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Abstract: Upon observing with concern that the majority of high school students experienced severe language related 

difficulties when solving contextualized differential equations, the researcher then decided to investigate the kinds of such 

challenges and their impact on students’ learning of differential equations. A sample of 10 mathematics students was selected 

from one urban high school in one province in Zimbabwe. Written tasks and follow up interviews were employed as data 

collection tools for the study. Content analysis technique was applied to the written responses and interview transcriptions to 

obtain a revealing picture of how the kinds of the language related challenges interfere with the growth of mathematical content. 

The study revealed that the students struggled with interpreting and formulating differential equations from given mathematical 

situations. Further, interpretation of given initial conditions posed a challenge to the learners. A major consequence of these 

language related challenges was that the students could not generate complete solutions and lack of interplay between conceptual 

and procedural fluency was one of the insights generated from this study with regards to the learning of differential equations. 

The study findings have important implications for instruction in high school mathematics lessons such as the need to develop 

and foster the students’ abilities to engage in adaptive reasoning and use multiple modes of presenting content in order to promote 

students’ understanding of contextualized differential equations. 
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1. The Research Problem 

1.1. Motivation and Context of the Study 

Reccomini et al. [1] have underscored the important role 

played by language in mathematics learning so much such that 

the attention of many mathematics educators need to focus on 

content-specific vocabulary of mathematics. The call for 

increased attention that should be paid to language matters in 

mathematics education stems from an understanding that 

mathematics is a sense making process in which students 

should engage with mathematics language through reading, 

writing and even speaking as suggested by Lemke [2]. Van 

Rinsveld [3] writes that the ability by students to solve word 

problems depends on their command of the language of 

instruction. In other words, learning of word problems is 

constrained or unlocked by the learner’s command of the 

language of instruction. Sarabi and Abdul Gafoor [4] share the 

view that language is an important factor because it allows 

students to describe generalizations, patterns and justify 

mathematical propositions. The concept of a differential 

equation is a crucial requisite for solving a variety of problems 

in applied mathematics, physics and economics. Many 

fundamental laws of physics and chemistry are formed using 

the concept of a differential equation. The solution of a 

problem on a differential equation relies on key elements such 

as rigor, logic, creativity, and interplay between procedural 

and conceptual fluency which are supported by language. 

Hence, a student’s language proficiency is a key determining 

factor in modeling of phenomena using differential equations. 

In spite of the crucial role played by language in developing 

the concept of a differential equation the author of this article 

observed that most students were unable to understand the 

language and vocabulary of contextualized differential 

equations. During several years of teaching high school 

mathematics the researcher observed that learners were unable 
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to understand and relate to the context of the problem and in 

some instances they found it difficult to identify basic related 

ideas that form the gist of the problem solving process. These 

observations have also been confirmed by literature. For 

instance, Cummis et al. [5] have reported that learners have 

difficulties in processing and resolving contextualized 

mathematical tasks. According to Martiniello [6] students’ 

struggles with the language of mathematics can be attributed 

to the nature of mathematics discourse. Furthermore, 

Martiniello [6] writes that mathematics involves use of 

symbolism and content specific terminology that could be 

overwhelming for the student. In light of students’ discomforts 

in learning differential equations, it is the intent of this study to 

describe and explain the nature of language related challenges 

faced when students solve tasks on contextualized differential 

equations and how such challenges affect the development of 

the concept of a differential equation among Advanced level 

students. Hence, the overarching question that guided the 

study is now stated in the next section. 

1.2. Research Question and Objectives 

How do language related challenges impede the growth of 

the concept of a differential equation among high school 

mathematics students? 

By describing and explaining how language related matters 

that characterize students’ attempts to comprehend 

contextualized differential equations impede on the growth of 

students’ knowledge of differential equations, the study seeks 

to account for the students’ problem solving behavior. Further, 

the intent of the study is to explain how such language 

connected students’ discomforts with differential equations 

interfere with the growth of mathematics knowledge. These 

accomplishments are, in the researcher’s view, important 

subject content knowledge (SCK) considerations. Lesseig [7] 

describes SCK as knowledge of students’ typical conceptions 

and misconceptions of a specific content area. 

2. Theoretical Considerations 

2.1. Contextualized Differential Equations 

Clarke and Helme [8] cited by Ndemo and Mtetwa [9] 

define context as the real situation in which a mathematical 

task is embedded. Clarke and Helme [8] call this real situation 

the objective figurative context. Ndemo and Mtetwa [9] write 

that when the teacher and the students attempt to draw 

meaning from the objective figurative we obtain what is 

known as the social or interactive context. Finally, an 

individual’s construal of the objective figurative context is 

called the subjective or personalized context. We now use an 

example drawn from the mathematics content area of 

differential equations to illustrate the notion of context just 

described here. 

Example 1: Contextualized differential equations 

A girl returning from the milling point is carrying 

mealie-meal in a cylindrical container. The container has a 

hole at its base and mealie-meal trickles out through this hole. 

It is estimated that the rate of reduction of mealie-meal is 

proportional to the mass m of mealie-meal remaining in the 

container, so that this situation can be modeled by the 

differential equation 
��
�� = − �

� �, where k is a constant. 

i. Find the general solution of this differential equation 

and show that it reduces to 

ii. � = �
��
�
� .

 where �
  is the initial mass of the 

mealie-meal. 

iii. The girl takes 2 hours to walk from the milling point to 

her home. Given that after one hour, ten percent of the 

mealie meal is lost, 

iv. Calculate the percentage of mealie-meal in the container 

when she arrives home. Sketch a graph showing the 

variation of the mass of the mealie-meal during the 

two-hour journey. 

The social context refers to the teacher and students’ 

interpretation of the situation in which the mathematics ideas 

are embedded, for instance the rate of decrease of mass of 

mealie-meal, �− ��
�� �  captured by the term “mealie-meal 

trickles out”. The social interactive context described here can 

be differentiated from the personalized figurative context 

which consists of each individual student’s interpretation of 

the problem situation. The focus of the study was on students’ 

personalized figurative contexts of the contextualized tasks on 

differential equations. Contextualized mathematical tasks 

illustrated here can be different from context free or 

decontextualized mathematical tasks which we now 

exemplify. 

Example 2: Decontextualized task on differential equations 

Solve the equation, 
�

�(����)
��
�� = ��� , given that � =

1		when � = 0. 
Hence, example 2 reveals the fact that a context free 

mathematical task is one in which the mathematical ideas 

involved are not embedded in a real life situation. 

2.2. Related Studies 

Lager [10] reports that students experience severe 

difficulties in extracting meaning from narrative descriptions 

of the problem situation. Kilpatrick et al. [11] write that 

students’ difficulties with contextualized mathematical tasks 

can be overcome when the students develop adaptive 

reasoning in order to make sense of the objective figurative 

contexts of mathematical tasks. Kilpatrick et al. [11] define 

adaptive reasoning as one that involves the ability by students 

to think logically about the relations among concepts involved 

in the task at hand. The argument is that students can only be 

successful problem solvers if they develop a deep 

understanding of the technical language of contextualized 

differential equations. Such an understanding may call for 

identifying initial conditions involved in the differential 

equation, representing the narrative form in symbolic form. 

The intent of the study is to describe and explain the language 

barriers illuminated in students’ efforts to resolve 

contextualized ordinary differential equations. 

Boulet [12] suggests that language comprehension deficits 
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may inhibit the conceptual understanding of the problem 

because the conceptual and procedural fluency of the learner 

are constrained by language. An illustration of the influence of 

language in problem solving can be drawn from Selden and 

Selden’s [13] description of the distinction between synthetic 

and analytic definitions in mathematics. Mathematical 

discourse is constituted by a number of words and terms with 

different analytic and synthetic meanings. For example, every 

day or synthetic meaning of the word order is differentiated 

from its analytic use in differential equations. In the synthetic 

sense, the word order describes an arrangement, a command 

by a superior while in the topic on differential equations order 

denotes whether the differential equation involves first or 

second or even higher derivatives of the variables. The 

argument is that students’ struggles with mathematics can be 

caused by failure to differentiate between synthetic and 

analytic meanings of mathematical terms. 

There is an intimate relationship between students’ 

knowledge of concepts and the words they use to talk about 

those concepts. Hence, language is at the heart of 

mathematical activity. Mulwa [14] asserts that language is a 

powerful instrument in the formation of concepts and 

development of particular abilities. As such language 

facilitates the thinking process which is essential for the 

discovery of new mathematical ideas. Reccomini et al. [1] 

define language as the words, their pronunciation and the 

methods of combining them used and understood by a 

community. The manner in which language is used is called 

vocabulary. In the context of mathematics learning vocabulary 

is used to denote a learner’s ability to use words to explain, 

justify and communicate an individual’s understanding of a 

mathematical concept. Hence, a student’s grasp of 

mathematical vocabulary is essential as it affords the student 

access to mathematical concepts. 

The distinction between synthetic and analytic meanings of 

mathematical concepts is strikingly similar to the distinction 

between academic and everyday language. Zwiers [15] defines 

academic language as the set of words and phrases that describe 

content area knowledge and procedures, express thinking 

processes about concepts involved so as to create cohesion and 

clarity in the mathematical discourse. This definition reveals 

that competence in academic language is not only limited to the 

acquisition of content vocabulary but it encompasses ways of 

thinking and acting using words and phrases that constitute a 

mathematical discourse. The acquisition of academic language 

is confined to the classroom. Consequently classroom discourse 

patterns and activities both can develop and impede language 

growth. On the other hand, everyday language is non-technical 

and may include words spoken in informal conversations at 

home and other social settings. 

During learning students are expected to draw on multiple 

semiotic systems in order to construct knowledge. Semiotic 

systems are so called because within those systems symbols, 

written language and visual representations such as graphs are 

employed to make and share meanings. Use of visual 

representations such as graphs in semiotic systems of creating 

knowledge helps learners to unpack and repack meanings in 

problem contexts. Furthermore, Hewitt-Bradshaw [16] 

suggests that students must learn to understand and use 

different semiotic codes to translate their knowledge into 

multiple modes of representation, an exercise that would in 

turn strengthen their mathematical knowledge. However, a 

study by Hewitt-Bradshaw [16] revealed that students had 

difficulties in creating, interpreting and reasoning with visual 

representations such as graphs. Hewitt-Brandshaw’s finding 

justifies the need for further investigation into classroom 

discourse in content areas to evaluate the extent to which 

language competence is a factor in students’ learning of 

differential equation. 

Hewitt-Bradshaw [15] and Reccomini et al. [1] have found 

that students often develop surface-level understanding of 

mathematics concepts and hence would not gain the desired 

deep understanding. Such superficial understanding of 

mathematics is manifested through for instance, students 

being not able to distinguish between verb-preposition 

collocations such as increased/decreased by and 

increased/decreased to when solving tasks on differential 

equations. Fatimanssa and Kushandi [17] have noted that 

solving contextualized mathematical ideas requires complex 

procedural steps and a good command of structural 

relationship of mathematical ideas of the task at hand. Further, 

Gagnon and Abel [18] have argued that subtle and abstract 

features such as differences in vocabulary and terms denoting 

relationships among ideas make the learning of mathematics 

difficult. Hence, students’ failure to differentiate between the 

two forms of verb-preposition collocations can impede efforts 

to unpack meanings expressed in problem contexts and 

reorganize such meanings in ways that make sense to the 

students. Further, learning of mathematics has been 

characterized by lack of grasp by learners of the distinction 

between mathematical notation and symbols and the ideas 

embedded in those notations. Yet all too often greater 

emphasis has been on notation rather than the mathematics 

conveyed by those symbols. For instance, learners have 

referred to the fraction 
�
� as 2 over 3 instead of 2 out of 3. In 

other words, the learners’ focus has been on how the fraction is 

written symbolically as opposed to ideas expressed by the 

fraction. The researcher argues here that addressing notation 

rather than the ideas captured by the notation/symbols renders 

mathematical discourse ineffective. 

The foregoing discussion has shown that language is at the 

heart of mathematical activity. van Rinsveld et al. [3] emphasize 

the importance of language of instruction in mathematics by 

explaining that students with a weak command of language are 

more likely to experience difficulties in resolving word 

problems. Hence, a good command of the language of 

differential equations is crucial. This is so because by 

articulating the principles, the concepts and rationale behind 

steps of the problem solving process, a learner has an 

opportunity to reinforce, and deepen his or her understanding of 

knowledge structures of given mathematics content as 

suggested by Huang et al. [19]. Developing a profound 

understanding of students’ language related difficulties would 

then allow the instructors to build an awareness of and become 
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more sensitive to language related challenges which obturate 

concept development as suggested by Boulet [12]. Hence, this 

study examined students’ interpretation of language and 

symbols used in learning differential equations. The underlying 

theoretical principle is that language is an instrument of thought 

that determines the kinds of students’ construal of 

contextualized differential equations. 

3. Methods 

3.1. Research Design 

Durrheiim et al. [20] define a research design as a strategic 

framework for action that serves as a bridge between research 

questions and the implementation of the research strategy. 

Durrheiim et al. [20] argue that a good and sound research 

design will ensure that the information obtained is relevant to 

the research questions and should provide results that are 

judged to be credible. In this study a survey design was 

considered to be appropriate for the purpose of exploring 

students’ language related challenges with the learning of 

contextualized differential equations at Advanced level. A 

cross-sectional survey was employed to uncover the kinds of 

challenges held by the students and to determine how such 

challenges hinder students’ learning of differential equations. 

3.2. Population and Sampling 

The author of this article sought expertise assistance of 

Advanced level mathematics teachers to divide students into 

three groups basing on those teachers’ knowledge of the 

students’ academic performance. The groups included high 

performers, middle performers and low performers. Simple 

random sampling was employed to each of the three groups to 

select a sample of size 3 from the high performers’ group, 3 

students from low performers and 4 from the middle performers’ 

group bringing the sample size to 10. The researcher clarifies 

that the intent of the study was to generate insights about 

students’ thoughts as they engaged with tasks on differential 

equations. In other words, the goal was developing an 

understanding of students’ thinking processes and account for 

why students tackled the tasks in the manner they did. Hence, a 

small sample was used because focus was not on 

generalizability of findings. Simple random sampling was used 

to ensure that students of all abilities had equal chances of being 

included in the sample. Hence, the cross sectional survey design 

employed in this study had a qualitative orientation despite use 

of the simple random sampling technique usually associated 

with quantitative designs. 

3.3. Research Instruments 

To generate data for this qualitative investigation, the 

researcher prepared a task sheet comprising two tasks. The 

task sheet contained two contextualized tasks on differential 

equations. The intent of the tasks was to tease out language 

related challenges encountered by Advanced level students 

when they were solving differential equations. Follow up 

interviews were conducted and audio-recorded and later on 

transcribed. Follow up interviews were done with selected 

students whose answers were not clear and required 

clarification. Follow up interviews were also done with 

students who had experienced some impasses during their 

solution attempts. The researcher was “keen to follow up on 

interesting developments and to let the interviewees elaborate 

on various issues,” as suggested by Dörnyei [21]. Berg [22] 

suggests that the advantage of a follow up interview is that it 

allows for “in depth probing while permitting the interviewer 

to keep the interview within the parameters traced out by the 

aim of the study. Hence, the follow up interviews on students’ 

solution efforts allowed the researcher to uncover information 

about students’ thoughts and challenges faced during their 

efforts to solve tasks on differential equations. Following 

Dörnyei [21] the researcher was able to rephrase or redirect 

questions that were not understood by the students during the 

follow up interviews. 

3.4. Validity and Reliability 

Issues of validity and reliability of research instruments 

were of great significance to this study as they contributed to 

the credibility of the research. Creswell [23] defines validity 

as the degree to which a study reflects the specific concepts it 

aims to investigate. Qualitative validity was of concern to this 

study whose focus is on the accuracy of the findings.  

Strategies employed in this study in pursuit of qualitative 

validity are triangulating data, use of member checking and 

use of peer debriefing.  

First, following Corbin and Strauss’ [24] suggestion, data 

were triangulated by comparing written responses and 

interview transcriptions of students’ utterances from follow up 

interviews. Second, member checking validity strategy was 

employed whereby the researcher’s interpretations of students’ 

solution attempts were taken back to the students for their 

considerations. Member checking strategy afforded students 

the opportunity to comment on the findings on language 

related struggles experienced by the students when trying to 

resolve contextualized tasks on differential equations. Finally, 

the researcher applied peer debriefing to determine the 

accuracy of interpretations made. In this respect, a visiting 

lecturer on sabbatical leave examined the research report and 

posed some questions about how I determined the impact of 

language related challenges on students’ learning of 

contextualized differential equations as suggested by Creswell 

[23]. 

Validity addresses the question; does research instrument 

allow the researcher to hit "the bull's eyes." Hence, measuring 

concepts involved in the study accurately would in turn allow 

the researcher to draw plausible conclusions in the sense of 

Cozby and Kuper [25]. In this research the task sheet 

contained two tasks on contextualized differential equations 

that the researcher thought would be appropriate for 

answering the research questions. To reduce researcher bias 

the researcher sought expertise consensus from the visiting 

lecturer who scrutinized data collection instruments. Another 

form of validity is external validity which tries to answer the 

question: can the findings be generalized? Cozby and Kuper 
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[25] describe external validity as the extent to which the 

results can be generalized beyond the sample used in the study. 

The researcher reiterates that generalizability of findings was 

not the focus of this study that sought to develop a 

characterization of language related challenges in differential 

equations and how those challenges hinder students’ learning 

of differential equations at high school level. 

Reliability is the degree of consistency with which the 

instrument measures an attribute. Qualitative data collection 

techniques in the form written responses and follow up 

interviews allowed the researcher to generate thick 

descriptions to ensure reliability in the following manner. Data 

from written responses and follow up interviews were 

compared for consistency thereby serving as some reliability 

check as recommended by Lawson [26]. 

3.5. Data Collection Procedures 

After developing data collection tools, the author of this 

article then sought permission from the District Schools 

Inspector to collect data from one urban high school in one of 

the provinces in Zimbabwe. First, the task sheet was 

administered in the classroom in which students worked 

individually on the tasks. No time restrictions were imposed 

on the respondents who worked on the tasks until complete 

solutions were generated or no further progress could be made. 

The researcher then scrutinized students’ attempts for the 

purpose of determining responses which were not clear and 

required clarification from the students concerned. Second, 

after agreeing on the set of follow up questions with the 

visiting lecturer on sabbatical leave the author of this article 

then sought clarity on issues observed from the written 

responses. The follow up interviews were then audio-recorded. 

With regards to the setting of the interview, the researcher 

considered a number of issues. First, the researcher ensured 

that the interviews were conducted in a comfortable and 

private environment which was convenient for the 

respondents. Third, the researcher assured the mathematics 

students that the information they provided was going to be 

treated with utmost privacy and confidentiality. Finally, the 

researcher followed Strauss and Corbin’s [24] suggestion that 

when working from a qualitative perspective, the researcher 

attempts to develop a holistic understanding of a phenomenon 

and data collection is shaped by preliminary data analysis as 

the investigation proceeds. 

3.6. Data Analysis 

In this qualitative research data analysis focused on 

developing an understanding of language related challenges 

on differential equations. Data analysis aimed at an increased 

understanding of language barriers to the learning of 

contextualized differential equations at Advanced level. First, 

the written responses were scrutinized to draw some sense of 

how language and mathematical notation used in word 

problems posed challenges to the students. Data analysis 

involved selecting from students’ solution attempts those 

responses that typify the discordant translations between the 

objective figurative contexts and the students’ construal of the 

problem contexts. 

4. Results and Discussion 

4.1. Results and Discussion 

In this section the researcher presents and discusses 

findings pertaining to the research question: How do language 

related challenges experienced by students impede their 

learning of differential equations at Advanced level? Data 

from task sheets and follow up interviews were used to 

address this research question. Focus of the qualitative data 

analysis process was on teasing out discordant translations 

between students’ solution efforts and the researchers’ 

marking guides. Hence, from students’ written responses and 

follow up interviews the researcher identified various sorts of 

language related difficulties experienced by students in their 

learning of contextualized differential equations. Typical 

students’ responses are now presented and discussed. 

Task 1 

Fans arrive at the gate of soccer stadium at a rate inversely 

proportional to the time remaining before the gate is opened. 

The number of fans at the gate, t minutes before it is opened is 

�. 10 minutes before opening, there are 100 fans, and the rate 

of arrival is 50 per minute. 

(a) Show that this situation can be modeled by differential 

equation 
��

��
� �

�



�
 

(b) Find: (i) The general solution of this equation 

(ii) The number of fans present one minute before gate 

opens. 

First, I present and discuss Gilbert’s solution attempt to task 1. 

 

Figure 1. Gilbert’s written response to task 1. 
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Figure 1 reveals that Gilbert had a weak command of the 

subject content. He could not interpret the language in task 1 

to derive the given differential equation as shown by the blank 

space in the solution attempt. High procedural fluency was 

demonstrated as Gilbert could separate variables and then 

proceeded to integrate the differential equation to come up 

with the general equation. He could also identify the initial 

conditions which were, when � � 100,  � 10 but he could 

not determine the exact value of the constant of integration. 

Consequently, Gilbert could not calculate the number of fans 

one minute before the gate was opened. Hence, while Gilbert 

was comfortable with procedural aspects of the differential 

equation he could not draw meaning from the narrative 

descriptions of the problem situation in the sense suggested by 

Lager [10]. 

Second, we consider Chris’ solution attempts to task 1. 

 

Figure 2. Chris’ written response to task 1. 

Chris demonstrated a strong command of procedural 

aspects in his solution attempt by succeeding in separating 

the variables and integrating the differential equation. 

However, the follow up interview revealed that he failed to 

explain how the negative sign involved in the derivation of 

differential equation comes into play. Chris’ claim that, 
��

��
∝

"

"
��
, shows that he faced challenges in interpreting 

decreasing rate of change of quantities involved. Chris’s 

effort parallels Gagnon and Abel’s [18] argument that subtle 

differences in vocabulary such as those denoting 

relationships among ideas cause students to experience 

difficulties in learning mathematics. For instance, from the 

narration Fans arrive at the gate of soccer at a rate inversely 

proportional to the time remaining before the gate is opened, 

Chris was expected to infer that time was a decreasing 

quantity and hence a negative sign was appropriate. Chris 

failed to make such inferences and hence he could not 

formulate the required differential equation. 

Third, we focus on Bether’s effort to resolve task 1. 

 

Figure 3. Extract of Bether’s written response to task 1. 

Figure 3 shows that Bether had no access to the technical 

language needed to derive the required differential equation. 

As illustrated in the extract of her solution attempt Bether had 

a fragile grasp of the initial conditions as her interpretation of 

remaining time led to the senseless formulation " � �10, " 

from the description of the problem she failed to apply the 

initial conditions to generate the particular solution. Hence, 

Bether’s solution attempt reveals that similar to Chris’s effort, 

Bether could not grasp the meaning of the negative sign from 

the information in task 1. During the follow up interview 

Bether claimed that the negative sign in the differential 

equation refers to a decrease in the rate of arrival of fans at the 

gate. This was wrong interpretation. In stark contrast, the rate 

of arrival of fans at the gate denoted an increase which was 

supposed to be accompanied by a corresponding decrease in 

time as we approached the time when the gate was going to be 

opened. Further, although Bether separated variables correctly, 

she failed to apply the initial conditions, t = 10, x = 100 to 

obtain a particular solution. As a result, she could not calculate 

the number of fans 1 minute before the gate was to be opened. 

It can be, therefore, inferred that Bether lacked adaptive 

reasoning as she could not think logically about relations 

among concepts pertinent to the task at hand, a finding that 

parallels results by Kilpatrick et al [11]. 

Finally, I focus on Nyarai’s effort to tackle the task 1. 
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Figur 4. Extract of Nyarai’s written response to task 1. 

Similar to Bether, Figure 4 shows that Nyarai could also 

not extract meaning from the narrative description about the 

rate of arrival of soccer fans at the gate and as a result she 

could not formulate the differential equation required. For 

instance, no justification was provided as to how negative 

sign in 
��
�� = − �

�  vanished for it to become	��
�� = �

� . Further, 

similar to Bether and Chris’ efforts discussed earlier Nyarai 

also demonstrated a weak command of the given initial 

conditions. She wrote when “ = −10" which points to the 

fact that Nyarai did not appreciate the essence that the 

assertion  � �10$  is senseless. Nyarai could not draw 

meaning out of the initial conditions and hence she could not 

derive the differential equation. Nyarai’s procedural fluency 

was strong as shown by successful separation of variables 

and correct application of integration of natural logarithms 

and she could determine the general solution. However, 

Nyarai’s struggles with interpretation of given initial 

conditions hindered her progress she could not determine the 

number of fans present one minute before the gate was 

opened. For instance she wrote “ � �1, � �? " which led to 

the answer “� � 100. "  From the description of Nyarai’s 

attempt to task 1, it can be seen that both her procedural and 

conceptual fluency with regards to the task were constrained 

by language related challenges. For instance, lack of grasp of 

vocabulary used such rate of arrival of fans being 

proportional to time remaining. These words should have 

influenced Nyarai to infer the sort of relationships in 

quantities involved namely, a decrease in time that should 

have been accompanied by an increase in the number of fans. 

Hence, similar to Gagnon and Abel’s [18] results, Nyarai 

demonstrated lack of grasp of terms denoting relationships 

among concepts that caused her to experience difficulties in 

her efforts to solve tasks on differential equations. 

Next, the researcher presents and discusses results of data 

analysis of students’ solution attempts to task 2: 

A water tank has the shape of a cuboid with base area 

4��and height 3m and initially empty. Water is poured into 

the tank at a rate of 0.05�� per minute. There is a small hole 

at the bottom of the tank through which water leaks out. The 

depth of water in the tank is h meters when the water has been 

poured in for t minutes. 

In a simple, model it is assumed that water leaks out of the 

tank at a constant rate of 0.025�� per minute. 

(i)) Show that the variable h satisfies the differential 

equation 
�&

��
�

"

"'

 

(ii) Hence or otherwise, find the time when the tank starts to 

overflow. 

In a more redefined model, then variable, h satisfies the 

differential equation 160
�&

��
� 2 � *. 

(iii) Solve the differential equation, expressing h in terms of 

t. 

(iv) Hence sketch a graph of h in terms of t. 

First, I consider Primrose’s attempt to solve task 2. 

 

Figure 5. Primrose’s written response to task 2. 

Primrose’s solution attempt reveals that she could not 

interpret the technical language in order to derive the required 

differential equation. For instance, her lack of grasp of 

verb-preposition collocation referring to an increase in the rate, 
�&

��
 negatively impacted on her attempts to derive the 

differential equation. Furthermore, Primrose could not use the 
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chain rule 
�&
�� = �+

�� .
�&

�+
. The claim by Primrose that “volume 

=12��, " points to the fragility of her understanding of the 

idea that , � 4*. These limitations led to yet another false 

claim that "
�&

�+
� 8" However, Primrose separated variables 

and went on to apply integration to determine the general 

solution but failure to access initial conditions led to an 

impasse after stating the general solution, �160 ln�2 � *� �

 1 2. The student’s solution attempt reveals high procedural 

fluency while her efforts to derive the differential equation 

showed low conceptual fluency (Riccomini et al., 2012). 

Primrose could not extract meaning from the narrative 

description of the initial conditions and so she could not 

determine the particular solution, that is, she could not 

compute time when the tank would start to overflow. 

Sketching of the solution curve could not be done contrary to 

the expectation that students at this level should be able to use 

multiple modes of representation of their knowledge of 

mathematics content 
__ 

a result similar to Hewitt-Bradshaw’s 

[16]. 

Second, Chris’ solution attempt to the differential equation 

on task 2 is now examined. Similar to Primrose’s attempt 

Chris could not also formulate the differential equation as 

shown in the following extract. 

 

Figure 6. Extract of Chris’ written attempt to task 2. 

Figure 6 shows that while Chris demonstrated good grasp 

of verb preposition collocation “
�+

��
34 �

�+

��
56 , "	 used to 

denote the net rate of increase of volume of water in the tank 

with respect to time, Chris’ could not access the chain rule 

�&

��
�

�+

��
.
�&

�+
. Hence, Chris could not proceed after noting that 

�+

��
�

"

7

. However, good procedural fluency was exhibited in 

item (iii) whereby Chris was able to separate variables and 

proceeded to integrate correctly to obtain the general 

solution “ 160 ln�2 � *� �  1 2"	 as shown in the next 

extract. 

 

Figure 7. Extract of Chris’ written response to task 2. 

Figure 7 reveals that Chris could not extract meaning from 

given initial conditions * � 0,  � 0 which he should have 

inferred from the description that the tank was initially empty. 

Consequently, an awkward formulation “* � 2 � 8�
�

�

9:;” of 

the solution was stated, an indication that he had a weak grasp 

of initial conditions of the problem. Furthermore, Chris’ 

graphical instantiation revealed a complete mess in his chunk 

of reasoning with the differential equation task. For instance, 

besides being labeled with wrong � and �	axes instead of * 

(depth) and   (time) the graph depicts an exponential 

decrease in the depth of water which is contrary to the 

expected rise in the depth of water owing to a net rate of 

increase of volume with time. Hence, Chris’ woes were 

illuminated in his efforts to sketch the solution curve which 

was a futile attempt 
__

an observation that parallels 

Hewitt-Bradshaw’s [16] finding that learners experience 

serious discomforts when creating, representing and reasoning 

with visual representational forms of knowledge such as 

graphs. 

Third, Nyarai’s attempt to task 2 is presented next. 
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Figure 8. Nyarai’s written response to task 2. 

Nyarai’s attempt to solve the differential equation reveals 

that she could interpret the verb-preposition collocation 

implied by a net rate of increase of water since the rate of 

inflow exceeded rate of leakage through a hole at the bottom 

of the tank as she wrote “
�+	<=
�� − �+	>?�

�� = 0,05 � 0,025" a 

problem solving behavior consistent with findings by 

Reccomini et al. [1]. Hence, she could derive the differential 

equation, 
�&

��
�

"

"'

 by subsequently applying the chain rule. 

However, to determine when the tank would start to overflow 

the student resorted to the relation 
�+

��
�

"

7

.  Nyarai then 

separated variables and integrated correctly to get A �
"

7

 1

2. Nyarai then claimed that “A � 12	when  � 0, "	__
 a false 

claim since it implies that the tank was initially full of water 

and yet the question specifies that the tank was initially empty. 

Nyarai’s chunk of reasoning led to the false assertion that “the 

tank starts to overflow after 40 minutes.” Hence, Nyarai’s 

lack of grasp of vocabulary used to describe the initial 

conditions (tank initially empty): t = 0, h = 0, led to her failure 

to generate the particular solution that could then be used to 

calculate the time, t when h = 3. 

The researcher now focuses on Nyarai’s attempt to the item 

involving the refined model of the rate of flow of water into 

the tank. 

Figure 9 shows that good procedural fluency was exhibited 

by Nyarai as she could separate variables and integrate the 

differential equation to get the solution “�160 ln�2 � *� �

 1 2. "  However, her woes with the differential equation 

persisted when she used wrong initial conditions “ � 0; * �

3. " Furthermore, her unsuccessful attempt to sketch the graph 

of the particular solution of the differential equation were a 

surprising observation since the researcher had anticipated 

that the student would use different semiotic codes to 

represent her knowledge of contextualized differential 

equations. Hence, language related challenges experienced in 

trying to extract meaning from the narrative descriptions of 

given initial conditions accounted for unsuccessful solution 

attempts by Nyarai. 

 

Figure 9. Extract of Nyarai’s solution attempt to task 2. 

Fourth, Grace’ attempt to the first part of task 2 is now 

examined. Grace realized that she was supposed to use the 

chain rule, 
�&

��
�  

�&

�+
�

�+

��
, and she proceeded to derive the 

differential equation by noting that 
�+

��
� 0.025 and 

�+

�&
� 4. 

After succeeding in separating the variables, Grace proceeded 

to integrate the differential equation to obtain the general 

solution and could use the initial conditions t=0, h=0 to obtain 

the particular solution. Furthermore, Grace made the correct 

interpretation * � 3� in order to determine when the tank 

starts to overflow. It can be inferred that the student could use 

different semiotic codes to represent her knowledge of the 

contextualized differential equation by switching from one 

form of representation to another as was also reported by 

Hewitt-Bradshaw [16]. For instance, Grace could establish 

connection between the particular solution and the general 

solution by strategically applying the given initial conditions 

to determine the time when the tank starts to overflow, that is, 

when h= 3�. Next, we focus on Grace’s written response to 

item (ii) of task 2. 
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Figure 10. Grace’s written response to task 2. 

With respect to the item involving the refined model, Grace 

demonstrated low conceptual fluency by failing to apply the 

same initial conditions t=0, h=0 to determine the particular 

solution from the general solution " − ln(2 − *) = "
"'
  1

2. " Hence, despite the fact she had earlier on shown good 

procedural fluency by being able to integrate correctly, use of 

* � 3�,  � 0 as initial conditions revealed lack of desired 

interplay between her procedural and conceptual knowledge. 

This led to a false pictorial overview of the refined model 

shown by the graph. The graphical illustration gives the 

impression that the tank was initially full 
__

 a false assertion 

that is in stark contrast to the description of objective 

figurative context that “A water tank has the shape of a cuboid 

with base area 4��and height 3m and initially empty.” 

Finally, Bether’s written response to items (i) and (ii) of task 

2 are now presented and discussed. 

Figure 11 reveals that Bether could interpret the technical 

language involved in order to derive the differential equation. 

Lager [10] asserts that grasp of technical vocabulary is 

essential for successful problem solvers in in mathematics. 

The extract shows that Bether was able to access the technical 

vocabulary and the chain rule because Bether could derive the 

differential equation which was then successfully solved to get 

the solution  � 160*.  Furthermore, Bether went on to 

determine the time when the tank could start to overflow 
__

 

which was somewhat a form of evidence that the student had a 

good conceptual fluency of the objective figurative context of 

the differential equation. The researcher reiterates the fact that 

having access to relevant technical language affords students 

some access to mathematical concepts and relationships 

among those concepts. Bether’s solution attempt to item (ii) of 

task 2 is now presented.  

 

Figure 11. Extract of Bether’s written response to task 2. 

 

Figure 12. Extract of Bether’s solution attempt to task 2. 
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With regards to the item involving the refined model of 

flow of water into the tank, Figure 11 reveals that although 

Bether separated variables correctly she made an error when 

integrating the differential equation that led to the solution 

"ℎ = 2 − 2�

�

9:;. ” An extract of Bether’s graphical 

representation of her solution attempt is now presented. 

The graphical representation of the solution shown 

illumines the student’s language related barriers as Bether did 

not relate her pictorial to the narrative description of the 

problem. For instance the assertion that “the tank starts to 

overflow” pointed to the fact the height increases with time 

contrary to what the graph depicts. Hence, Bether’s effort 

exhibited lack of the desired coordination between her 

procedural and conceptual fluency in the sense of Riccomini 

et al [1]. Hence, the student did not reflect on the essence of 

solution process in relation to objective figurative context of 

the differential equation. 

4.2. Conclusion and Implications for Practice 

From our discussion of results pertaining the research 

question, How do language related difficulties experienced 

Advanced level students interfere with their the learning of 

differential equations?, the following conclusions were drawn. 

First, the researcher concluded that students had severe 

challenges in extracting meaning from the objective figurative 

contexts of the differential equations pointing to an overall 

low conceptual fluency. Second, it was also concluded that 

despite exhibiting high procedural fluency when solving 

differential equations, the study has uncovered a weak 

coordination between students’ procedural and conceptual 

knowledge that can be attributed to language related 

challenges such as students’ struggles with interpretation of 

given initial conditions of contextualized differential 

equations. These are serious limitations in Advanced level 

students’ knowledge structures which deserve the attention of 

research mathematicians and mathematics educators in order 

to improve the learning of differential equations and related 

topics. 
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