is represented in Figure 12. 

Now, we can easily conclude that the maximum radial velocity 

occurs at diverging cross- section and the minimum radial velocity 

occurs at converging cross-section. We can also found that if 

wavelength of corrugation is increased, the radial velocity in both 

regions started to decrease from their previous quantities. 

 

Figure 11. Effect of corrugation amplitude on the radial velocity at 0.0z =  

and 0.50z =  for 1.0L =  

 

Figure 12. Effect of corrugation amplitude on the radial velocity at 0.0z =  

and 2.50z =  for 5.0L = . 

 

Figure 13. Axial variation of the centreline velocity for different amplitudes 

with fixed wavelength for 1.0L = . 
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Figure 14. Axial variation of the centreline velocity for different amplitudes 

with fixed wavelength for 5.0L = . 

 

Figure 15. Axial variation of the centreline velocity for different amplitudes 

with fixed wavelength for 10.0L = . 

Axial variation of the central line velocity for different 

amplitudes with fixed wavelength 1.0L =  is shown in Figure 

13. This figure shows that the largest axial velocity within the 

capillary occurs at the throat for all corrugation amplitudes. 

When we increase the wavelength, it can be easily observed 

that the axial variation of central line velocity for three 

different amplitudes are more deviated (Figures 14 and 15). 

Also, centerline velocity is started to decrease when we 

increase the wavelength of corrugation. These effects can be 

seen in Figureas 14 and 15. 

 

Figure 16. Effect of corrugation amplitude on the wall tangential force 

distribution with for 1.0L = . 

 

Figure 17. Effect of corrugation amplitude on the wall tangential force 

distribution with for 5.0L = . 

 

Figure 18. Effect of corrugation amplitude on the wall tangential force 

distribution with for 10.0L = . 

The tangential force distribution on the capillary wall is 

presented in Figure 16 for various amplitudes with fixed 

wavelength 1.0L = . This figure shows that when we 

increased the amplitudes of corrugation, the tangential force 

at the throat region is onerously increased and the tangential 

force at the expansion region is more likely to be 

comparatively impercipient with respect to the capillary 

geometry. Figures 17 and 18 represent the tangential force 

distribution on the capillary wall for different wavelengths 

5.0L =  and 10.0L = . These two figures indicate that as the 

wavelength of corrugation is increased, the high tangential 

force at the throat region started to reduce from its previous 

position and it becomes more generalized around the throat 

region. The wall tangential force in the expansion region is 

more likely to perceive an expansion comparated to capillary 

geometry with increasing amplitude. It can be observed that 

the tangential force tf  is greater in the constricted region 

than in the expansion region. We can also observed from 

Figures 16-18 that the tangential force increases with 

increasing amplitude and decreases with decreasing 

wavelength. 

In Figure 19, we have compared our calculated tangential 

force distribution on the tube surface for the two distinct 

expansion amplitudes 	 
 0.3 and 	 
 0.6, with the results 
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produced by Hemmat and Borhan [3] for the case of 

sinusoidal profile. We have found excellent agreement with 

their results for each tube profile. 

 

Figure 19. Comparison between our tangential force calculations [17] and that of Hemmat and Borhan [3] for a sinusoidal tube shape with 0.3A =  and

0.6A = . The dashed line shows the two tube profiles (right hand axis). The solid line show our calculations for the amplitudes 0.3A = and 0.6A = , and the 

circle ( 0.6A = ) and triangle ( 0.3A = ) show the calculation of Hemmat and Borhan [3] (left-hand axis). 

5. Conclusions 

In this paper, we have investigated the creeping flow of 

viscous incompressible fluid through sinusoidally periodic 

tube by using boundary element method. We have analyzed 

the different velocity distribution for different wavelengths 

and corrugation amplitudes. We have enumerated the axial 

velocity profile for the variation of corrugation amplitude and 

found that the highest axial velocity is at throat region and 

lowest axial velocity is at expansion region. Also, we have 

analyzed the axial velocity profile at different axial positions 

for different wavelength and corrugation amplitudes. 

Similarly, we have examined the radial velocity profile for 

different corrugation amplitudes and found that the 

maximum radial velocity occurs at diverging cross- section 

and minimum radial velocity occurs at converging cross-

section. We have also calculated the tangential force 

distribution for different corrugation amplitudes. The 

tangential force distribution exhibit differences for each 

amplitude. We observed that the tangential force is greater in 

the constricted region than in the expansion region. In 

addition, axial velocity, radial velocity, centreline velocity 

and tangential force increase with increasing amplitude and 

decrease with increasing wavelength. Finally, we have 

compared our results with the result of Hemmat and Borhan 

[3] and found excellent agreement with them. 
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