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Abstract: This paper is mainly focused on the description of an approach for establishing a spinorial representation of linear 

canonical transformations. It can be considered as a continuation of our previous works concerning linear canonical 

transformations and phase space representation of quantum theory. The said method is based on the development of an 

adequate parameterization of linear canonical transformations which permits to represent them with special pseudo-orthogonal 

transformations. Obtaining this pseudo-orthogonal representation makes it possible to establish the spinorial representation 

exploiting the well-known relation existing between special pseudo-orthogonal and spin groups. The cases of one dimension 

and general multidimensional theories are both studied. The design of the pseudo-orthogonal transformation associated to a 

linear canonical transformation is achieved by introducing adequate operators which are linear combinations of reduced 

momentum and coordinate operators. It is shown that a linear canonical transformation is equivalent to a special pseudo-

orthogonal transformation defined in the set formed by these adequate operators. The spinorial representation is then deduced 

by defining a composite operator which is linear combinations of the tensorial products of the generators of the Clifford 

algebra with the adequate operators defining the special pseudo-orthogonal representation. It is established that unlike the case of 

a spinorial representation associated with an ordinary commutative vector space, the main invariant corresponding to the 

transformation is not the square of the composite operator but a higher degree polynomial function of it.  

Keywords: Linear Canonical Transformation, Special Pseudo-Orthogonal Transformation, Clifford Algebra, Spin Group, 

Spinorial Representation, Quantum Theory 

1. Introduction 
In our previous papers [1-4], we have performed a series of 

study on a phase space representation of quantum theory and 

Linear Canonical Transformations (LCTs). LCTs have already 

been studied in various contexts [5-9] but our work is focused 

on their study in the framework of quantum theory. In the 

paper [2], we have established that there is an isomorphism 

between the dispersion operator algebra and the Lie algebra ���2N�, 2N�	 of the Lie group 
��2N�, 2N�	 corresponding 

to the set of LCTs associated to a pseudo-euclidian space of 

signature �N�, N�	. This isomorphism permits to establish an 

unitary representation of LCTs. In this paper, our main goal is 

to describe a method for the establishment of a spinorial 

representation of LCTs. The approach consists mainly of 

associating a special pseudo-orthogonal transformation to a 

LCT. Then, the well-known relations existing between special 

pseudo-orthogonal and spin groups [10-12] are exploited to 

establish the spinorial representation of LCTs. 

In the work [2], we have introduced operators defined from 

the momentum �  and coordinate operators �  of a particle. 

Some of these operators will be used throughout the present 

paper. These operators are the reduced operators � and �, the 

reduced dispersions operators 
�, 
�  and 
�  and their 

multidimensional generalization �� , �� , 
��� , 
���  and 
��� . The 

notations that we use throughout this paper are inspired from 

[13]. Operators defined from the momentum and coordinate 

operators  are written in bold.  
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2. Special Pseudo-Orthogonal 

Transformation Associated to a LCT 

2.1. Case of One Dimension Theory 

In the framework of one dimension quantum mechanics, a 

LCT is a linear transformation of the form [2] 

��� = Π� + Θ��� = Ξ� + Λ� ⇔ ��� ��	 = �� �	 �Π ΞΘ Λ�            (1) 

which leaves invariant the canonical commutation 

relation: ���, ��� = ��, �� = � . The consequence of this 

condition is that the matrix ℊ = �Π ΞΘ Λ� which describes the 

transformation must have a determinant equal to 1.  belongs 

to the Special Linear group 
!(2). The Lie algebra �"	(2) of 

the Lie group 
!(2) is the set of 2 × 2 square matrices with 

trace equal to zero. We choose the parameterization 

ℊ = �Π ΞΘ Λ� = $��	�% & ' − )' + ) −& *�                  (2) 

To establish a spinorial representation, we have to find a 

special pseudo-orthogonal representation corresponding to a 

LCT. We define the following operators 

+,,
-
,,.�

� = /√1 (2/⊗ � + 21⊗�)�� = /√1 (2/ ⊗� − 21 ⊗�)�� = /√1 (2/ ⊗� + 21 ⊗�)�� = /√1 (2/⊗ � − 21⊗�)
                         (3) 

in which 2/ and 21are the generators of the Clifford algebra ℭ(2,0) = ℭ(2)  (for instance the Pauli matrices). From the 

relations (1), (2) and (3) we deduce that for an infinitesimal 

LCT, the laws of transformations of ��, ��, �� and ��are 

+-
. ��� = �� + )�� + 	'�� + &����� = −)�� + �� − &�� + '����� = '�� − &�� + �� − )����� = &�� + '�� + )�� + ��

                    (4) 

The infinitesimal transformation (4) can be put in the 

matricial form 

(��� �′� �′� ���) = (�� �� �� ��)(78 +9)  (5) 

in which 78  is the 4 × 4 identity matrix and 9  is the 	4 × 4 

matrix 

9 = ;0 −) ' &) 0 −& ''& −&' 0−) )0<                           (6) 

It is easy to verify that 9  belongs to the Lie algebra �=(2,2) of the Special pseudo-orthogonal group 
>(2,2)i.e $��	(9) ∈ 
>(2,2). It follows from the relations (1) (2) and 

(3) that the special pseudo- orthogonal transformation 

defined by $��	(9) is associated with the LCT ℊ defined by 

(1) and (2). This correspondence defines a representation of 

the LCT group with special pseudo-orthogonal 

transformations on the operator space @ = {	(�� �� �� ��)}. 
2.2. Case of C−Dime Nsional Theory 

As in our work [2], we consider the case of a general linear 

canonical transformation  

D��� = Π���� + ΘEF����� = Ξ�F�� + Λ���� 	⇔ (�� ��) = (� �) �Π ΞΘ Λ�     (7) 

which leaves invariant the canonical commutation relations 

+-
. G��� 	, ��� H� = ��� , ���� = 0	G��� 	, ��� H� = ��� , ���� = 0	G��� 	, ��� H� = ��� , ���� = �I��	                    (8) 

In these expressions, we have & = 0,…K − 1. � and � are 

the 1 × K row matrices (covectors) with components ��and �� . Π, Ξ, Θ and Λ are K × K square matrices and I��  are the 

covariant components of the bilinear form with a signature (K�, K�) with K� +K� = K . Following our paper [2], the 2K × 2K  matrix ℊ = �Π ΞΘ Λ�  belongs to the pseudo-

symplectic group 
�	(2K�, 2K�) . ℊ  can be written in the 

form 

ℊ = �Π ΞΘ Λ� = $��	�%M + & ' − )' + ) M − &*�             (9) 

in which ), ', & and M are K × K matrices which satisfy the 

following relations 

+,-
,. )N = I)I					'N = I'I					&N = I&I					MN = −IMI	and	RS(M) = 0	

	                 (10) 

The relation (9) is the multidimensional generalization of 

the parameterization (2). To associate a special pseudo-

orthogonal transformation to the LCT defined by ℊ , as 

generalization of the relations (3), we introduce the operators 

+,,
-
,,.��

� = /√1 T2/ ⊗ �� + 21⊗ ��U��� = /√1 T2/⊗ �� − 21 ⊗��U��� = /√1 T2/⊗ �� + 21 ⊗��U��� = /√1 T2/ ⊗ �� − 21⊗ ��U
	                  (11) 

If we denote ��, ��, ��, �� the 1 × K  row matrices 

(covectors) which admit respectively the operators ���, ���, ��� 

and ��� as components, we can deduce from the relations (7), 

(9) and (11) that for an infinitesimal LCT, we have  
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+-
. ��� = �7V + M	�� + )�� + 	'�� + &����� = −)�� + �7V + M	�� − &�� + '����� = '�� − &�� + �7V + M	�� − )����� = &�� + '�� + )�� + �7V + M	��

	          (12) 

in which 7V  is the K � K  identity matrix. The infinitesimal 

transformation (12) can be put in the matricial form 

���� �′� �′� ���	 = ��� �� �� ��	�78V +9	 (13) 

in which 78V  is the 4K � 4K  identity matrix and 9  is the 4K � 4K square matrix 

9 = ;M −) 	' 	&) M −& 	''& −&' M	−)	 )M<	                      (14) 

The matrix 9 belongs to the Lie algebra W=�2K, 2K) of the 

Special pseudo-Orthogonal group 
>(2K, 2K) i.e $9 ∈
>(2K, 2K). The relation (11) then leads to a correspondence 

between the LCT ℊ  defined by (7) and (9) and the special 

pseudo- orthogonal transformation defined by	$��(9). 
3. Spinorial Representation of a LCT 

3.1. Definition of the Spinorial Representation 

As established in the previous section, any LCT can be 

associated with a special pseudo-orthogonal transformation. 

But any special pseudo-orthogonal transformation has a 

spinorial representation (a spin group is a double cover of a 

special orthogonal group). It follows that we can construct a 

spinorial representation of an LCT too. To do so, we 

introduce the operator 

X = (Y� ⊗�� + Z� ⊗�� + Z� ⊗�� + Y� ⊗��)	    (15) 

in which the operators ��, ��, �� and �� are the operator 

defined in the relation (3) and Y�, Z�, Z�, Y� are the 

generators of the Clifford algebra ℭ(2,2). They satisfy the 

relations 

+,,
,-
,,,
. (Y�)1 = (Z�)1 = [	(Z�)1 = (Y�)1 = −[Y�Z� + Z�Y� = 0Y�Z� + Z�Y� = 0Y�Y� + Y�Y� = 0Z�Y� + Y�Z� = 0Z�Z� + Z�Z� = 0Z�Y� + Y�Z� = 0

	                       (16) 

where [ is the identity in the Clifford algebra ℭ(2.2). From 

the relation (16), it can be established that the operators Y�, Z�, Z�, Y�  satisfy also the following commutations 

relations. 

+,,
-
,,.
�Y�Z�, Y��� = −2Z� �Y�Z�, Z��� = 2Y� �Y�Z�, Z��� = 0 �Y�Z�, Y��� = 0	�Y�Z�, Y��� = −2Z� �Y�Z�, Z��� = 0 �Y�Z�, Z��� = −2Y� �Y�Z�, Y��� = 0	�Y�Y�, Y��� = −2Y� �Y�Y�, Z��� = 0 �Y�Y�, Z��� = 0 �Y�Y�, Y��� = −2Y��Z�Y�, Y��� = 0 �Z�Y�, Z��� = −2Y� �Z�Y�, Z��� = 0 	�Z�Y�, Y��� = −2Z��Z�Z�, Y��� = 0 �Z�Z�, Z��� = −2Z� �Z�Z�, Z��� = −2Z�	�Z�Z�, Y��� = 0	�Z�Y�, Y��� = 0	 �Z�Y�, Z��� = 0 �Z�Y�, Z��� = 2Y� �Z�Y�, Y��� = −2Z�	

	                       (17) 

Let us denote 
��](2,2)⨂71 = {_ = $��	(`)⨂71	} in which $��	(`) is an element of the group 
��](2,2) and 71 the 2 × 2 

identity matrix. It is easy to remark that the group 
��](2,2)⨂71 and 
��](2,2) are isomorph. Let ℊ = $�� % & ' − )' + ) −& * 

be the element of the LCT group 
!(2) corresponding to an LCT (15) and _ the element of 
��](2,2)⨂71 associated with	ℊ. 

This correspondence between   and _ can be described with a mapping a between the LCT group 
!(2) and ](2,2)⨂71 . 

_ = a( ) ⟺ c(�� ��) = (� �)ℊ = (� �)$�� % & ' − )' + ) −& *X� = _X_�/	 	                                        (18) 

_can be put in the form 

_ = $��	(`⨂71) = $���(`/Y�Z� + `1Y�Z� + `dY�Y� + `8Z�Z� + `eZ�Y� + `fZ�Y�) ⊗ 71�	                   (19) 

Using the relation X� = _X_�/  and the relation (19), it can be deduced that the law of transformation of X  for an 

infinitesimal linear canonical transformation is 

X� = X + �`⨂71, X��	                                                                          (20) 

Taking into account the expression (15) of X and the relations (17) and (20), we deduce the relations 
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+,-
,. ��� = �� + 2`/�� − 2`1�� − 2`d��	��� = −2`/�� + �� − 2`8�� − 2`e����� = −2`1�� − 2`8�� + �� − 2`f����� = −2`d�� − 2`e�� + 2`f�� + ��

	                                                      (21) 

The identification of the relation (21) with (4) permits to deduce the expressions of `/, `1, `d, `8, `e and `f in terms of ), ' and & 

c`/ = g1 `1 = − h1 `d = − �1`8 = �1 `e = − h1 `f = g1			 	                                                                       (22) 

The expression (19) of _ becomes 

_ = $��	(`⨂71) = $��	{�g1 (Y�Z� + Z�Y�) − h1 (Y�Z� + Z�Y�) − �1 (Y�Y� − Z�Z�)� ⊗ 71}                    (23)

The operator _ can be considered as acting on the element ijk of a spinor space l 

ijk� = _(ijk) ⇔ i�m = _nmin 	                                                                         (24) 

The couple (l, a), in which a is the mapping in (18), then define a spinorial representation of the LCT group. 

3.2. Expression of the Invariant as Polynomial of the Operator X 

Let us consider the operator X defined in the relation (15) and calculate its square 

(X)1 = (Y� ⊗ �� + Z� ⊗�� + Z� ⊗ �� + Y� ⊗ ��)1	                                               (25) 

From the expression (3) of ��, ��, ��, ��, we deduce the relations 

+,
,-
,,
.(��)1 + (��)1 − (��)1 − (��)1 = 22d										���, ���� = (���� − ����) = −4�ℶ�2d − �	���, ���� = (���� − ����) = 4�ℶ�2d											���, ���� = (���� − ����) = −4�ℶ×2d							���, ���� = (���� − ����) = 4�ℶ×2d											���, ���� = (���� − ����) = 4�ℶ�2d											���, ���� = (���� − ����) = −4�ℶ�2d + �	

	                                                  (26) 

in which ℶ�, ℶ� and ℶ× are the reduced dispersion operators [2] 

+,-
,.ℶ� = /8 �(�)1 + (�)1�ℶ� = /8 �(�)1 − (�)1�ℶ× = /8 ��� + ���						 	                                                                             (27) 

Using the relations (16), (26) and (27), we can deduce the expression of (X)1 

(X)1 = o + 2[⊗ 2d − �(Y�Z� − Z�Y�) ⊗ 71	                                                    (28) 

in which o is the operator 

o = −4��(Y�Z� + Z�Y�) ⊗ 2d⊗ ℶ� − (Y�Z� + Z�Y�) ⊗ 2d⊗ ℶ� + (Y�Y� − Z�Z�) ⊗ 2d⊗ ℶ×�             (29)

			[ is the identity operator in the Clifford algebra ℭ(2.2) and 71 is 2 × 2 identity matrix. If we introduce the operators 
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+,
-
,.℧� =

/1 �Y�Z� + Z�Y�	⨂2d℧� = /1 �Y�Z� + Z�Y�	⨂2d℧� = /1 �Y�Y� − Z�Z�	⨂2d℧q = /1 �Y�Z� − Z�Y�	⨂2d
	                                                                   (30) 

we obtain as expression of  

o = −8��℧�⨂
� − ℧�⨂
� + ℧�⨂
��	                                                    (31) 

using the fact that �2d	1 = 71, we may write also for the expression (29) of �X	1 and the expression (23) of _ 

�X	1 = o + 2([ ⊗ 2d)([ ⊗ 71 − �℧q)                                                            (32) 

		_ = $��	(`⨂71) = $��	�()℧� −'℧� − &℧×)([ ⊗ 2d)�	                                                     (33) 

		It can be deduced from the relations (16) and (30) that the operators ℧�, ℧�, ℧× and ℧q satisfy the relations 

+,
,,,
,-
,,,
,,
. (℧�)1 = /1 (s − [) ⊗ 71																		(℧�)1 = − /1 (s − [) ⊗ 71													(℧×)1 = − /1 (s − [) ⊗ 71													(℧q)1 = − /1 (s + [) ⊗ 71													℧�℧� = −℧�℧� = ([ ⊗ 2d)℧×	℧�℧× = −℧×℧� = −([ ⊗ 2d)℧�℧×℧� = −℧�℧× = ([ ⊗ 2d)℧�	℧�℧q = ℧q℧� = 0																								℧�℧q = ℧q℧� = 0																								℧�℧q = ℧q℧� = 0																								

	                                                         (34) 

in which 

s = Y�Z�Z�Y�	                                                                           (35) 

According to the relation (19), the law of transformation of X is X� = _X_�/ . It follows that we have for the law of 

transformation of (X)1 

(X�)1 = X�X� = _X_�/_X_�/ = _(X)1_�/ = _o_�/ + (2[ ⊗ 2d)([ ⊗ 71 − �℧q)                    (36) 

as we have _o_�/ ≠ o, it follows that (X′)1 ≠ (X)1 i.e (X)1 is not an invariant. However, it can be shown that an invariant is 

the polynomial of 4
th

 degree (X)8 + 4([ ⊗ 2d)(X)1 i.e we have the relation 

(X′)8 + 4([ ⊗ 2d)(X′)1 = _�(X)8 + 4([ ⊗ 2d)(X)1�_�/ = (X)8 + 4([ ⊗ 2d)(X)1	                  (37) 

3.3. Case of Multidimensional Theory 

According to the relations (12), (13) and (14), the special pseudo-orthogonal transformation corresponding to the LCT 

defined by the relations (7), (8) and (9) is an element of the group 
>(2K, 2K) so the spin group which is to be used to 

construct the spinorial representation is 
��]	(2K, 2K).Generalizing the relation (15), we introduce  

X = Y�� ⊗ ��� + Z�� ⊗��� + Z�� ⊗ ��� + Y�� ⊗ ���	                                                 (38) 

in which ���, ���, ���and ���are the operators defined in the relation (11) and the 4K operators Y�� , Z�� , Z�� , Y��(& = 0, 1, . . . , K −1) are the generators of the Clifford algebra ℭ(2K, 2K). They are characterized by the relations. 
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+,
-
,. Y��Y�� + Y��Y�� = 2I��[	 	Z��Z�� + Z��Z�� = 2I��[	Z��Z�� + Z��Z�� = −2I��[ Y��Y�� + Y��Y�� = −2I��[Y��Z�� + Z��Y�� = 0														 Y��Z�� + Z��Y�� = 0									Y��Y�� + Y��Y�� = 0 													Z��Z�� + Z��Z�� = 0										Z��Y�� + Y��Z�� = 0													 Z��Y�� + Y��Z�� = 0									

                                               (39) 

in which [ is the identity of the Clifford algebra ℭ(2K, 2K). It can be established that the operators Y��, Z�� , Z�� , Y�� satisfy the 

following commutations relations 

+,
,,,
,,
-
,,,
,,,
. GY��Y�� , Y�uH� = 2I�uY�� GY��Y�� , Z�uH� = 0 �Y��Y�� , Z�u�� = 0						�Y��Y�� , Y�u�� = 0											GZ��Z��, Y�uH� = 0 GZ��Z��, Z�uH� = 2I�uZ�� �Z��Z�� , Z�u�� = 0					�Z��Z�� , Y�u�� = 0													GZ��Z�� , Y�uH� = 0 GZ��Z��, Z�uH� = 0 �Z��Z�� , Z�u�� = −2I�uZ�� 	�Z��Z��, Y�u�� = 0														GY��Y�� , Y�uH� = 0 GY��Y�� , Z�uH� = 0 �Y��Y�� , Z�u�� = 0	�Y��Y�� , Y�u�� = −2I�uY�� 													GY��Y�� , Y�uH� = −2I�uY�� 	 GY��Y�� , Z�uH� = 0 �Y��Y�� , Z�u�� = 0	�Y��Y�� , Y�u�� = 2I�uY��GY��Z��, Y�uH� = −2I�uZ��	GY��Z��, Z�uH� = 2I�uY�� �Y��Z��, Z�u�� = 0	 �Y��Z��, Y�u�� = 0	GY��Z��, Y�uH� = −2I�uZ�� GY��Z��, Z�uH� = 0	 �Y��Z��, Z�u�� = −2I�uY�� 	�Y��Z��, Y�u�� = 0GZ��Z��, Y�uH� = 0 GZ��Z��, Z�uH� = −2I�uZ�� �Z��Z�� , Z�u�� = −2I�uZ�� 		�Z��Z�� , Y�u�� = 0GZ��Y�� , Y�uH� = 0	GZ��Y�� , Z�uH� = 2I�uY�� �Z��Y�� , Z�u�� = 0 �Z��Y�� , Y�u�� = −2I�uZ�� 	GZ��Y�� , Y�uH� = 0	 �Z��Y�� , Y�u�� = −2I�uZ�� �Z��Y�� , Z�u�� = 2I�uY�	� 	�Z��Y�� , Z�u�� = 0

               (40) 

Let us consider the set 


��](2K, 2K)⨂71 = {_ = $��	(`)⨂71 = $��	(`⨂71)} 
in which $��	(`)  is an element of 
��](2K, 2K)  and 71 the 2 × 2  identity matrix. Let ℊ = $��	�%M + & ' − )' + ) M − &*�  be the 

element of the LCT group 
�(2K�, 2K�) corresponding to an LCT (21) and _ the element of 
��](2K, 2K)⨂71 associated 

withℊ. The correspondence between   and _ can be described with a mapping a between the LCT group 
�(2K�, 2K�) and 
��](2K, 2K)⨂71. 
_ = a(ℊ) ⟺ c(�� ��) = (� �)ℊ = (� �) exp y%M + & ' − )' + ) M − &*zX� = _X_�/ 	                                      (41) 

For an infinitesimal LCT, the law of transformation of X is 

X� = X + �`⨂71, X��                                                                                (42) 

Using the fact that ` belongs to the Lie algebra of 
��](2K, 2K) and taking into account the relations (11), (12) (38), (40) 

and (42) we can find the following expression for ` 

` = I�u�g{|1 (Y��Z�� + Z��Y��) − h{|1 (Y��Z�� + Z��Y��) + �{|1 (Y��Y�� + Z��Z��) + }{|1 TY��Y�� + Z��Z�� − Z��Z�� − Y��Y��U� (43) 

then we have for _ 

	_ = $��	{I�u�g{|1 (Y��Z�� + Z��Y��) − h{|1 (Y��Z�� + Z��Y��) + �{|1 (Y��Y�� + Z��Z��) + }{|1 (Y��Y�� + Z��Z�� − Z��Z�� − Y��Y��)�⨂71}    (44) 

The operator _ can be considered as acting on the spinors	ijk belonging to a spinor space l 

ijk� = _ijk ⇔ i�m = _nmin                                                                           (45) 

The couple (l, a) define a spinorial representation of the LCT group. 

Using the relation (25), it can be established that the operators ���, ���, ��� and ��� satisfy the relations 
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+,
,,
,,
-
,,
,,
,.������ = 2ℶ��� + �2dTℶ��× − ℶ��× U − /12dI�� = 2ℶ��� + 2�2dℶ��⋉ − /12dI�������� = 2ℶ��� + �2d(ℶ��× − ℶ��× ) − /12dI�� = 2ℶ��� + 2�2dℶ��⋉ − /12dI�������� = 2ℶ��� − �2dTℶ��× − ℶ��× U + /12dI�� = 2ℶ��� − 2�2dℶ��⋉ + /12dI�������� = 2ℶ��� − �2dTℶ��× − ℶ��× U + /12dI�� = 2ℶ��� − 2�2dℶ��⋉ + /12dI������, ����� = ������ − ������ = −4�2dℶ��� + �I��																																														����, ����� = ������ − ������ = 4�2dℶ��� 																																																															����, ����� = ������ − ������ = −2�2d(ℶ��× + ℶ��× ) = −4�2dℶ��⋈ 																		����, ����� = ������ − ������ = 2�2d(ℶ��× + ℶ��× ) = 4�2dℶ��⋈ 																										����, ����� = ������ − ������ = −4�2dℶ��� 																																																											����, ����� = ������ − ������ = −4�2dℶ��� − �I��																																													

                              (46) 

in which [2] 

+,
,-
,,
.ℶ��� = /8 (���� + ����)																																																												ℶ��� = /8 (���� − ����)																																																												ℶ��× = /8 T���� + ����U = ℶ��⋈ + ℶ��⋉ 																																				ℶ��⋈ = /1 Tℶ��× + ℶ��× U = /� T���� + ���� + ���� + ����Uℶ��⋉ = /1 Tℶ��× − ℶ��× U = /� T���� + ���� − ���� − ����U

                                                    (47)

From the relations (46) and (47), we have for the square (X)1 of the operator X 

(X)1 = (Y�� ⊗ ��� + Z�� ⊗��� + Z�� ⊗ ��� + Y�� ⊗ ���	)1 = o − 2([ ⊗ 2d)TK[ ⊗ 71 − �I��℧q��U	                 (48) 

in which 

o = −8��℧��� ⊗ ℶ��� − ℧��� ⊗ℶ��� + ℧⋈�� ⊗ℶ��⋈ − ℶ��⋉ ⊗℧⋉���                                                     (49) 

		
+,
,-
,,
.℧��� = /1 GTY��Z�� + Z��Y��U⊗ 2dH																															℧��� = /1 GTY��Z�� + Z��Y��U⊗ 2dH																																℧⋈�� = /1 GTY��Y�� + Z��Z��U⊗ 2dH																																℧⋉�� = /8 GTY��Y�� + Z��Z�� − Z��Z�� − Y��Y��U⊗ 2dH℧q�� = /1 GTY��Z�� − Z��Y��U⊗ 2dH																															

                                                    (50) 

Using the relation (50), the expression of the operator _ in (44) may be written in a compact form 

_ = $� ��I�u()�u℧��� − '�u℧��� + &�u℧⋈�� + M�u℧⋉��)([ ⊗ 2d)�                                             (51) 

The operator o defined by the relation (49) generalizes the 

one defined, for one dimension, in (29), (31). It is obvious to 

note that the operators(X)1 and o are not invariant. The case 

of one dimension theory, studied in the section 3.2, suggests 

that an invariant may be polynomial function in X  with a 

degree greater than or equal to 4. 

4. Conclusion 

The approach described in this work shows that it is 

possible to establish a spinorial representation of Linear 

Canonical Transformations. As it is shown in the sections 2 

and 3, the establishment of this spinorial representation 

follows from the fact that, using an adequate 

parameterization, it is possible to associate with a linear 

canonical transformation a special pseudo-orthogonal 

transformation in an operator space. Then the spinorial 

representation can be established easily using the relations 

between special pseudo-orthogonal group and spin group.  

A main result thus obtained is the explicit expression of the 

operator _  which corresponds to the representation of an 

LCT in a spinor space. It is given in the relation (23) or (33) 

for the case of one dimension theory and in the relation (44) 

or (51) for the multidimensional case. 

Our study leads to the introduction of the operator X which 



65 Raoelina Andriambololona et al.:  Study on a Spinorial Representation of Linear Canonical Transformation 

 

is given respectively for one dimension theory and 

multidimensional cases in the relations (15) and (38). As 

shown by the relations (18) and (41), this operator is useful to 

write the explicit expression of the transformation 

corresponding to the spinorial representation of the LCT. 

According to the relation (37), the invariant is not �X	1, as it 

may be expected for a spinorial representation associated to 

an ordinary commutative vector space, but a higher degree 

polynomial function in X . This result is probably a 

consequence of the fact that the space on which the LCT is 

defined is a noncommutative operator space.  

According to our works [14] and [15], LCTs can be linked 

with many interesting physical problems like the 

generalization of Fourier and Lorentz transformations in the 

framework of a relativistic quantum theory and the study of 

the properties of elementary fermions of the Standard Model. 

Following this way, we have, for instance, established in [15] 

a new approach to explain the charges (electric charge, 

hypercharge and colors) of the elementary fermions. It was 

shown that the electric charge can be written as the sum of 

four terms, the weak hypercharge of five terms and the weak 

isospin of two terms. These facts suggest us to expect that the 

results established in the present paper may have many 

interesting application in quantum theory and related 

domains. 
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