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Abstract: It has been held that the total solar deflection of light could only be derived correctly by Einstein’s general theory 
of relativity. This paper provides a new classical derivation for the total gravitational deflection of light as a photon passes by 
the Sun. Newton, Cavendish, Einstein and others discussed or calculated how gravity may bend the paths of light. In particular, 
von Soldner published an incomplete classical derivation to predict a solar deflection that was half of the later observed value, 
since he assumed a light wave was deflected by a stationary Sun. Einstein’s earliest derivation used his equivalence principle 
of a homogeneous gravity field and a constant dynamical acceleration, which predicted half of the observed solar deflection 
angle, because he was then unaware of all the first-order space-time contributions. Einstein’s general relativity theory predicted 
the full solar deflection. Assuming the photon has a mass via Einstein’s mass-energy equation, this classical derivation uses 
Newton’s mechanical laws and his law of gravitation for the photon’s and the Sun’s hyperbolic paths about their mutual 
barycenter. Both the Sun and photon deflect each other about their barycenter with an infinite lever. This Newtonian derivation 
obtains the prediction of 1.75″ against the celestial sphere for the full gravitational deflection of light relative to the Sun. 
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1. Introduction 

Several scientists discussed or derived the possible 
deflection of light by gravity. Newton [1] was one of the first 
to expect a gravitational bending of the paths of light 
corpuscles in his Principia and later in his description of 
bending light in his Opticks. Mitchell [2] studied 
gravitational horizons and the spectral shift of light due to 
gravity. C. M. Will [3] describes how Henry Cavendish did 
his light bending calculations and gave details on von 
Soldner’s derivation [4] for the gravitational deflection of 
light passing the Sun. The critical flaw in von Soldner’s 
derivation was he assumed the Sun was stationary while a 
light wave from a star grazed by the Sun. Einstein [5, p. 454] 
argued that a region in free fall is really an inertial 
environment and that the rules of special relativity apply to a 
freely falling observer. This was the basis for his initial 
concept of equivalence between gravitational and inertial 
masses. Later, Einstein [6] calculated how a photon from a 
distant star with m = E/c2 could be deflected by the Sun’s 
gravity, but that calculation was only half of the correct 
value. He incorrectly assumed the rate of fall of a body in 
gravity alone would have the correction of Φ/c2 where Φ is 

the Sun’s gravitational potential, but the first order 
calculation should be 2Φ/c2 if the space components are 
accounted besides the time component. (The reader can read 
Nelson [7] for deriving the post-Newtonian approximation 
for an accelerated, rotating reference frame from Einstein’s 
general relativity to obtain the space-time metric equations 
that include the correct first order term of 2Φ/c2.) Einstein 
conceived that a closed box containing local experiments 
cannot distinguish between a homogeneous gravity field 
pulling on the stationary box in one direction and a constant 
translational acceleration pulling the box in the opposite 
direction without gravity. Eventually, Einstein [8] published 
his prediction for the Mercury perihelion effect from his 
general relativity theory with his additional prediction for the 
solar gravitational deflection of light. Any multiples of von 
Soldner’s predictions could have been possible—say three, 
π/2, but why 2 exactly? Will [9] claimed that classical 
derivations or predictions using the equivalence principle 
would get only half of the observed value, but that curved 
space-time is necessary to derive the remaining half of the 
deflection. Einstein wanted to derive the field equations for a 
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general accelerated reference frame without having to use a 
preferred inertial frame. Einstein [10] already proposed that 
light energy was found in discrete quanta in the photoelectric 
effect. Later, he derived [11] the equivalence formula 
between mass and energy. Einstein recognized that the 
deflection would be nonzero and encouraged the 
astronomical community to measure the deflection as early as 
June 1911 [12, p. 183]. Eventually, two expeditions in 1919 
confirmed the deflection of light in the neighborhood of the 
Sun to be at Sobral 1.98”±0.12” and Principe Island 
1.61”±0.30’, which instantly made Einstein then the most 
famous physicist [12, p. 187]. The next section contains the 
derivation using Newton’s gravitational law to obtain the 
photon’s hyperbolic orbit relative to the barycenter. 

2. Classical Derivation of the Photon’s 

Deflection Angle 

Theoretically, a quantum of light has zero rest mass if it is 
stationary, because it has no effective energy to transport. If 
discrete quanta of energy obeyed Einstein’s equation, E = m 
c2, then a moving photon has an associated mass of m = E/c2 
= hν/c2 where h is Plank’s constant, c is the speed of light in 
a vacuum, and ν is the frequency of the photon. So, the 
photon from a distant star that is glancing by the Sun would 
have both a gravitational and a centripetal force as required 
by Newton’s third law, which the Sun’s gravity can now 
deflect the photon’s trajectory as it grazes by the Sun’s 
surface. The Sun and a single photon of an arbitrary 
frequency are assumed to have a fixed mass to four 
significant figures. For the deflection angle calculations to be 
completed to three significant figures, the astronomical 
constants have already been determined to much higher 
significance [13]. The general solution to the two-body 
problem allows that the mass distributions of two orbiting 
bodies can be treated equivalently as point masses in the 
analysis. This ensures that neither body touches the other. 
The solution to the two-body problem incorporating 
Newtonian gravity has no classical limit on initial high 
velocity for either body placed in hyperbolic orbits. 

The two body problem applies to the photon’s motion as it 
just passes the Sun traveling to the Earth observer. The basic 
differential equation of motion for Newton’s gravitational 
law is: 

���
��� � �

�� � 	 0                                 (1) 

where the reduced mass is µ = G(M + m) with G being the 
gravitational constant, M the Sun’s mass and m being the 
photon’s mass, while r is the vector to the photon from the 
mass center of both bodies, hereafter called the barycenter. 
Take the vector cross product of Equation (1) with r, reduce 
terms like r x r = 0, and obtain the derivative for a cross 
product, which equals zero. This leads to the definition of 
angular momentum h per unit mass, which is perpendicular 
to r and its derivative or velocity v. 

� 	 � � ��
�� with the magnitude h 	 r� ��

��               (2) 

Use Equation (1) to get dh/dt = 0, which shows h is 
conserved and normal to the plane of motion. Take the cross 
product between Equation (1) and h, apply the triple vector 
identity, and integrate the result directly to get: 

��
�� � � 	 �

� �� � r��                              (3) 

where e is called the eccentricity vector and is a constant of 
integration. Take the dot product between Equation (3) and e 
to get � ∙ � 	 0, which places e in the orbital plane. To solve 
for Equation (1), take the dot product of Equation (3) with r, 
apply the triple scalar product identity, and obtain: 

r 	 ��/�
��� ��� � where cos θ 	 �∙�

��                     (4) 

This is the general form for a conic section with the origin 
at a focus. The vector e is parallel to the direction of 
minimum r. Follow the derivation of Kaplan [14] for the 
hyperbolic diagram in Figure 1. 

 

Figure 1. Definition of Hyperbolic Parameters. 

For the hyperbola, h2/µ = -a(e2-1) for negative semimajor 
axis, a, and the minimum r = R = -a(e-1), which also equals 
the semilatus rectum, from Figure 1. The derivative of 
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Equation (4) with respect to r only obtains the radial velocity, 
which differs from the total velocity that has an additional 
transverse component. 

v� 	 ��
�� 	 R�e � 1��1 � e cos θ�&���e��� sin θ� ��

��     (5) 

Replace the theta derivative using Equation (2) and reduce 
to get: 

v� 	 √�	�	 �+, �
-.�����                                 (6) 

Square Equation (6) and take the limit as r→∞ to get the 
total velocity at the asymptote. At infinity, the Sun has no 
gravity to affect the incoming photon’s velocity or coordinate 
time, which allows the substitution of v2 = c2 for light’s speed 
in a vacuum. From Equation (4) as r→∞, then (1+e cos 
θ)→0, or cos θ = -1/e.  

c� 	 v� 		 �	�
���&������
.����� 	 �	��&��

.                  (7) 

.��
� � 1 	 e / 1 or 

.��
� 	 e � 1                  (8) 

In Figure 1 with a small angle δ, 1/e 	 �cos	θ 	 sin δ 0
δ. There is a deflection of δ for the incoming photon, and 
there is another deflection of δ after the photon passes the 
barycenter along the hyperbolic orbit approaching the other 
asymptote. The photon’s classical deflection is a total of 2δ 
with the result: 

2δ 	 �
� 	 �

34�
5 ��

0 �
34�
5

	 ��
.�� 	 0.875"             (9) 

This is the same as the final answer of von Soldner [4] and 
Einstein’s first derivation [6], but this is only half of the total 
classical derivation. Einstein’s equivalence principle is not 
applied, because a homogeneous gravity is not appropriate, 
and neither is the approximation by a freely falling frame.  

3. Classical Derivation of the Sun’s 

Deflection Angle Relative to the 

Barycenter 

The general solution of the two-body problem considers 
two physical masses, which are reduced to equivalent point 
masses in some inertial reference frame having X, Y and Z 
axes. The mass m1 is located at vector r1 and mass m2 is at r2. 
Let r = r1 – r2. The center of mass is found at rc by: 

m���< � �=� � m���> � �=� 	 0                (10) 

Substitution for r1 and r2 will obtain the vector 
displacement from the center of mass to m1 and m2.  

�< � �= 	 ?�
?@�?�

�, and                     (11) 
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�                           (12) 

Let the gravitational force from m1 be F1 and from m2 be 
F2. Then, 

A< 	 m��B< 	 m��B= � ?@?�
?@�?�

�B, and              (13) 

A> 	 m��B> 	 m��B= � ?@?�
?@�?�

�B                    (14) 

F1 and F2 attract each other, and Newton’s third law 
requires F1 = -F2, which obtains the condition that  

m��B= 	 �m��B=	⇒	�B= 	 0                      (15) 

The important point of Equation (15) is the center of mass 
of the two-body problem never accelerates. Newton’s first 
law allows this barycenter to have an initial velocity. Simply 
choose another inertial frame attached to this barycenter so 
that it is stationary (no net velocity) with no other external 
forces affecting the two-body problem. The barycenter, 
which is at the focus point of the two hyperbolic orbits, will 
be usually outside of the Sun, but when the Sun is near the 
periapsis of its hyperbolic orbit, the barycenter will be inside 
the Sun as illustrated in Figure 2.  

The original problem is to derive the deflection of the 
photon relative to the Sun while the photon just grazes by the 
Sun. The photon begins at r = +∞ and ends at r = -∞ in this 
inertial frame, while the Sun begins at r = -∞ and ends at r = 
+∞ with the restriction that the barycenter remains stationary. 
Relative to the barycenter, the photon’s orbital periapsis is 
the radius of the spherical Sun, R. The deflection of the 
photon relative to the barycenter has been calculated with the 
result of 0.875”. The other half of the problem is calculating 
the Sun’s deflection in its hyperbolic orbit relative to the 
barycenter. 

 

Figure 2. Sun’s Hyperbolic Orbit by Barycenter (not scaled). 
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The position and velocity of a hyperbolic orbit has been 
solved [14, p. 302-304]. The equation for the Sun’s 
hyperbolic orbit is: 

r� 	 a��1 � e� coshH� 	 �a� E�1 � e�
�F�����
���F ����G    (16) 

At the periapsis, θ = 0, which obtains rs = (-as)(es-1) as the 
minimum distance, which is also the form for the photon’s 
minimum orbital distance [i.e. rp = R = (-ap)(ep-1)]. Equation 
(10) requires that the mass points and the barycenter be 
collinear. Using magnitudes, the balance equation mp rp = ms 
rs is obtained from Equation (10). In the limit as rs→∞, then 
(1+es cos θ∞)→0, or cos θ∞ = -1/es. Equation (10) requires 
that in this limit, both the photon and Sun must be on the 
same asymptote line at an angle θ∞, which implies es = ep. 
The balance equation then obtains the ratio of as = (mp/ms) ap. 
So, the Sun’s hyperbolic orbit in terms of the semilatus 
rectum [i.e. p = (-a)(e-1)] is scaled by the factor mp/ms 
compared to the photon’s hyperbolic orbit, but both orbits 
have the same eccentricity e. Using the same mathematics for 
calculating the photon’s deflection compared to the 
barycenter, the Sun’s deflection will be the 0.875”, the same 
as the photon’s, but with the opposite angular displacement. 
The two angles cause the total deflection of 1.75” of the 
photon relative to the Sun. A one-to-one onto correspondence 
exists between as and ap, so as approaches the same infinity as 
ap. Since the distances of the star and the Sun approach the 
same infinity relative to their mutual barycenter, the total 
angular displacement can be compared to a long teeter-totter 
in Figure 3. If the photon from the distant star was displaced 
by an angle θ, the vertical displacement along the left would 
be one unit, as indicated by one double arrow, relative to the 
fulcrum. If the Sun were on the right end of the teeter-totter, 
the Sun would be displaced downwards by the same angle θ 
that the photon was displaced upwards by θ. However, the 
star’s apparent vertical displacement is two units as indicated 
by the two double arrows relative to the horizontal dashed 
line at the Sun’s location. From the fulcrum’s point of view, 
the photon travels from -∞ to +∞ and is deflected up by θ, 
while the Sun is moved from +∞ to -∞ and is deflected down 
by θ, giving a total of 2θ for the final displacement. Thus, the 
photon’s total displacement against the celestial sphere 
relative to the Sun is 1.75” due to gravity. The two-body 
problem is relative to the barycenter, so one must compute 
the deflections of the photon and the Sun, each relative to the 
barycenter, to get the photon’s complete deflection relative to 
the Sun against the celestial sphere. 

 

Figure 3. Total Displacement of Photon and Sun Relative to Barycenter. 

Shapiro et al [15] reported solar deflections of radio 
sources with a result of γ = 0.9998±0.0004 where γ is unity in 
general relativity, which predicts a ray grazing the Sun’s limb 

has a deflection of θ ≈ 1.75” [16, p. 1222]. The parameter γ 
compares various theories in a post-Newtonian formalism. 
The team used Very-Long-Baseline Interferometry (VLBI) 
for very accurate observations of solar deflections. This 
classical derivation compares identically with the general 
relativity prediction for the total solar deflection. 

4. Conclusion 

Many physicists, including Newton, Cavendish, and 
Einstein, expected a photon to experience a deflection in its 
path going past a gravitational body on its way toward the 
Earth. For example, von Soldner published a derivation for a 
light wave deflected gravitationally by the stationary Sun that 
was half of later observed angular deflections caused by the 
Sun [4]. Einstein used his equivalence principle in his 
calculations [6]. He originally obtained half of the actual 
deflection, since he assumed the first order effect from the 
gravitational potential was Φ/c2 instead of 2Φ/c2, because he 
did not include the all the space-time contributions. His 
general relativity theory obtained the correct solar deflection 
of light passing by the Sun [7].  

This paper obtains a Newtonian derivation by assuming 
the photon as a tiny mass will travel by the Sun in a 
hyperbolic orbit by passing the Sun at a distance of R, which 
is equal to the radius of the spherical Sun. However, this only 
gets half of the expected deflection between the photon and 
Sun, because the photon’s deflection is relative to the 
barycenter. The Sun also executes a hyperbolic orbit relative 
to the barycenter that temporarily encompasses the 
barycenter, because its periapsis is much closer to the 
barycenter as required by the balance equation. It is shown 
that the Sun’s hyperbolic orbit has the same eccentricity as 
the photon’s orbit, so the Sun’s deflection about the 
barycenter is also the same, being 0.875”. Relative to the 
Sun, the photon’s effective deflection is a total of 1.75” 
against the celestial sphere, which is the same as measured 
by VLBI for the most accurate measurements using radio 
sources. This also answers the question why previous 
classical derivations were half of the observed deflection 
against the celestial sphere, because those derivations ignored 
the solar displacement as the Sun goes by the barycenter. 
Archimedes claimed he could move the world if given a 
place to stand a fulcrum and a long rigid lever [17]. 
Apparently, no one before expected the photon would also 
deflect the Sun gravitationally with an infinite lever through 
the barycenter, which results in a maximum deflection of 
1.75” against the celestial sphere of the photon relative to the 
Sun.  
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