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Abstract: Theoretical study of the phenomenon of blow-up solutions for semilinear Schrödinger equations has been the 

subject of investigations of many authors. It is said that the maximal time interval of existence of the solution blows up in a finite 

time when this time is finite, and the solution develops a singularity in a finite time. In fact, semilinear Schrhödinger equation 

models a lot of physical phenomenon such as nonlinear optics, energy transfer in molecular systems, quantum mechanics, 

seismology, plasma physics. In the past, certain authors have used numerical methods to study the phenomenon of blow-up for 

semilinear Schrödinger equations. They have considered the same problem and one proves that the energy of the system is 

conserved, and the method used to show blow-up solutions are based on the energy's method. This paper proposes a method 

based on a modification of the method of Kaplan using eigenvalues and eigenfunctions to show that the semidiscrete solution 

blows up in a finite time under some assumptions. The semidiscrete blow-up time is also estimate. Similar results are obtain 

replacing the reaction term by another form to generalise the result. Finally, this paper propose two schemes for some numerical 

experiments and a graphics is given to illustrate the analysis.  
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1. Introduction 

This paper concerns the numerical approximation for the 

following initial-boundary value problem for a semilinear 

Schrhödinger equation of the form: 

�� � ����� � ��|�|
, � ∈ �0, 1�, � ∈ �0, ��      (1) 

��0, �� � 0, ��1, �� � 0, � ∈ �0, ��         (2) 

���, 0� � �����, � ∈ �0,1�,           (3) 

which appears in a lot of models of nonlinear optics, energy 

transfer in molecular systems, quantum mechanics, 

seismology, plasma physics, see [4, 21, 28], to cite only a few 

cases. Here p>1, � ∈ ��, � � 0, � � 0.	 The initial datum 

����� is a continuous function in [0, 1]. The conditions 

���0� � 0	���	���1� � 0  mean that the temperature is 

maintained nil on the boundary x=0 and x=1. 

Here (0, T) is the maximal time interval of existence of the 

solution u. The time T may be finite or infinite. When T is 

infinite, we say that the solution u exists globally. When T is 

finite, the solution u develops a singularity in a finite time, 

namely 

lim
�→#

‖���, ��‖% � ∞ 

where ‖���, ��‖% � '�(�∈��,)�|���, ��|. In this case, it is 

say that the solution u blows up in a finite time and the time 

T is called the blow-up time of the solution u. 

The theoretical study of the phenomenon of blow-up and 

in particular blow-up solutions for semilinear Schrödinger 

equations has been the subject of investigations of many 

authors (see [1, 3, 9, 15, 17, 18, 23], and the references cited 

therein). 

This paper is interested by the numerical study of the 

above problem. Let I be a positive integer and define the grid 

�* � +,, 0 - + - �, where h=1/I. Approximate the solution u 

of the problem (1)--(3) by the solution 
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./��� � 0.����, .)���, … , .2���3#
 of the following 

semidiscrete equations 

44� .*��� = ��56.*��� − ��7.*���7
, 1 ≤ + ≤ � − 1, � ∈ �0, �/�  (4) 

.���� = 0, .2��� = 0, � ∈ �0, �/�         (5) 

.*�0� = 8* , 0 ≤ + ≤ �              (6) 

where 

56.*��� = .*9)��� − 2.*��� + .*<)���ℎ6  

Here, �0, �/�  is the maximal time interval on which ‖./���‖% is finite, where ‖./���‖% = max�?*?27.*���7.  

When �/  is finite, it is say that the solution ./��� of 

(4)--(6) blows up in a finite time and the time �/ is called 

the semidiscrete blow-up time of solution ./���. It is show 

that under some assumptions, the solution of the semidiscrete 

problem defined in (4)--(6) blows up in a finite time and 

estimate its semidiscrete blow-up time. This paper proposes 

also some schemes and algorithms for the numerical 

calculation of the blow-up time. In the past, certain authors 

have used numerical methods to study the phenomenon of 

blow-up for semilinear Schrödinger equations but they have 

considered the problem (1)--(3) in the case where the term −��|���, ��|
  is replaced by −��|���, ��|
<)���, ��  (see 

for instance [3, 24]). In this case, one proves that the energy 

of the system is conserved, and the method used to show 

blow-up solutions are based on the energy's method. This 

paper propose a method based on a modification of the 

method of Kaplan (see [14]) using eigenvalues and 

eigenfunctions to show that the solution ./��� of (4)--(6) 

blows up in a finite time if ∑ tan CD6 ℎE2<)*F) sin�+Hℎ� �I�8*� 

is large enough. The above result is also extend replacing -ib 

in (4) by b and also by	J − �� where b>0 and c>0. One 

integrates the semidiscrete scheme and obtain some discrete 

schemes where the convergence and stability have been 

proved (see for instance [8, 11, 13, 25]). We utilize these 

schemes to compute the numerical blow-up time by means of 

appropriate algorithms. In [6, 19, 20], one may find some 

results about the numerical study of the phenomenon of 

blow-up and extinction for semilinear parabolic equations. 

This paper is written in the following manner. In the next 

section, the authors give some conditions under which the 

solution of (4)--(6) blows up in a finite time and estimate its 

semidiscrete blow-up time. In the last section, we propose 

some schemes and algorithms to compute the numerical 

blow-up time. Some numerical values are given. 

2. Semidiscrete Blow-up Solutions 

In this section, under some assumptions, we show that the 

solution of the semidiscrete problem blows up in a finite time 

and estimate its semidiscrete blow-up time. One need the 

following Lemma. 

Lemma 2.1. We have ∑ '���+Hℎ� = JK���	�D/6 �2<)*F) . 

Proof. A routine calculation yields 

L '���+Hℎ� = �M NL IO*D/2<)
*F) P = �M NL�IOD/�*2<)

*F) P2<)
*F) 	 

	= �M QIOD/ 1 − IOD/�2<)�1 − IO*D R = �M QIOD/ − IOD1 − IOD/ R 

Because hI=1. Since IOD = −1, we arrive at  

L '���+Hℎ� = �M QIOD/ + 11 − IOD/R = �M N− IOD/6 + I<OD/6
IOD/6 − I<OD/6 P2<)

*F)
= �M S�JK���	�Hℎ2 T = JK���	�Hℎ2 � 

and the proof is complete.  

Lemma 2.2 Let ./ , U/ two vectors such that  

.� = 0, .2 = 0, U� = 0, U2 = 0 

Then we have  

∑ ℎ.*56U* = ∑ ℎU*56.*2<)*F)2<)*F)           (7) 

Proof. A straightforward computation reveals that ∑ ℎ.*56U* = ∑ ℎU*56.*2<)*F)2<)*F) + VWXWYZ<XWVWYZ9V[XZ<X[VZ/ 		and 

the result follows using the assumptions of the lemma.  

Now let us state our first result on blow-up. 

Theorem 2.1 Assume that 1 − \]^_ZY`
a�
<)� > 0	bℎIcI	 

d/ = 2 − 2 JK' Hℎℎ6 	 
and 

e = L ��� SHℎ2 T '���+Hℎ��I�8*�2<)
*F)  

Then the solution ./ of (4)—(6) blows up in a finite time �/ which is estimated as follows 

�/ ≤ 	 )\]^ �cJK'	 C1 − \]^_ZY`
a�
<)� E          (8) 

Proof. Since �0, �/�  is the maximal time interval on 

which ‖./���‖% is finite, our aim is to show that �/  is 

finite and obeys the above inequality. Introduce the functions 

v and w defined as follows  

f��� = L ��� SHℎ2 T '���+Hℎ�.*���	���	2<)
*F)  

b��� = L ��� SHℎ2 T '���+Hℎ�.gh ���2<)
*F)  

Taking the derivative of v in t and using (4), we get  



 International Journal of Applied Mathematics and Theoretical Physics 2019; 5(3): 66-71 68 

 

fi��� = �� L ��� SHℎ2 T '���+Hℎ�.*���2<)
*F)  

−�� L ��� SHℎ2 T '���+Hℎ�7.*���7
2<)
*F)  

One observes that 56 '���+Hℎ� = −d/ '���+Hℎ�. Due to 

Lemma 2.2, we arrive at 

fi��� = −��d/f��� − �� L ��� SHℎ2 T '���+Hℎ�7.*���7
,2<)
*F)  

which implies that 

44� CIO\]^�f���E = −��IO\]^� ∑ ��� CD/6 E '���+Hℎ�7.*���7
2<)*F) . 

We also observe that, taking the derivative of w in t and 

using (4), we discover that  

bi��� = −�� L tan SHℎ2 T sin�+Hℎ�56.gh ���2<)
*F)  

−�� L tan SHℎ2 T sin�+Hℎ�7.*���7
2<)
*F)  

Reasoning as above, we find that  

��� CI<O\]^�b���E = 

−��I<O\]^� ∑ ��� CD/6 E '���+Hℎ�7.*���7
2<)*F) . 

We deduce that 

ji��� = � sin��d/�� L tan SHℎ2 T sin�+Hℎ�7.*���7
,2<)
*F)  

where Z(t)=j��� = klmn^op���9kYlmn^op���6 . From Lemma 2.1, 

we see that ∑ tan CD/6 E sin�+Hℎ�2<)*F) 	 equals one. Thus 

applying Jensen’s inequality, we find that ∑ tan CD/6 E sin�+Hℎ�2<)*F) 7.*���7

 is bounded from below by 

C∑ tan CD/6 E sin�+Hℎ�7.*���72<)*F) E
.  Applying the triangle 

inequality, we discover that |j���| is bounded from above 

by ∑ tan CD/6 E sin�+Hℎ�7.*���72<)*F) .  Since sin� �d/��  is 

nonnegative when t is between 0 and 
D\]^, we deduce that 

j′��� ≥ �'����d/��|j���|
	sKc	� ∈ S0, H�d/T. 
This inequality implies that the function Z(t) is increasing. 

Since Z(0) is positive, we find that 

ji��� ≥ � sin��d/��0j���3
	sKc	� ∈ S0, H�d/T , 
which implies that 

�jj
 ≥ � sin��d/����	sKc	� ∈ S0, H�d/T . 
Let �/∗ = min C D\]^ , �/E. Integrating this inequality over �0, �/∗�, we conclude that  

�j�0��)<
( − 1 ≥ ��d/ �1 − cos��d/�/∗��. 
Therefore, we have 

cos��d/�/∗� ≥ 1 − �d/� 0j�0�3)<

( − 1 . 

Since the quantity on the right-hand side of the above 

inequality is positive, we see that the time �/∗ is estimated as 

follows 

�/∗ ≤ 	 1�d/ �cJK' w1 − �d/� 0j�0�3)<

( − 1 x. 

Since 1 − \]^a 0y���3ZY`

<)  is positive, we deduce that �/∗ ≤ D6\]^. Consequently �/∗ = �/ is finite. Use the fact that j�0� = e to complete the rest of the proof.  

Now, we consider the following initial-boundary value 

problem 

�� − ����� = �|�|
, � ∈ �0, 1�, � ∈ �0, ��    (9) 

��0, �� = 0, ��1, �� = 0, � ∈ �0, ��      (10) 

���, 0� = �����, � ∈ [0,1]         (11) 

where ( > 1, ���0� = 0	���	���1� = 0.  

Approximate the solution u of (9)—(11) by the solution ./��� = �.����, … , .2����#  of the following semidiscrete 

equations 

44� .*��� = ��56.*��� + �7.*���7
, 1 ≤ + ≤ � − 1, � ∈ �0, �/�  (12) 

.���� = 0, .2��� = 0, � ∈ �0, �/�         (13) 

.*�0� = 8* , 0 ≤ + ≤ �              (14) 

where (0, �/�  is the maximal time interval on which ‖./���‖%  is finite. Our second result on blow-up is the 

following.  

Theorem 2.2 Assume that 
\]^_ZY`
a�
<)� ≤ )6 	bℎIcI	 

d/ = 2 − 2 JK' Hℎℎ6 	���	 
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e = L ��� SHℎ2 T '���+Hℎ��I�8*�2<)
*F) . 

Then the solution ./  of (12)—(14) blows up in a finite 

time �/ which is estimated as follows 

�/ ≤ 	 )\]^ �c'��	 C1 − \]^_ZY`
a�
<)� E          (15) 

Proof. Since �0, �/�  is the maximal time interval on 

which ‖./���‖% is finite, our aim is to show that �/  is 

finite and obeys the above inequality. Introduce the functions 

v and w defined as follows  

f��� = L ��� SHℎ2 T '���+Hℎ�.*���	���	2<)
*F)  

b��� = L ��� SHℎ2 T '���+Hℎ�.gh ���.2<)
*F)  

Taking the derivative of v in t and using (12), we get  

fi��� = �� L ��� SHℎ2 T '���+Hℎ�.*���2<)
*F)  

+� L ��� SHℎ2 T '���+Hℎ�7.*���7
2<)
*F)  

We observe that 56 '���+Hℎ� = −d/ '���+Hℎ�.  Due to 

Lemma 2.2, we arrive at 

fi��� = −��d/f��� + � L ��� SHℎ2 T '���+Hℎ�7.*���7
,2<)
*F)  

which implies that 

44� CIO\]^�f���E = �IO\]^� ∑ ��� CD/6 E '���+Hℎ�7.*���7
2<)*F) . 

We also observe that, taking the derivative of w in t and 

using (12), we have 

bi��� = −�� L tan SHℎ2 T sin�+Hℎ�56.gh ���2<)
*F)  

+� L tan SHℎ2 T sin�+Hℎ�7.*���7
2<)
*F)  

Reasoning as above, we find that  

��� CI<O\]^�b���E = 

�I<O\]^� ∑ ��� CD/6 E '���+Hℎ�7.*���7
2<)*F) . 

We deduce that  

ji��� = � cos��d/�� L tan SHℎ2 T sin�+Hℎ�7.*���7
,2<)
*F)  

where j��� = klmn^op���9kYlmn^op���6 . Arguing as in the proof 

of Theorem 2.1, we deduce that 

ji��� ≥ � cos��d/��0j���3
	sKc	� ∈ S0, H�d/T , 
which implies that 

�jj
 ≥ � cos��d/����	sKc	� ∈ S0, H�d/T . 
Let �/∗ = min C D6\]^ , �/E. Integrating this inequality over �0, �/∗�, we obtain 

�j�0��)<
( − 1 ≥ ��d/ �sin �d/�/∗�, 
which implies that 

sin��d/�/∗� ≤ �d/� 0j�0�3)<

( − 1 . 

We deduce that  

�/∗ ≤ 	 1�d/ �c'�� w�d/� 0j�0�3)<

( − 1 x. 

Since 
\]^a 0y���3ZY`


<) ≤ )6, we have �/∗ ≤ Dz\]^. This implies 

that �/∗ = �/  is finite. Therefore �/  is finite and use the 

fact that Z(0)=A to complete the rest of the proof. 

Remark 2.1 Consider the following initial-boundary value 

problem  

�� − ����� = �J − ���|�|
, � ∈ �0, 1�, � ∈ �0, ��   (16) 

��0, �� = 0, ��1, �� = 0, � ∈ �0, ��        (17) 

���, 0� = �����, � ∈ [0,1]0           (18) 

where J > 1, � > 0	���  approximate the solution u of 

(16)—(18) by the solution ./��� = �.����, … , .2����#  of 

the following semidiscrete equations 

4X{���4� = ��56.*��� + �J − ���7.*���7
, 1 ≤ + ≤ � − 1, � ∈�0, �/�                   (19) 

.���� = 0, .2��� = 0, � ∈ �0, �/�        (20) 

.*�0� = 8* , 0 ≤ + ≤ �           (21) 

Combining the methods developed in the proofs of 

Theorems 2.1 and 2.2, we easily prove that if ∑ tan CD/6 E sin�+Hℎ� �I�8*�2<)*F)  is large enough, the solution .*��� of the above semidiscrete problem blows up in a finite 

time. 
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3. Numerical Results 

In this section, one present some numerical approximations 

of the blow-up time for the solution of the problem (1)-(3). 

Consider the following explicit and implicit schemes 

Scheme I 

.*�|9)� − .*�|�
∆	�| = �� 0.*9)�|� − 2.*

�|� ; .*<)
�|�3

,6 	� ��7.*
�|�7
, 1 

- � - � � 1, 

.�
�|� � 0, .2

�|� � 0, 

.*
��� � 8O , 0 - � - �. 

Scheme II 

.*
�|9)� � .*

�|�

∆	�|
� ��

0.*9)
�|9)� � 2.*

�|9)� ; .*<)
�|9)�3

,6 	 

���7.*
�|�7
, 1 - � - � � 1, 

.�
�|9)� � 0, .2

�|9)� � 0, 

.*
��� � 8O , 0 - � - �, 

where � r 0, ∆�| � M�� ~ /�

6|\| , ��./
�|��%

)<
� 	b��,	� �
JK�'�	 ∈ �0,1�. We need the following definition. 

Definition 3.1 One say that the solution 

./
�|� � �.�

�|�, … , .2
�|��# of Scheme I or II blows up in a finite 

time if lim|→%�./
�|��% � ∞  and the series ∑ ∆	�|

%
|F�  

converges. The quantity ∑ ∆	t�
%
�F�  is called the numerical 

blow-up time of ./
�|�

. 

In the tables 1 and 2 in rows, we present the numerical 

blow-up times, the numbers of iterations, the CPU times and 

the orders of the approximations corresponding to meshes of 

16, 32, 64, and 128. We take the numerical blow-up time 

�| � ∑ ∆	t�
�<)
�F�  which is computed at the first time when 

∆	t� � |�|9) � �|| - 10<)z. The order (s) of the method is 

computed from  

' � log	����/ � �6/�/��6/ � �/�
log	�2� . 

For the numerical values, we take p=2, 

.*
��� � 20 sin�H	+	,� a=1, b=1 and � � ,�/6. 

Table 1. Numerical blow-up times, numbers of iterations, CPU times 

(seconds) and orders of the approximations obtained with Scheme I. 

I �� N CPUt S 

16 0.078223 18837 - - 

32 0,078229 72612 4 - 
64 0,078232 279341 45 1.00 

128 0,078233 6962549 14611 1.58 

In this graphics, one can see that the norm of the solution u 

of the problem (1)—(3) is increasing and develops a 

singularity in a finite time. Also, we see that the blow-up rate 

occurs at the middle of the solution for the mesh i=I/2. This 

graphics respect .���� � 0, .2��� � 0, � ∈ �0, �/�.  But this 

condition doesn’t prevent the blow-up of the solution. 

Table 2. Numerical blow-up times, numbers of iterations, CPU times 

(seconds) and orders of the approximations obtained with Scheme II. 

I �� N CPUt S 

16 0.078280 14807 1 - 

32 0,078244 56510 6 - 

64 0,078236 214935 95 2,1 
128 0,078234 6962549 14611 2,0 

 

Figure 1. Evolution of discrete solution 7.*
�|�7 for a=b=1. 

4. Conclusion 

Under some assumption, and using a method based on a 

modification of the method of Kaplan, it is show that the 

semidiscete solution of the semilinear solution of the problem 

(1)-(3) blows up in a finite time and the semidiscrete blow-up 

time is estimate. The result obtains with the problem (1)-(3) is 

generalize considering a reaction term more complex. At the 

end, two schemes proposed, permit to illustrate the estimation 

of the numerical blow-up time which converge to 0,0782 (see 

Tables 1 and 2). But the convergence of the schemes proposed 

was not proof and can be the subject of another investigation.  
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