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Abstract: The atom model of Niels Bohr is commonly considered as antiquated even if it describes the atomic spectrum of 
hydrogen quite accurately. The later published relation of Louis De Broglie could arithmetically be implemented into Bohr’s 
formulation, leading to the concept of standing waves as the existence cause of excited electron states. However, at that time it 
was not possible to find well defined electron trajectories being classically describable. As a consequence, the »quantum 
mechanics« were developed by several authors, particularly by Schrödinger and by Heisenberg, but delivering a hardly under-
standable formalism where the classical physical laws appear being abrogated while abstract terms replace concrete and 
imaginable ones, abandoning the particle perception of mass points. In particular, Heisenberg’s »uncertainty principle« and the 
assumption of state probabilities seem to be in a striking variance to the idea of standing waves. In contrast, a formulation is 
given here which exactly describes the electron trajectories in the exited states solely by applying classical physical laws. 
Firstly, the original Bohr-model - in combination with De Broglie’s relation - is rolled up. From this formula system a vibration 
frequency - corresponding to the De-Broglie frequency – is deduced which is n-times larger than the rotation frequency of the 
Bohr-model. Furthermore, a direct coherence between that vibration-frequency of the electron and the frequency of the 
involved light is evident being explainable as a resonance effect. Then, a three-dimensional model is proposed where the 
electron oscillates and pulses perpendicularly to a virtual rotation plane i.e. rotating around a vertical axis, accompanied by a 
perpetual energy exchange between potential and kinetic energy. This leads at the excited, metastable energy states to well-
defined, three-dimensional and wavy trajectories winding up on a surface similar to the one of a hyperboloid, whereas at the 
ground state the trajectory is planar and stable. 

Keywords: Quantum-Mechanics, Uncertainty-Principle, Wave-Particle-Dualism, Three-Dimensional Electron-Trajectories, 
Electron-Oscillation, Resonance-Effect 

 

1. Introduction: the Historical 

Background 

It may strike as odd that, nowadays – approx. 100 years after 
its first publication -, somebody else than a historian bothers 
about Bohr’s atom model since quantum mechanics drafted 
by prominent physicists like Heisenberg, Schrödinger, Born, 

Pauli and Dirac were established long ago admitting no 
further doubts. However: The discussion about quantum 
mechanics and their roots has not broken off entirely since it 
is still surrounded by a mist of incomprehensibility, 
expressed in the bon mot of Richard P. Feynman saying that 
it is impossible to understand quantum mechanics but that it 
is only possible to get accustomed to it [1]. Therefore, its 

genesis has recently been reviewed in several books like this 
one written by Manjit Kumar [2]. As it is well known, the 
most prominent sceptic was Albert Einstein, who had 
originally made a significant contribution to the atom theory 
by the discovery and the formulation of the photoelectric 

effect but who could not identify himself with the implicit 
idea of probability functions instead of definite electron 
trajectories, being revealed by his famous dictum: „God 
doesn’t dice”. His dispute with Bohr - who just represented 
the opinion opposing to his own model - culminated in the 
Sixth Congress of Solvay in 1930. 

The first important step towards the comprehension of 
atoms had been made by the discovery of the electron due to 
the experiments of J. J. Thomson, and of H. Becquerel with 
β-radiation being deflected in a magnetic field. Another 
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important step was made by the study of the electronic 
spectra of atomic hydrogen - being made at very low 
temperatures and pressures in the visible and near UV range 
of light - exhibiting a discrete line structure, and in particular 
the ingenious discovery of J. J. Balmer 1885 [3] that the H-
spectrum can be described by the following mathematical 
pattern: 

λ m
A

m n
= ⋅

−

2

2 2
  where λ  = wave length, A = empirical 

constant, m and n are integers. 
Five years later, J. R. Rydberg found a more general 

formulation of this phenomenon, however without being able 
to explain it. Only after the formulation of Max Planck’s law 
in the year 1900, which could explain the spectral dispersion 
of black radiation by means of the quantum of action h, the 
inclusion of spectroscopic properties delivered a decisive 
explanation step. Right after, Einstein found 1905 [4] the 
photoelectric effect, relating the energy E  of light with its 
frequency ν  over Planck’s constant h : 

E h ν= ⋅  

After the insufficient model proposal of Thomson and the 
more illuminating one of Rutherford in the year 1911, Niels 

Bohr published in the year 1914 a model for the hydrogen 
atom being able to widely explain its spectral properties [5]. 
It was based on the hypothesis that the electron rotates 
around the proton at different definite radii (see Fig. 1), 
corresponding to different energy levels whereby its angular 

momentum is quantified exhibiting the value of h/2π at the 
ground state and an integer multiple n at the excited states, 
and that possible jumps between these energy levels are 
linked to the adsorption or emission of light and to the 
frequencies given by Einstein’s relation. As a further 
consequence, the circular current of the electron induces a 
magnetic moment of the atom which can be measured 
experimentally. 

 

Fig. 1. Relative electron radii within the Bohr-model. 

The main argument against the Bohr model was and still is 
that the H-atom could be compared with a so called Hertz 

dipole, thus emitting electromagnetic radiation till a collapse 
occurs while the electron falls onto the nucleus. This 
provokes the question whether the electromagnetic radiation, 
proceeding with frequencies ≥ 105 Hz (and in the case of the 
H-atomic radiation even of about 1015 Hz), may be reduced 

on a rotating macro-physical barbell-like dipole where – e.g. 
with an ultracentrifuge – no frequencies larger than 104 Hz 
are achievable which makes a verification impossible. 

Furthermore, the Bohr model exhibits quite a lot of 
obvious deficiencies with regard to empirical facts. So it isn’t 
able to explain the fine-structure of atomic spectres appear-
ing when a magnetic field is applied. (Hence, Sommerfeld [6] 
extended Bohr’s model assuming an additional directional 
quantification leading to elliptical orbits, but that explanation 
was not sufficient for any case.) Moreover, the model fails 
for describing more complex atoms, and much less for 
chemical bonds or for the periodic table of the elements. 
And, even more basically, it could not explain the fact that 
the angular momentum is quantified. But ten years after that, 
Louis De Broglie found in his thesis 1924 an answer to the 
question why solely definite energy levels are possible, 
determining a discrete spectrum. He assumed that the 
electron moves on a wavy trajectory around the nucleus, and 
that solely trajectories representing standing waves are 
allowed. Thereby, De Broglie‘s equation concerning the 
relation between wavelength and momentum (pel = h/λel) may 
be derived from Bohr’s quantum relation – or vice versa -, so 
it is compatible with it, delivering the - here called - Bohr-De 

Broglie (BDB) model. 

 

Fig. 2. Alleged perception the of the electronic wave, according to [9]. 

The phenomenon of the wave nature of the electron has 
been empirically verified by numerous experiments using 
electron beams being accelerated by electric fields, in 
particular observing diffraction on thin metal foils [7]. 
However, no explanation could be found for the cause of this 
wavy movement. Rather it was assumed that the electron 
would undulate quasi by nature. Philosophers even used to 
speak of a mysterious »wave-particle-dualism«. Above all, it 
seemed not possible to precisely calculate the wavy electron 
trajectories. Therefore, in all usual textbooks any descriptive 
illustration of the electron’s wavy trajectory is missing. Such 
an illustration could be solely found in a quite esoterically 
appearing book, however being not at all convincing (Fig. 2). 
A similar »qualitative« illustration is also given in the 
textbook of G. Herzberg [8]. 

As a consequence of these deficiencies, an alternative 
approach was formulated, starting from De Broglie’s wave 
concept. Thereby, Werner Heisenberg [10] developed a 
matrix calculation, while Erwin Schrödinger [11] [12] [13] 
established a differential equation on the basis of Cartesian 
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coordinates using the Hamiltonian, delivering well 
determined Eigenvalues for the energy states but not well 
defined electron trajectories. Instead of those, the squares of 
the wave functions were given, representing – according to 
Max Born’s interpretation [14] [15] – the probabilities of 

presence of electrons and abandoning the principle of 

determinism. Therein, initially three independent quantum 

numbers were provided, namely the main quantum number n, 
defining the shells K, L, M etc., the auxiliary or angular 

momentum quantum number l, being responsible for the 
special direction and named as s-, p-, d- and f-states, and 
finally the magnetic quantum number ml being related to the 
magnetic moment induced by the electron orbit. 

However, some principle objections against this theory 
seem to be appropriate: First of all, Schrödinger’s citation of 
the Hamiltonian, being based on the Lagrange-function, 
appears a priori devious since that theory affects extended 

systems of mass points, as they are relevant particularly in 
thermodynamics, and not an isolated two-particle system 
which is given by the hydrogen atom. But the most striking 
feature of this theory was the modification of De Broglie’s 
wave by Heisenberg’s »indeterminacy-principle«, according 
to which location and momentum of a particle are not simul-
taneously determinable, namely 

De Broglie: el el
p hλ ⋅ =  with el

λ = electron wave length, 

and el
p = momentum 

Heisenberg: 
x

x p h∆ ∆⋅ ≥  where x∆  stands for the 

indeterminacy of the location. 
Bohr, denying his own original model, made an ulterior 

step assuming the position of the electron being really 
uncertain, which subsequently led to the idea of electron 
»orbitals«, sometimes being compared with electron-clouds, 
and showing at least two significant differences to the BDB-
model: Firstly, within that model, the s-orbital of the ground 
state exhibits no angular momentum (l=0) and is spherically 

symmetric, while the trajectory in Bohr’s model is circular 
and planar, exhibiting a basic angular momentum. Thus, in 
the former case, the hydrogen-atom appears as a ball, 
whereas, in the latter case, it’s like a disc, or – in respect of 
the electron – a ring. The formulation implied quasi a trick 
overriding the assumed Hertz’s dipole radiation. And 
secondly, the conclusion seems rather paradoxical that a 
well-defined electron trajectory should not really exist 
though the existence of a standing electron wave is assumed. 
Hence, the plausible perception of a standing wave as a 
governing principle loses its fundament. 

Further aspects concern the spectra being recorded in the 
presence of a magnetic field, inducing shifts and widening of 
lines which Pieter Zeeman had observed and published 
already in the year 1897. Moreover, in some cases the 
multiplicity of certain lines turned out to be larger than 
expected, that phenomenon being denoted as anomalous 

Zeeman-effect. As a consequence, but only in the year 1925 
Goudsmith and Uhlenbeck suggested that the electron 
exhibits an own angular momentum being incident to a 
magnetic moment which subsequently was denoted from 

then on as »spin«. Hence the electron-spin needed the intro-
duction of a fourth quantum number s into the theory. 
Moreover, it had to be implemented into the convenient 
theory which was realized mainly by Pauli and Dirac, the 
latter one applying a relativistic matrix calculation. These 
special effects are not within the scope of the present treatise, 
except the fact that the spin momentum of the electron is 
equal to its angular momentum in the ground state of the 
BDB-model, which cannot be reasonably explained by the 
conventional theory. 

Hence, in spite of the several further experimental methods 
which have been introduced and improved since then, and in 
spite of the theoretical refinement made by the QED-theory 
(Quantum Electro Dynamics), the fundament of the wave 
mechanics, established not in one go, and not by a single but 
by several authors, has never been questioned whereas the 
original Bohr-model has been abandoned. Solely in the 1950s 
Bohm formulated a deterministic theory regarding De 
Broglie’s hypothesis and assuming a »quantum theory 
without observers« but also using differential equations and 
also being quite abstract. This approach was persisted by D. 

Dürr and S. Teufel [16], but it doesn’t correspond to the here 
proposed approach and will no1t be discussed hereafter. 

Nevertheless, the purpose of the present consideration is 
going back to the roots and improving the original BDB 
model of hydrogen by introducing a third dimension and by 
implementing an additional oscillating motion of the 
electron, regarding the perpetual exchange of potential and 

kinetic energy as it is the characteristic requirement for any 
oscillation. Moreover, a connection between the electron spin 
and the electron wave may be assumed, involving the 
conclusion that the real origin of the spin is not a rotation – 
as the name »spin« suggests – but an oscillation. 

2. The Usual Derivation of the  

DBD-Model for the H-Atom 

According to Meschede’s revision of Gerthsen’s basic 
German physical text book [17], the Bohr model „is the last 
model which also a beginner really can understand”. 
Hereinafter, initially the original version according to Bohr 
shall be described in simplified terms, whereon the De 
Broglie hypothesis shall be introduced (delivering the BDB = 

Bohr De Broglie-model). It has to be said in advance that the 
gravitation force can be neglected with respect to the 
Coulomb force; that furthermore the nucleus proton may be 
considered as stationary; that the electron orbit may be 
assumed to be circular; and that any relativistic effects may 
be neglected. To avoid the confusion with the frequency 

abbreviation ν, for the velocity the symbol u is used. Apart 
from that, the following abbreviations and units are used: 

mass m [kg] 
time t [s] 
period T [s] 
wave length λ [m] 
angular velocity ω: radian measure [s-1] with 2π ÷ 360° 
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momentum p [kgms-1] 
angular momentum L [kgm2s-1] = [Js] 
force F [1 N = 1 kgms-2] 
work = energy E [J] = [kgm2s-2] = [Ws] 
For the calculations, the following values are assumed: 
dielectric constant ε0 = 8.854187817·10-12 AsV-1m-1 
elementary charge e = 1.60217646·10-19 C 
Planck’s constant h = 6.6260688·10-34 Js 
rest mass of the electron me = 9.1093819·10-31 kg 
First of all, the equilibrium condition between the 

centrifugal force and the Coulomb attraction has to be 
regarded: 

πε
e

m u e

r r
=

2 2

2

04
 . That may be rearranged to  

πε e

e
u r

m
=

2

2

04
                                     (1) 

Secondly, the quantization condition for the angular 

momentum L has to be formulated: 

n e n n

n h
L m u r

π
⋅

= ⋅ ⋅ =
2

                        (2) 

This condition comprises the so-called principal quantum 

number n. It represents the basic relation of quantum 
mechanics and interrelates to the already mentioned and 
subsequently considered photoelectric effect being dis-
covered by Einstein. 

The combination of these equations delivers an expression 
for the (rotation-) velocity 

n

e
u

n hε
=

2

02
                                    (3) 

or 

n

u
u

n
= 1                                          (4) 

   with u
1
 = 2.1877·106 ms-1 ≈ 

lightc 137  

as well as for the atomic radius being equivalent to the radius 
of the electron orbit: 

n

e

n h
r

m e

ε
π

=
2 2

0

2                                    (5) 

or 

     nr r n= ⋅ 2

1                                       (6) 

  with r1 = 0.5292·10-10 m 
Since the angular momentum is defined as the product of 

mass, velocity and radius, an expression equivalent to (2) is 
got when these relations are inserted in (2): 

n e n n e

n h
L m u r m u r n

π
⋅

= ⋅ ⋅ = ⋅ ⋅ ⋅ =1 1
2

               (7) 

When n = 1, the ground state is attained, being 
characterized by a maximum velocity, a minimum radius and 
a minimum angular momentum. 

Now, a connection between the difference of two energy 
levels and the frequency of the absorbed or emitted light 
should be established by means of the Einstein equation 

lightE hν∆ =                                 (8) 

For this purpose, the aggregate amount of energy – i.e. the 
total energy, comprising potential and kinetic energy - has to 
be calculated for any level. Thereby, a negative sign has to be 
attributed to the potential energy, that one becoming zero 
when the radius is infinite and becoming negative when the 
radius is getting smaller: 

pot e

e
E m u

rπε
−= = −

2

2

04
                          (9) 

kin eE m u= 21
2

                              (10) 

tot pot kin e

e
E E E m u

rπε
= + = − = −

2

2

0

1
2 8

          (11) 

When the quantised radius according to (5) is inserted in 
equation (11), the total energy can be expressed by h: 

e

tot

m e
E

n hε
= −

4

2 2 2

08
                            (12) 

Finally, its combination with equation (8) yields equation 
(13): 

light

x y

me

h n n
ν

ε
 

= − 
 
 

4

2 3 2 2

0

1 1

8
                   (13) 

with the conditions ny > nx and nx ≥ 1. 
The thus calculated values fit the frequencies of the 

hydrogen spectrum quite well. The term ahead the bracket is 
named Rydberg constant; its value is 3.2899 · 1015 s-1. 

Additionally, the De Broglie hypothesis of the standing 

waves shall be regarded. The condition of a standing wave 
may be expressed by the formula 

electron nn rλ π⋅ = ⋅2    or rearranged    electron

n

n
r

λ
π

⋅
=

2
    (14) 

When this relation for rn is inserted into formula (2) 
expressing the angular momentum 

electron

e n n e n

nn h
m u r m u

λ
π π

⋅⋅
⋅ ⋅ = = ⋅ ⋅

2 2
, 

the result reveals nothing other than the De Broglie relation 
(15): 

e n e electronm u p h λ⋅ = =                    (15) 
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Regarding this, it must be assumed that not only a wave 
length but also a wave frequency is assigned to the De 
Broglie wave. Consequently, the relation between this wave 
frequency and the rotation frequency of the electron shall be 
determined. 

3. The Vibratory-Like Frequency of the 

Electron in the BDB-Model 

As for every wavy motion, the condition (16) must be 
fulfilled comprising the velocity 

rot
u as the product of the 

vibratory-like frequency 
vib

ν and the wave length
electron

λ : 

rot n electron vib
u u λ ν= =                       (16) 

Thus the electron motion is characterized by two different 

frequencies: the rotation frequency and the vibratory-like 

frequency, the latter one being part of the former one: 
 

vib rot electron
uν λ=

                        (17) 

Furthermore, it may be defined     

rot rot n
u rν π= 2                                (18) 

The combination of the equations (17) and (14) yields 

vib rot n
nu rν π= 2                             (19) 

And finally, when relation (19) is compared with equation 
(18), the quite interesting relation (20) is gotten: 

vib rot
nν ν=                                      (20) 

Equation (20) amounts that the two frequencies are 
coupled each to the other via the quantum number n, being 
equal when n = 1. 

4. The Coherence between Electron-

Frequency and Light-Frequency 

Now it shall be determined how the electron-frequency and 
the light-frequency are related. Hereto, νvib and νrot have to be 
expressed by ε0, e, h and n, that which is feasible by 
combining the equations (3), (15), (16), (17) and (20): 

ν
ε
e

vib

m e

n h
=

4

2 2 3

04
                            (21) 

resp. e

rot

m e

n h
ν

ε
=

4

3 2 3

04
                             (22) 

If the power of relation of n is regarded, it is evident that 
among these two equations only the first one, namely (21), is 
compatible with relation (13) being relevant for the light 
frequency. This means that the light frequency is directly 

correlated to the vibration frequency of the electron and not 

to its rotation frequency (except when n = 1, i.e. when both 
frequencies are equal). Equation (21) may be rearranged to 
equation (23): 

vib

e

h

n m e

εν=
2 3

0

2 4

41
                            (23) 

That one may be inserted in equation (13) and thus 
delivering the relation (24): 

( )light vib vibν ν ν= −1 2
1

2
                      (24) 

In words: The frequency of the absorbed or emitted light 
corresponds to the half of the difference of the vibration 
frequencies of the electron being expected for the relevant 
orbits. The factor of ½ seems strange and is not simply 
explicable. However, the statement is decisive that a direct 
proportionality exists between the light frequency and the 
vibration frequency of the electron. Therefore, it is standing 
to reason how these vibrational electron trajectories really 
appear. However, before studying this question, the Hertz-
oscillator objection must be considered. 

5. The Comparison with the  

Hertz-Oscillator 

Sometimes the electron which circles around the nucleus is 
compared with the so called Hertz-oscillator, being imagined 
as a rotating dipole and thus radiating electromagnetically. 
That model-concept should explain the light emission of the 
(hydrogen-) atom being in an excited state. Thereby it is not 
explainable why the electron does not finally bear down on 
the nucleus while it emits further electromagnetic radiation 
but, instead of that, remaining on a minimal orbit which 
cannot be exceeded below. 

For the radiation-power P (i.e. for the emitted energy per 
time) usually the following formula is given, deduced by 
means of the Maxwell-Laws and usually found in textbooks: 

3
0

42

6 c

p
P d

πε
ω−=               unit: [W]                         (25) 

where pd means the dipole-momentum (27). 
In that formula the angular velocity may be expressed by 

the frequency according to the relation ω πν= 2  so that the 
equation may be written as 

3
0

423

3

8

c

p
P d

ε
νπ−=                                                      (26) 

In addition, the relation for the dipole-momentum has to be 
regarded: 

rQpd ⋅=          where Q  = amount of charge     (27) 

Delivering to the radiation-power the relation:           
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3
0

4223

3

8

c

rQ
P

ε
νπ−=                         (28) 

For getting the radiation energy (per cycle), one has to 
divide by the frequency ν : 

3
0

3223

3

8

c

rQ
E

ε
νπ−=                          (29) 

          unit: [Ws] 
But at least now the attempt finding an analogy to the 

relations being valid within the Bohr-model should be 
abandoned, considering the following reasons: 

1. Within this classical electrodynamic model (CEDM), Q, 

r and ν are arbitrary and thus independent of each other. 
Within the Bohr-model, that’s not the case, being 
already obvious from equation (1). 

2. Within the CEDM, a dependency of the radiation 
energy on the rotation frequency is predetermined – 
moreover in the cube –, whilst within the Bohr-model a 
proportionality to the vibration frequency exists. The 
latter one does not at all appear within the CEDM. 

3. Within the CEDM, the emission is assumed occurring 
equally in all directions, that which is probably not the 
case within the Bohr-model when a singular atom is 
considered. 

4. The Hertz-model originally relates to a spark inductor 
and not to a rotating dipole as it would be the case e.g. 
at a rotating condenser. Thereby, the electrons move in-
to metallic conductors exhibiting other conditions than 
in the case of electrons in the absence of such conduc-
tors. A concrete experiment which correctly models the 
conditions prevailing within an H-atom is not known. 

Therefore, an application of the hitherto customary model of 
the Hertz-oscillator onto the Bohr-model seems being not 
admissible. 

6. The Three-Dimensional Modification 

of the BDB-Model 

From the above follows that the BDB-model implies - 
besides the rotation - an additional vibration of the electron 
whose frequency is n-times as much as the rotation fre-
quency, but it cannot outline it figuratively. For eradicating 
this flaw it seems obvious to use a three-dimensional des-

cription by classical means supposing a three-dimensional 
electron trajectory since the two-dimensional feasibilities are 
exhausted due to the quantum condition of the angular 
momentum. Thereby, the electron should perform an undu-

lation while it orbits the nucleus, this wave being obliged to 
be a standing one, according to the De Broglie condition. 
Furthermore, that undulation may be regarded as the combi-
nation of a horizontal rotation, on the one side, and of a 
vertical vibration, occurring at least as an oscillation, on the 
other side. This oscillation is due to a perpetual exchange of 

potential and kinetic energy, as it is characteristic for any 
oscillation. 

An obvious approach for expressing these properties is a 
formal one, applying a differential equation which reveals 
that the decrease of the potential energy must be equal to the 
increase of the kinetic energy while the total energy remains 
constant, i.e. 

pot kin
E E

t t

∂ ∂
= −

∂ ∂
                            (30) 

That yields, using equation (9), the relation 

e

e r
m u u

rπε
⋅ = − ⋅

2

2

04

ɺ
ɺ                     (31) 

However, the complex character of the whole process, 
comprising much more than a simple oscillator and involving 
additionally at least a rotation, entails that this expression 
actually comprises so many unknowns that it gets im-
practical. In particular, the temporal course of the radius r as 
well as that one of the velocity u is not known, the latter one 
being composed of different kinds of velocities whose 
correlations are not simply evident. So it seems necessary 
starting from a vivid model implying some plausible 
assumptions and applying physically correct relations which 
must lead to consistent results. A considerable handicap is 
thereby the fact that it is not possible to construct an adequate 
macro physical model. The unique empirical proof is given 
by the discrete spectres, while the correlation to the Bohr 
model emerges from the assumption that it solely represents 
a limiting case of the vibration or oscillation process in the 
atom, namely characterized by the top position of the 

electron where the oscillation rate is zero. Thereby, the same 
simplifications as within Bohr’s model shall be made, i.e. the 
nucleus is assumed as stationary, and the gravitation force is 
neglected. 

A basic premise at the here applied model is entailed in the 
assumption that the energetic excitation of the electron may 
be conceived as the result of a lateral electromagnetic impact 
being perpendicular to its virtual rotation plane leading in the 
excited electronic energy states to three-dimensional tra-
jectories winding up on a three dimensional surface whereas 
in the ground state the trajectory is planar. Since that 
excitation takes place perpendicularly to the rotation plane, 
the orbital angular momentum of the ground state must 

remain constant also in the excited states, according to the 
theorem of constant orbital momentum. This assumption is of 
great importance for the whole theory. At first it seems 
peculiar considering the fact that, according to equation (2), 
the Bohr model implies an n-fold magnitude of the orbital 
momentum in the excited states. However, that condition 
only concerns the top position of the electron, corresponding 
to Bohr’s model, while the behavior of the total orbital mo-
mentum during the vibration process is quite complex. For 
avoiding a confusion with Bohr’s rotation velocity un as well 
as Bohr’s radius rn, the terms urot* and rrot* are introduced, 
both being time-dependent and – still – dependent on n. 
Therefore, the following relation shall be valid: 
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rot rotu r u r∗ ∗⋅ = ⋅1 1                                   (32) 

where u
1  and r

1  represent Bohr’s terms for the ground state. 

Since during the process the oscillation velocity - and thus 
the relevant kinetic energy - is varying, but since simul-
taneously the potential energy is also varying due to the 
distance variation between electron and nucleus, it is in 
principle thinkable that the difference of the kinetic 
oscillation energy is exactly equal to the difference of the 
potential energy. As a consequence, the kinetic rotation 
energy - and implicitly the rotation velocity - would remain 
constant meaning that the three-dimensional trajectories of 
the electron in the excited states would wind up on a 
cylindrical surface. 

However, as the analytical examination has yielded, this 
isn’t really the case. Instead, the electron trajectories re-
semble to hyperboloids, which means that an additional 
motion, here called »pulsation«, must exist delivering a 
further kinetic energy input, and engendering a variation of 
the rotation velocity. Therefore, the »vibration« is composed 
of two components: of a vertical oscillation and of a hori-
zontal pulsation, the former being vertical to the rotation 
plane, and the latter being parallel to the rotation plane. 

For being able to describe this process, it is necessary to 
choose a system with polar coordinates, combined with 

Cartesian coordinates allowing differing illustrations, 
depending on the objectives. Using this, three prominent 
states may be outlined: the limiting case of the top position 
where uosc and upuls are zero, being equivalent to the con-
ditions of the Bohr model (Fig. 3a); the general case of the 
intermediate state where the process is in full swing (Fig. 
3b); and the limiting case at the equator where uosc is 
maximal and upuls is zero (Fig. 3c). Therein, d is the 
abbreviation for the deflection, while the deflection angle is 
denoted as φ. The abbreviations within the indices are: rot for 
»rotation«, osc for »oscillation«, puls for »pulsation«, and eq for 
»equator«, while the indication top is used when the electron 
is located at the maximal position. The rotation angle ѱ

*, 
being employed below for computations, is associated to urot

* 
but not mapped in these figures. The same is true for the 
rotation angle ѱ being associated to the Bohr model. The 
radius r* is provided with an asterisk to make obvious that it 
is time-dependant, and not constant like the Bohr radius rn. 

7. Basic Assumptions and Model 

Calculations 

For being able to mathematically conceive this complex 
process, a stepwise proceeding is necessary, starting from the 
definite limiting conditions being apparent in the Figures 3a 
and 3c. Thereto it is necessary to formulate basic assump-
tions or physical theorems according with natural laws but 
being adapted to that special constellation. 
One of these assumptions has already been mentioned, 
namely the law of conservation of the angular momentum, 
expressed with equation (32). A further but trivial assumption  

 

Fig. 3a. Model draft of the limiting case at the top position of the electron. 

 

Fig. 3b. Model draft of the intermediate state. 

 

Fig. 3c. Model draft of the limiting case at the equator. 
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is given by the theorem of Pythagoras 

( ) ( )rotr d r∗ ∗+ =2 2 2                          (33) 

Of course, the law of conservation of energy has to be 
considered, too. Thereby, the total energy at a certain energy 

level according to equation (11) of the Bohr model is 
relevant, being advantageously expressed in terms of u1 and 
r1 given in the equations (3), (4), (5) and (6): 

tot pot kinE E E= +    →   ( )e tot

n

e e
m u

r rπε πε ∗− = − + ⋅
2 2

2

0 0

1
28 4

    

→    
( )

tot
ur

r n u∗ = +
2

1

2 2

1

2 1
                                    (34) 

Within the first limiting case, i.e. at the top position of the 
electron, the vibration terms disappear, which leads to the 
following simplifications: 

top n
r r r n∗ = = ⋅ 2

1                                (35) 

and 

, ,tot top rot top n

u
u u u

n

∗= = = 1                       (36) 

As a consequence, based on (32), the values of ,rot top
r∗ can 

be determined: 

,

,

rot top

rot top

u
r r r n

u

∗
∗= ⋅ = ⋅1

1 1                     (37) 

hence yielding for n  = 2 the value of 2 r
1
, and for n  = 3 the 

value of 3 r
1
, etc. 

The knowledge of top
r ∗ and of ,rot top

r∗ enables the determi-

nation of topφ due to the relation 

,
cos

rot top

top

top

r

nr
φ

∗

∗= =
1

                           (38) 

yielding the values ,topφ
2

= 60° and ,topφ
3

= 70.53°. 

On the other hand, since 

sin
top top

top

top

d d

r r n
φ ∗= =

⋅ 2

1

                             (39) 

topd can be determined, too, yielding the values 3.4641 r
1  and 

8.4853 r
1  for n = 2 and n = 3. (For comparison: The 

respective values of  rn  are 4 r
1  and 9 r

1 ). 

Within the second limiting case, i.e. at the equatorial 
position of the electron, the pulsation gets zero having the 
following consequences onto the terms: 

,rot eq eq
r r∗ ∗=                                     (40) 

and 

, ,( ) ( ) ( )
tot rot eq puls eq

u u u∗= +2 2 2
                 (41) 

However, for making the formula system resolvable, an 
additional assumption has to be made, known as the 
equipartition law of (kinetic) energy: 

, ,rot eq puls eq
u u∗ =                            (42) 

and 

,( ) ( )
tot rot eq

u u∗=2 2
2                         (43) 

It has to be mentioned that this »law« cannot be generally 
valid for the whole process since e.g. upuls disappears at the 
top position of the electron. Yet, a generalization will be 
suggested later. 

Then, considering these relations, ,rot eq
u∗  and ,rot eq

r∗  can be 

determined: 
Firstly, the relations (34) and (43) deliver the equation  

,

,

( )
rot eq

rot eq

ur

r n u

∗

∗ = +
2

1

2 2

1

22 1

 

Then, the implementation of (32) yields the equation  

, ,( )rot eq rot equ u

u n u

∗ ∗

= +
2

2 2

1 1

2 21

 

And finally, the viable solution of this quadratic equation 
is  

,rot equ n

u n

∗ −= +
2

1

1 2

2 2
                        (44). 

For n = 1, the result is imaginary and indeed non-existent. 
This is plausible since it concerns the ground state which 
cannot be subject of this procedure. However, for the excited 
states with n < 1, real results for the equatorial rotation 
velocities are obtained, moreover delivering the corres-
ponding values of the radii, due to equation (32): 

 

n
  ,rot eq

u u∗
1   ,rot eq

r r∗
1  

2  0.85355   1.17158 
3  0.94406   1.05925 
 
Summarizing, up to now the following values have been 

evaluated: 

Tab. 1. Calculated values as a function of n. 

n nr  ,rot topr ∗  ,rot eqr ∗  topd  φtop  
nu  ,rot topu∗  ,rot equ ∗  

2 4 2 1.17 3.46 60.0° 0.50 0.50 0.85 
3 9 3 1.06 8.49 70.5° 0.33 0.33 0.96 

(The units for radii are given in multiples of r1, and those for rates in 
multiples of u1) 
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After having now clarified the situations at the two 
limiting cases, the more difficult question of the intermediate 
states arises, particularly of the temporal course of the 
deflection d. Hereto, a time base is required. Since this model 
is based on Bohr’s model, it immediately suggests itself to 
assume that the Bohr-rotation, i.e. its angular velocity ωn, 

dictates the rhythm of the whole process. Thereby, the 
application of a harmonic oscillator seems to be adequate 
even if the situation is not exactly equal to that the one of a 
spring pendulum where the relevant sinus-function can be 
strictly deduced from a differential equation. Hence, the 
following approach is made: 

sin( ) sin( )top n topd d n t d nω ψ= ⋅ ⋅ ⋅ = ⋅ ⋅           (45) 

with 
n

n

n

u u

r r n
ω = =

⋅
1

3

1

 

cos( ) cos( )osc n top top

u
d u n d n d n

r n
ω ψ ψ= = ⋅ ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅

⋅
1

2

1

ɺ  (46) 

At the equator, the cosine becomes 1. Therefore, equation 
(46) turns into 

,eq osc eq top

u
d u d

r n
= = ⋅

⋅
1

2

1

ɺ                     (47) 

Since, according to equation (42), the oscillation velocity 
is equal to the rotation velocity, dtop may be calculated 
alternatively, using the harmonic oscillator approach (47) and 
the values for the rotation velocity which have already been 
gotten due to equation (43). These values may be compared 
with the previously determined values of dtop according to 
equation (39), that comparison delivering a grade for the 
approximate validity of the harmonic oscillator approach: 

n dtop (directly) dtop (HO)  accordance 
2  3.4641 r1  3.4142 r1  98.6 % 
3  8.4853 r1  8.4965 r1  100.1 % 
dtop (directly) means: determined directly 

dtop (HO) means: determined via harmonic oscillator 
Due to the good accordance of the results using the two 

calculation-proceedings, the plausibility of the approach is 
well confirmed. However, it also concedes that the harmonic 
oscillator solely represents an approximation of the real pro-
cess. That’s not striking considering the bended shape of the 
oscillating path. In view of the complex conditions, the exact 
mathematical derivation might be very difficult, if at all 
possible. 

The next step consists in finding regularity for the 

intermediate states, i.e. for the courses of the trajectories, 
preferably as a function of ѱ, between the two limiting cases 
»top position« and »equator«. Hereof, the plot of uosc vs d is 
unproblematic since for both terms the harmonic oscillator 
relations (45) and (46) may be used, delivering the diagrams 
in the Fig. 4a and 4b. 

The determination of rrot* is much more delicate. Since a 

logical derivation seems not feasible, the following arbitrary 
but plausible assumption has been made, fulfilling the 
conditions at the limiting cases and delivering the key for its 
calculation: 

( ) ( )( ), , , sinrot rot eq rot top rot eqr r r r n ψ∗ ∗ ∗ ∗= + − ⋅ ⋅
2

          (48) 

The respective figures 5a and 5b – where d is determined 
by the harmonic oscillator relation (45) - reveal the bended 
character of the oscillation resembling to a hyperboloid. If 
instead of the square the single of the sine is inserted, the 
resulting curve becomes nearly linear exhibiting a kink at the 
equator, i.e. being V-shaped, and thus appearing not 
plausible. 

Besides, formula (48) enables the determination of the 
pulsation rate being the temporal derivation of 

rotr ∗ , de-

livering the following relation: 

( ), , sin( ) cos( )puls rot rot top rot eq

u
u r r r n n

r n
ψ ψ∗ ∗ ∗= = − ⋅ ⋅ ⋅ ⋅

⋅
1

2

1

2
ɺ  (49) 

The respective plots (upuls vs d) are shown in Fig. 6a and 6b. 
Compared to uosc outlined in Fig. 4, upuls is generally minor, 
being well intelligible in view of the shorter distances. 

The last hurdle to clear is finding a connection between the 
»Bohr-angle« ѱ and the angle ѱ*

, the latter one being operant 
within the equator plane and being a promising parameter for 
describing this process, delivering the Figures 7 - 10. There-
to, the fact may be adduced that the temporal periods of both 

processes must be equal, considering the circumstance that 
the »Bohr rotation« according to ѱ is – within the excited 
states – constant but only virtual, whereas the real rotation, 
according to ѱ*, is not constant but dependent on time. The 
relevant presumption for getting such a relation is 

n nT T

rot

rot

u
t t

r
ω π

∗
∗

∗∂ = ∂ =∫ ∫
0 0

2                        (50)  

where 
rotr ∗  is given by the relation (48), and 

rotu∗  can be 

calculated by equation (32). However, since this integral 
appears difficult to solve explicitly, an infinitesimal summing 
up procedure may be applied as a viable alternative, using the 
relation 

n nT

rot rot

rot rot

u u
t f

r r

ψ

ψ ψ π∆ ∆ ∆ ∆
∗ ∗

∗
∗ ∗= ⋅ = ⋅ ⋅ = ≡ °∑ ∑

0 0

2 360   (51) 

Thereby, preferably steps of 1° are made, being finally 
normalized by the constant f. 

This method shall subsequently be exemplified for the case 
n = 2, based on the hitherto derived data, and using the 
»Excel« computation program of Microsoft-Windows. The 
units are altogether u1 for the velocities and r1 for the radii. 
The relevant limiting values are:  

,rot top
r∗ = 2.00 ,rot eq

r∗ = 1.17158 
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The constant f has been determined as 2.2618.  

Tab. 2. Calculation of Ѱ
*
. 

Ѱ [°] Ѱ [arc] sin (n·Ѱ) rot
r∗  

rot
u∗  ω∗  ω ∗  Ѱ* [arc] Ѱ* [°] 

0 0 0 1.172 0.854 0.729 - 0 0 

1 0.017 0.0349 1.173 0.853 0.727 0.728 0.0287 1.6 

2 0.035 0.0398 1.176 0.851 0.724 0.725 0.0574 3.3 

3 0.052 0.1045 1.181 0.847 0.717 0.720 0.0858 4.9 

4 0.070 0.1392 1.188 0.842 0.709 0.713 0.1140 6.5 

… … … … … … … … … 

45 0.785 1 2.000 0.500 0.250 0.250 0.7854 45 

… … … … … … … … … 

90 1.571 0 1.172 0.854 0.729 0.728 1.5708 90 

… … … … … … … … … 

180 3.142 0 1.172 0.854 0.729 0.728 3.1416 180 

… … … … … … … … … 

360 6.283 0 1.172 0.854 0.729 0.728 6.2831 360 

Calculation formula for the respective columns: 

[ ]
[ ]arc

ψψ
π
°

=
180  

( ) ( )( ), , , sinrot rot eq rot top rot eqr r r r n ψ∗ ∗ ∗ ∗= + − ⋅ ⋅
2

 

rot

rot

u r
r

r

∗
∗

⋅
= 1 1  

rot

rot

u

r
ω

∗
∗

∗=  

ω∗ = 1
2

(previous + actual value of ω∗ ) 

[ ]arcψ ∗ = previous value of [ ] [ ]arc f arcψ ω ψ∆∗ ∗+ ⋅ ⋅  

[ ] [ ]arcψ ψ
π

∗ ∗° = ⋅
180

 

Remarkably, at some special points, such as at 0°, 45°, 90°, 180° and 360°, Ѱ* and Ѱ are equal while normally they differ. 
Table 2 represents the basis for all the diagrams comprising the parameter Ѱ

*. Obviously, other variables may then be 
implemented. 
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Fig. 4a. Plot of 
oscu vs d for n=2. 

 

 
Fig. 4b. Plot of 

oscu vs d for n=2. 
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Fig. 5a. Plot of rotr∗
 vs d for n=2.  

 
Fig. 5b. Plot of rotr∗

 vs d for n=3. 
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Fig. 6a. Plot of upuls vs d for n=2. 

 

Fig. 6b. Plot of upuls vs d for n=3. 
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Fig. 7a. Plot of 

rotr∗ vs ѱ* for n = 2. 

 

Fig. 8a. Plot of 
rotu∗ vs ѱ* for n = 2. 

 
Fig. 9a. Plot of d vs ѱ* for n = 2. 

 
Fig. 10a. Plot of oscu vs ѱ* for n = 2. 

8. Summary and Conclusions 

Starting from the condition for standing waves, it could be 
derived from the BDB-formulation that a correlation exists 
between the usual electron rotation frequency and a vibration 

frequency being deducible from the De Broglie-wave. 
Thereby, the two frequencies are coupled to each other via 
the quantum number n, being equal when n = 1. Moreover, it 
could also be formally shown that a direct proportionality 

exists between the light frequency and the vibration 

frequency of the electron, which leads to the presumption that  

 

Fig. 7b. Plot of 
rotr∗ vs ѱ* for n = 3. 

 

Fig. 8b. Plot of 
rotu∗ vs ѱ* for n = 3. 

 
Fig. 9b. Plot of d vs ѱ* for n = 3. 

 
Fig. 10b. Plot of oscu vs ѱ* for n = 3. 

the vibration of the electron is the real cause of light 
radiation as a resonance effect, and not its rotation around the 
nucleus. Hence, the usual assumption of a macro-physical 
radiating Hertz-dipole cannot be maintained. However, this 
vibration of the electron – i.e. its precise trajectory – could, at 
first, not really be described. 

Nevertheless, subsequently a precise description could be 
found namely by additionally implementing at least an 
oscillation of the electron being directed perpendicularly to a 

virtual rotation plane and leading to three-dimensional 
electron trajectories in the excited states while the trajectory 
in the ground state is planar. This oscillation is accompanied 
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by a cyclic exchange between potential and kinetic energy. 
However, it doesn’t occur on a cylindrical but on a hyper-

boloid surface, implicating an additional pulsation. As a con-
sequence, the De Broglie-wave may be considered as the 
result of a centric electron rotation and an oscillation being 
induced perpendicularly to the rotation plane and hence not 
influencing the orbital angular momentum at the ground 
state. 

Starting from that assumption, the here proposed 
hydrogen-model-approach has been made applying solely 
classical physical regularities, in particular the laws of 
conservation of energy and of the orbital angular momentum. 
It has been deduced stepwise and starting from the top and 
the equatorial position of the electron being assumed as the 
limiting cases. The necessarily used relation for the harmonic 
oscillator turned out to be solely approximately but satis-
fyingly valid. For describing the kinetic energy distribution 
during the transition states between the limiting cases, the 
hypothetic relation (48) has been used delivering plausible 
results. All in all, in spite of the above mentioned approxi-
mation concerning the harmonic oscillator, and of the 
mathematical difficulty of solving the integral (50) explicitly, 
a quite exact description of the electron trajectories and 
velocities could be found. Hence, the allegation of the 
conventional quantum mechanics, according to which an 
exact description of the electron trajectories would be 
impossible, is disproved. The thereby underlying misappre-
hension arises from the application of the probability 
principle on an isolated particle or particle system, instead of 
a particle or particle system within an ensemble of particles 
or particle systems, e.g. being relevant in a thermo-
dynamically describable state. 

Beyond that, further effects such as the influence of 
external magnetic fields on the spectra were beyond the 
scope of this consideration, even though it’s conceivable that 
the three-dimensionality of the trajectories in the excited 
states has an influence on the magnetic properties of the 
atom, while the coherence with the spin seems obvious. 
Moreover, the existence of a planar and stable ground state 
exhibiting a definite total energy cannot be explained 
herewith, solely its principal difference to the wavy and only 
metastable excited states. And in particular, the ground states 
of larger atoms, as well as the »Aufbau-principle« of the 
Periodic Table of the Elements and the occurrence of 
chemical bonds, are not describable without further ado. 

Besides, the final question why the electron doesn’t fall 
down on the nucleus, and that there exists a stable ground 
state, remains still unanswered. However, a principal explan-
ation may be given by the thought experiment that the 
electron will not straightway run versus the nucleus when it 
comes from outside, for its path will be deviated by a 
magnetic interaction being induced by the electric currents 
which are engendered by the flying electron as well by the 
proton. But the relevant computation appears to get quite 
complex, presumably involving Maxwell’s relations, and 
shall not be tried here. 
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