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Abstract: The large-scale blast furnace ironmaking system, characterized by extremely complicated mechanism, multiphase/field 
coupling, dynamical working circumstances and unbalanced data set, is facing several problems in information detecting, object 
modelling, safety manufacturing and operation controlling. How to keep blast furnace in a secure and steady status, i.e., ensuring high 
efficiency and safety of ironmaking process under various conditions has become a major issue in operational control of industrial 
system. Many scholars have tried to improve the operation control level of large-scale blast furnace. However, the existing research 
mainly focuses on individual processes of the blast furnace, lacking studies on intelligent coordinated optimization of the entire 
ironmaking process, including raw material yard, sintering, and blast furnace operations. In order to help researchers to have a better 
understanding of the ironmaking process, we have made a comprehensive review of the current developments and future trends in the 
research of large-scale blast furnace. In this paper, we first introduce the backgrounds and characteristics of ironmaking process, as well 
as analyze the challenges in different research fields. Then, key technologies and current progress of information perception, feature 
modelling, fault diagnosis and optimal control in large-scale blast furnace are summarized. Furthermore, the future developments and 
potential applications of blast furnace ironmaking process are outlined in the end. 
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1. Introduction 

In the steel manufacturing process, the large-scale 
ironmaking system centered around the large blast furnace 
shown in Figure 1 is a critical step for the conversion of 
iron-bearing materials [1]. It is also the most 
energy-intensive, highest-emission, and costliest stage, 
accounting for 75% of the comprehensive energy 
consumption of steel production, 80% of the total 
atmospheric pollutant emissions from steelmaking, and 
60%-70% of the total manufacturing costs in the steel 
industry [2]. Furthermore, as a key front-end process in the 
steelmaking workflow, the quality and efficiency of the blast 
furnace ironmaking process determine the steel quality and 
production efficiency of the entire steel manufacturing 
process. Hence, large blast furnace ironmaking is at the 
forefront of energy-saving, emission reduction, and 
efficiency improvement in the steel industry. 

 
Figure 1. Blast furnace ironmaking process. 
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In recent years, to promote the sustainable development of 
the steel industry, various steel-producing nations around the 
world have formulated corresponding development plans and 
action strategies. In 2013, the European Commission 
proposed the "Steel Action Plan" to prevent the decline of the 
steel industry and established specific measures to promote 
its development, including legal revisions, industry 
restructuring, and energy policies [3]. Around the same time, 
the European Steel Association released the "Low-Carbon 
Steel Technology Roadmap 2050" plan [4], which focused on 
research related to the simulation model of carbon dioxide 
emissions in the steel industry and formulated emission 
reduction strategies. In 2016, the "Fossil-Free Steel Industry" 
initiative was launched by Swedish steel company SSAB, 
mining company LKAB, and energy company Vattenfall. 
The initiative aimed to research and develop production 
processes that replace coke and coal used in blast furnaces 
with hydrogen, achieving carbon dioxide emissions-free steel 
production [5]. In 2017, South Korean steelmaker POSCO 
developed a plan to promote the construction of smart 
factories and launched a research program with the core 
technologies of the Internet of Things, big data, and artificial 
intelligence, aiming to enhance steel production efficiency 
[6]. In 2011, the China Iron and Steel Industry Association 
and the China Nonferrous Metals Society jointly compiled 
the "2011-2020 China Iron and Steel Industry Science and 
Technology Development Guidelines", which set forth the 
development goals and planning guidelines for the Chinese 
steel industry from 2011 to 2020. 

Currently, the green, efficient, and intelligent development 
of large-scale ironmaking systems in China faces common 
challenges such as heavy environmental burdens, low 
resource utilization efficiency, low overall energy efficiency, 
and low production efficiency [7]. Therefore, driven by the 
urgent need to enhance the scientific and technological 
innovation capabilities and overall competitiveness of the 
bulk basic materials industry under the major strategic plan 
"Made in China 2025" and in line with the "Iron and Steel 
Industry Adjustment and Upgrading Plan (2016-2020)" in 
China, it is essential to promote the overall and multi-level 
coordination and optimization of the ironmaking system, and 
advance the intelligent manufacturing of large blast furnaces. 
This can be achieved through comprehensive upgrades based 
on "detection-modeling-diagnosis-control-optimization", 
ultimately realizing green and efficient production in large 
blast furnaces [8-12]. 

2. Research Challenges 

The steel production process mainly consists of the 
ironmaking system and the steelmaking system, with the 
ironmaking system being the most complex and crucial part. 
In the ironmaking system, iron ore undergoes processes such 
as blending, sintering/pelletizing, and blast furnace smelting, 
ultimately transforming into molten iron, which is then sent to 
the converter for steelmaking (as shown in Figure 2) [13-15]. 
The large blast furnace, as a key process in the ironmaking 

system, is the core link for the conversion of iron-bearing 
materials and carbon energy flow. Its internal complex and 
harsh reaction environment, involving the coupling of 
gas-liquid-solid phases and high-temperature, high-pressure, 
and strong corrosive conditions, make it difficult to control. 

 
Figure 2. Flow chart of ironmaking process. 

Traditional blast furnace operation principles, based on 
ironmaking mechanisms and expert experience, require 
adjusting the production conditions of the blast furnace using 
a combination of "bottom regulation as the foundation and 
top-bottom regulation combined" [16]. Under the condition of 
timely and accurate grasp of the changes and trends in the 
blast furnace operation, stable and smooth ironmaking in the 
blast furnace is achieved by adjusting burden distribution, air 
supply system, heat system, and slag-making system [17]. 
However, within the current research and engineering context, 
to achieve high-performance operation control of large blast 
furnaces, numerous challenges need to be addressed in the 
aspects of detection, modeling, diagnosis, control, and 
optimization. 

2.1. Challenges in Perceiving Operational Information 

The operation of large blast furnaces must be based on 
real-time signals of energy and quality flow, multiphase and 
multi-field coupling operations, physical and chemical 
reactions, and other process information. However, due to 
limitations in existing detection technology and the harsh 
working conditions within the blast furnace, it is difficult to 
obtain or retain operational information and process 
parameters, such as the distribution of gas flow, burden 
distribution, molten iron temperature, and pulverized coal 
injection rate, leading to incomplete process information and 
even failure of the detection mechanism, resulting in a lack 
of crucial information during the ironmaking process in the 
blast furnace [18]. For instance, blast furnace ironmaking is a 
distributed system of thermal flow field and an 
infinite-dimensional system. The accurate measurement of its 
temperature and other operational parameters lies in the 
sensor configuration. The distribution of the thermal flow 
field within the furnace is estimated by equipping a large 
number of temperature sensors in the furnace lining and 
cooling system [19]. However, in the current blast furnace 
design and construction process, the approach is limited to 
installing as many sensors as possible to maximize the 
acquisition of temperature information. This engineering 
solution lacks theoretical basis, and inappropriate sensor 
configuration can lead to inconsistent, uncertain, and 
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incomplete information detection, making the detection 
system difficult to maintain. Due to the lack of key 
information detection mechanisms and inaccuracies in 
measuring critical variables, material tracking cannot be 
achieved at the blast furnace production site. Consequently, 
real-time responses to changes in on-site conditions become 
challenging, and operational control remains at a relatively 
crude level, making it difficult to ensure optimal ironmaking 
conditions in large blast furnaces [20, 21]. 

2.2. Challenges in Behavior Characterization 

The optimization control, online safety analysis, and 
abnormal condition diagnosis of large blast furnaces all 
require accurate models of the ironmaking process. However, 
the frequent variations in the properties of raw materials for 
the blast furnace often lead to significant changes in 
production conditions. Due to the complexity of the 
relationships between input conditions, state variables, and 
production objectives, existing models cannot fully describe 
these relationships, resulting in a certain level of blindness in 
process control [22]. 

Inside large blast furnaces, not only temperature fields, gas 
flow fields, and burden flow fields are involved, but also the 
complex coupling of mass transfer, heat transfer, and 
heterogeneous reactions among gas, liquid, and solid phases. 
These complexities make the multiphase and multi-field 
coupling extremely challenging. Large blast furnaces not only 
exhibit multiple spatial and temporal scales but also possess 
characteristics such as non-uniformity, non-steadiness, 
non-equilibrium, and non-linearity. These features render 
existing mathematical descriptions and numerical simulation 
methods inadequate to address the model representation of the 
multiphase and multi-field coupling in large blast furnaces. As 
a result, they cannot fundamentally support online 
optimization and control of large blast furnaces [23, 24]. 

Although a large amount of operational data and 
experiential knowledge has been accumulated in the 
production process of large blast furnaces, the blast furnace 
data-driven models or expert systems established currently 
almost neglect the microscopic mechanisms of blast furnace 
operation. They merely rely on macroscopic reaction 
mechanisms and subjective experiential judgments to make 
rough qualitative correlations, lacking the effective integration 
of mechanistic analysis, operational data, and production 
knowledge. As a consequence, they fail to meet the 
requirements of fine-tuned control aimed at energy 
conservation, consumption reduction, and emissions reduction 
in large blast furnaces [25]. 

2.3. Challenges in Safe Operation Diagnosis 

The ironmaking process in large blast furnaces is a complex 
physical and chemical process, with numerous variables 
affecting the production state and significant coupling 
between these variables. Large blast furnaces lack complete 
and accurate mathematical models, direct measurements of 
key internal states, and sufficient historical data on abnormal 

furnace conditions [26]. These characteristics make it 
challenging to detect and diagnose abnormal furnace 
conditions at an early stage. By the time these conditions 
exceed the alarm threshold and operational parameters are 
adjusted, it is often difficult to avoid consequences such as 
decreased ironmaking quality and output, increased energy 
consumption and emissions, prolonged downtime, and even 
equipment damage, reduced service life, or major safety 
accidents [27]. Additionally, the aforementioned features of 
blast furnaces also prevent the use of existing theories for 
real-time reliability assessment, operational safety evaluation, 
and furnace life prediction, which are crucial for ensuring the 
safety and service life of blast furnace equipment. The 
ironmaking process in large blast furnaces constitutes an 
extremely complex nonlinear dynamic system, lacking 
complete observability and direct means of adjustment, 
rendering existing fault-tolerant control theories unsuitable for 
the self-repair of abnormal operating conditions in blast 
furnaces [28]. 

2.4. Challenges in Process Control 

The ironmaking process in large blast furnaces is a complex 
industrial process characterized by multivariable, strong 
coupling, nonlinearity, significant time delays, inadequate 
regulation means, and a combination of batch and continuous 
operations. It faces challenges in achieving and maintaining 
steady-state optimality concerning both heat balance and 
reaction equilibrium. This includes addressing adjustments 
and recovery under disturbance conditions [29]. Essentially, 
the process control problem involves controlling and 
maintaining the balance of multiple physical field 
distributions in large blast furnaces, which is crucial for 
energy conservation, emission reduction, and consumption 
reduction. Disruption of the balance point can lead directly to 
high energy consumption and low performance indicators. 
Severe disturbances to steady operation may even cause 
shutdowns and accidents, resulting in significant energy and 
resource wastage [30]. 

The physical fields within the blast furnace include the 
distribution of gas flow fields, burden surface shapes, 
softening and melting zones, and thermal conditions. The 
interactions among these multiple fields make dynamic 
corrections difficult. The stable control of these critical 
process parameters still relies on manual operation based on 
experience. Currently, the production process of large blast 
furnaces does not adequately consider the segregation in 
physical field distributions caused by the coupling of multiple 
physical fields or the parameter field distribution patterns 
formed by interactions at multiple phase interfaces. As a result, 
it is challenging to implement real-time control to eliminate 
the effects of abnormal furnace conditions such as hanging 
burden, hanging scaffolds, clogging, and difficult flow on the 
ironmaking process. This leads to furnace damage, increased 
energy consumption, reduced output, and even hindered 
production [31]. Existing industrial control technologies 
cannot achieve comprehensive optimization control of process 
indicators such as production yield, quality, and energy 
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consumption during the production process. They fail to 
ensure the operational optimization of large blast furnace 
production, making it difficult to truly achieve the goal of 
energy conservation, emission reduction, and consumption 
reduction. 

2.5. Challenges in Process Optimization 

The ironmaking process in large blast furnaces exhibits 
characteristics such as nonlinearity and multiple constraints. 
To optimize the process indicators in blast furnace operation, 
research on optimizing operational parameters is mainly 
focused on four major control systems: burden distribution, air 
supply system, heat system, and slag-making system. By 
combining top-level and bottom-level adjustments, 
optimizations are made to the raw materials charged into the 
furnace, burden surface shape, gas flow distribution, and 
furnace hearth heat, among others [32]. However, as a 
high-temperature, high-pressure, and large-scale closed 
reactor, the blast furnace has a complex internal structure and 
operating mechanisms. It involves numerous parameters with 
spatial and temporal coupling distributions, multiple 
coexisting laws, and mutual interferences. Optimize for a 
single objective may lead to deterioration in other indicators, 
necessitating multi-objective optimization [33-35]. 

For example, optimizing the burden distribution in the blast 
furnace requires considering the chemical composition, 
metallurgical properties, and usage ratios of sinter, pellets, and 
lump ores. Additionally, it needs to meet the requirements of 
the ironmaking process, including coke properties, 
slag-making system, blast air supply system, alkali metal 
content, as well as the cost of the produced molten iron and 
overall energy consumption. Moreover, large blast furnaces 
have multiple spatial and temporal scales, and the significant 
time delays associated with these scales may lead to an 
insignificant control effect and a lack of timely and clear 
feedback results [36]. Therefore, the operation optimization of 
the ironmaking process in large blast furnaces faces 

challenges in establishing the objective function, dealing with 
overly complex constraints, and handling the coupling of 
control variables. 

3. Academic Developments 

The iron and steel industry is a fundamental raw materials 
industry for a country, and its development is an important 
indicator of a country's economic strength. In 2018, China, as 
the world's largest steel producer, accounted for 51.31% of 
global crude steel production for the first time, surpassing half 
of the total output. According to the "China Iron and Steel 
Industry Development Report (2016 edition)" released by the 
China Iron and Steel Industry Association, with China's 
economy transitioning from high-speed growth to a new 
normal and undergoing supply-side structural reforms, the 
Chinese iron and steel industry will further enhance the 
decisive role of the market in resource allocation, promote 
continuous reform, innovation, transformation, and green 
development. 

However, large blast furnace production environments are 
harsh, and safety requirements are extremely high, making it 
difficult for conventional technological innovations to be 
tested and applied on blast furnaces. Therefore, the research 
team led by Sun Youxian from Zhejiang University has 
constructed, for the first time, a large blast furnace 
quasi-physical parallel experimental verification cloud 
platform (as shown in Figure 3). The parallel experimental 
verification platform consists of a laboratory platform 
(including a remote data center, remote monitoring center, 
remote operation and control center, remote diagnosis center, 
and remote optimization center) and an industrial field 
platform (including detection, modeling, control, diagnosis, 
and optimization subsystems). This platform provides a 
testing environment for various algorithms aimed at 
high-performance operation control of large blast furnaces. 

 
Figure 3. Cloud platform for process industry. 

3.1. Ironmaking Process Information Detection 

Currently, the information detection in the ironmaking 
process of large blast furnaces mainly focuses on the 
distribution of top gas flow, burden surface shape, softening 
and melting zone position, and furnace hearth erosion. 
Scholars and companies have conducted extensive academic 
research and engineering practices regarding these research 
hotspots. The distribution of top gas flow directly affects the 

temperature distribution inside the furnace, the position of the 
softening and melting zone, the thermal load on the furnace 
wall, and the thermal balance inside the furnace. The 
cross-shaped thermocouple gun at the furnace top is an 
essential device for detecting furnace top temperature and gas 
flow distribution in the ironmaking process of the blast 
furnace. In [37], they studied the principle of rapid 
replacement of the cross-shaped thermocouple gun and 
reduced its impact on the blast furnace downtime. In [38], they 
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used the least squares support vector machine algorithm to 
construct a temperature prediction model for the cross-shaped 
thermocouple gun in the blast furnace and optimized the 
LS-SVM model parameters through particle swarm 
optimization algorithm. In [39], they processed infrared 
images using fuzzy C-means clustering and statistical 
methods to obtain the distribution of the gas flow center and 
gas utilization in the furnace. 

In terms of visualizing the burden surface in the blast 
furnace, technologies such as CCD cameras, infrared thermal 
imagers, radar detectors, and laser detectors have been 
developed [40]. [41] introduced a color-controllable infrared 
camera monitoring and recording system and its practical 
application in monitoring the burden surface of the 1080m3 
blast furnace at Hengyang Valin Steel Tube Co., Ltd. In [42], 
researchers used a reasonable selection of radar numbers and 
detection points, combined with least squares and NURBS 
surface global interpolation methods, to fit the surface and 
generate the burden surface of the blast furnace. In [43], they 
showed that Xingcheng Special Steel's new No. 1 blast 
furnace first used 3D laser scanning technology to measure the 
burden surface, obtaining rich three-dimensional burden 
surface information along the circumference of the blast 
furnace. This allowed real-time acquisition of distance and 
angle information in various directions, enabling analysis of 
the burden load and surface shape. 

The internal physical and chemical changes in the 
softening and melting zone are a crucial control aspect for 
ensuring the smooth operation of the blast furnace, and they 
deeply influence the smelting intensity and smoothness of the 
blast furnace operation. In [44-46], the scholars used X-ray, 
time-domain reflectometry, and radioactive isotope 
determination methods to detect and locate the softening and 
melting zone, allowing analysis of the corresponding 
physical and chemical reactions in the area. In [47], they 
investigated the distribution of unburned coal particles inside 
the inverted V-type, V-type, and W-type softening and 
melting zones, and used the Euler method to numerically 
simulate the accumulation distribution of unburned coal 
particles inside the blast furnace. In [48], they reconstructed 
the gas, liquid, and solid three-phase flow, counterflow, and 
cross-flow conditions by detecting parameters such as gas 
concentration, gas temperature, direct/indirect reduction 
degree, batch weight, and theoretical combustion temperature. 
This allowed obtaining the shape and position of the 
softening and melting zone. 

Regarding the study of furnace hearth erosion, [49] 
established a three-dimensional steady-state heat conduction 
model by measuring the temperature using thermocouples 
embedded in the furnace hearth. They detected the 
distribution of erosion positions at the bottom of the furnace 
hearth with the 1150°C erosion line as the control line. In 
[50], they used temperature data feedback from temperature 
sensors embedded in the furnace hearth to solve the 
numerical heat transfer equation using the gradient descent 
algorithm to find the optimal boundary moving step factor. 
They established a monitoring model for furnace hearth 

erosion conditions and calculated the erosion morphology 
and remaining thickness of the furnace hearth lining. 

3.2. Ironmaking Process Model Construction 

Ironmaking process modeling for large-scale blast furnaces 
has been the subject of research both domestically and 
internationally. In [51], the immune system cloning selection 
mechanism and vaccination strategy were introduced into the 
particle swarm optimization (PSO) algorithm. They improved 
the PSO algorithm to optimize the weights and thresholds of 
the backpropagation (BP) neural network to predict the coke 
ratio and achieve energy-saving and emission reduction. In 
order to reduce carbon dioxide (CO2) emissions, [52] 
conducted an in-depth study on the operation mode of steel 
enterprises based on resource allocation characteristics. They 
established a mathematical model to analyze the impact of 
CO2 emission factors and reveal how resource allocation in 
the steel manufacturing system affects resource consumption 
and the ecological environment. To analyze the complex 
multiphase and multi-stream flow inside the blast furnace, [53] 
used the finite element method to calculate the external solid 
flow model. Additionally, in [54], the finite volume method 
was used to solve the equations for mass, heat, momentum 
conservation, and chemical substances, demonstrating that the 
combination of coal injection and oxygen enrichment can 
effectively reduce the coke ratio, increase production yield, 
and enhance combustion efficiency. 

The blast furnace thermal regime can be represented by 
physical heat or chemical heat. Physical heat refers to the iron 
temperature, while chemical heat represents the silicon 
content in the iron. Predicting the silicon content in the iron in 
advance can assist the furnace operator in understanding the 
thermal conditions inside the blast furnace and judging the 
working status of the hearth. A low silicon content in the iron 
indicates cooling of the furnace, leading to abnormal blast 
furnace operation, requiring actions such as increasing the 
blast temperature, injecting more pulverized coal, or reducing 
the feeding rate. On the other hand, a high silicon content 
indicates intense reactions inside the furnace, causing 
unnecessary fuel waste, thus requiring stable temperature 
control to maintain steady and efficient operation. Previous 
studies [55-58] have achieved good predictive results for the 
silicon content in the iron using models such as generalized 
autoregressive conditional heteroskedasticity, sliding-window 
Takagi-Sugeno fuzzy neural network, particle swarm 
optimization of support vector machines, principal component 
analysis, and partial least squares regression. Based on these 
predictions, further researchers [59-61] used fuzzy classifiers, 
support vector machines, and Bayesian networks to forecast 
trends in silicon content changes, aiding operators in 
anticipating changes in blast furnace operation in advance. 

The distribution of burden materials in the throat region 
significantly impacts the stable and efficient operation of the 
blast furnace. In modeling the burden distribution, some 
studies [62] employed kernel extreme learning machine to 
construct a predictive model for process parameters, and then 
treated the burden distribution as a multi-objective 
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optimization problem solved through an improved two-stage 
intelligent optimization strategy. Others [63] first calculated 
the coordinates of the radar at the furnace top and then used 
multiple radar data to solve cubic equations for calculating the 
burden distribution before the multi-layer zone. Additionally, 
studies [64] investigated the burden distribution considering 
non-uniform descent rates and compared geometric profile 
models with stream function models, with the latter proving to 
be more effective in describing the burden distribution in 
irregularly shaped furnace walls. Discrete element methods 
were also applied in research [65] to study burden distribution 
and discussed the influence of key parameters such as chute 
angle and friction coefficient. The burden distribution also 
affects the shape and position of the cohesive zone, thus 
influencing the operational conditions of the blast furnace. 
Regarding the cohesive zone, research [66] elucidated the 
mechanisms of iron ore softening and melting and their 
potential effects on the blast furnace cohesive zone. The study 
[67] discussed the gas and powder flow patterns under 
different cohesive zone shapes, while another study [68] 
presented a method to simulate gas flow distribution in the 
cohesive zone. Additionally, CFD simulations were utilized to 
study the multiphase flow and reaction processes in the 
cohesive zone [69]. 

3.3. Ironmaking Process Fault Diagnosis 

The faults in the blast furnace ironmaking process 
specifically refer to abnormal furnace conditions, and fault 
diagnosis in the ironmaking process is crucial for the safe and 
stable operation of large blast furnaces. Existing methods for 
diagnosing abnormal furnace conditions in large blast 
furnaces can be broadly categorized into two main types: 
expert system-based methods and data-driven methods, with 
data-driven models further divided into machine learning and 
multivariate statistical analysis. 

Expert system-based methods for diagnosing abnormal 
furnace conditions in large blast furnaces rely on establishing 
a rule base based on ironmaking knowledge and manual 
experience. They then design a set of reasoning and 
decision-making methods to diagnose abnormal furnace 
conditions. In literature [70], a method for extracting 
characteristic parameters to determine abnormal furnace 
conditions in blast furnaces is proposed based on statistics and 
fuzzy mathematics. An abnormal furnace condition 
determination method is also provided based on fuzzy 
inference. Literature [71] analyzes the characterization 
parameters of abnormal furnace conditions in blast furnaces 
from various aspects, considering ironmaking theory and 
actual production conditions. They extract feature values 
through statistical analysis and establish a comprehensive 
expert system for abnormal furnace condition warning in blast 
furnaces, combining fuzzy inference with production rules. 
Literature [72] uses fuzzy mathematics theory to handle 
uncertain knowledge and organizes it using If-Then rules for 
blast furnace abnormal condition diagnosis. Literature [73] 
employs artificial intelligence and fuzzy mathematics 
concepts, using a combination of forward and backward 

reasoning strategies to diagnose ten types of abnormal furnace 
conditions. For four specific abnormal furnace conditions, 
namely hanging burden, pipeline issues, hearth accumulation, 
and collapse, literature [74] constructs reasoning graphs and 
employs rule-based methods for diagnosis. Literature [75] 
uses forward reasoning, driven by input data, to match rules 
during the reasoning process and provides the credibility of 
various furnace conditions. 

Methods for diagnosing abnormal furnace conditions in 
large blast furnaces based on machine learning primarily use 
monitoring data from normal and abnormal furnace conditions 
for model training. In literature [76], a Bagging-based support 
vector machine ensemble architecture is constructed, and a 
novel abnormal furnace condition diagnosis model is 
proposed within this framework. To speed up the fault 
diagnosis process, literature [77] introduces a cost-sensitive 
least squares support vector machine. Considering the 
imbalance in blast furnace data samples, literature [78] 
provides a fault binary classification method based on 
self-organizing maps and fuzzy inference systems. Literature 
[79] proposes a blast furnace operating condition monitoring 
method based on fuzzy logic and neural networks, used to 
detect abnormal furnace conditions and predict furnace 
cooling. Bayesian networks are applied to model and diagnose 
abnormal furnace conditions in literature [80]. Based on an 
improved autoregressive model, literature [81] extracts 
variable autocorrelation and cross-correlation information to 
achieve complex dynamic industrial process monitoring. After 
in-depth analysis of blast furnace smelting characteristics, 
literature [82] identifies generalization and adaptability as two 
important features for blast furnace condition judgment. 

Methods for diagnosing abnormal furnace conditions in 
large blast furnaces based on multivariate statistics utilize 
changes in the relationships between monitoring variables 
during the ironmaking process for fault diagnosis research. In 
literature [83], a sliding window hidden Markov model is 
proposed for online multimodal monitoring, and at the same 
time, literature [84] also applies this method to detect 
unknown faults in blast furnaces. Literature [85] introduces a 
change point detection method based on graph theory, 
enabling the monitoring of abnormal furnace conditions in the 
ironmaking process. Minor faults in the ironmaking process 
may be overlooked by operators as disturbances, which can 
pose significant safety risks to blast furnace production. 
Therefore, literature [86] achieves the diagnosis of minor 
faults in the blast furnace using robust principal component 
tracking. For the multivariate detection problem in blast 
furnaces, literature [87] uses projection methods to reduce the 
dimensionality of multivariate monitoring information and 
implements principal component model design, testing, and 
online algorithms for process detection. The blast air blowing 
process in the blast furnace can also affect the furnace 
condition. In literature [88], a recursive variable statistical 
analysis method is proposed, and an index switching strategy 
is employed to eliminate the impact of hot blast stove 
switching. 
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3.4. Ironmaking Process Operation Control 

Researchers both domestically and internationally have 
established process control models based on mechanistic 
models, data-driven approaches, intelligent models, and 
expert systems, aiming to achieve semi-automatic or fully 
automatic closed-loop operation for ironmaking in blast 
furnaces. Zhejiang University, Tsinghua University, Shanghai 
Jiao Tong University, Northeastern University, and Central 
South University have collaboratively developed a hybrid 
operation control system of large-scale blast furnace (as 
shown in Figure 4). This system includes two small 

closed-loop control circuits and one large closed-loop control 
circuit, which are respectively responsible for controlling the 
burden distribution at the furnace top, controlling the hot 
metal quality at the furnace bottom, and optimizing the overall 
operation of the blast furnace. This control system was 
validated in the No. 2 blast furnace of Liuzhou Iron & Steel 
Group, achieving significant results in the field with a 9.9% 
increase in the furnace utilization coefficient, an 8.3 kg/t 
reduction in fuel ratio, a 9.4% improvement in hot metal 
quality rate, and a 40% decrease in idle-blowing rate over one 
year of actual operation. 

 
Figure 4. Hybrid operation control system of large-scale blast furnace. 

Regarding the control of burden distribution at the furnace 
top, literature [89] establishes a mathematical model based on 
the analysis of blast furnace structure, ore size, and material 
flow trajectory to control the burden distribution in bell-less 
top furnaces. By using gas utilization rate as an energy 
consumption index and employing support vector machines to 
predict state parameters, literature [90] controls the burden 
distribution through changes in the burden matrix based on the 
trend of energy consumption index. Literature [91] first 
establishes a clustering method based on dynamic time 
warping and adaptive resonance theory, and then optimizes 
process indicators using reinforcement learning to achieve 
control over the burden distribution. Based on the data of 
burden distribution obtained from radar probe measurements, 
literature [92] controls the burden matrix for the closed-loop 
control of burden distribution in the blast furnace, using the 
difference between the ideal burden surface and the actual 
burden surface determined by fuzzy support vector machines. 
With the increase in blast furnace gas utilization and 
permeability, reducing the coke ratio in the ironmaking 

process is imperative. Literature [93] achieves a reduction in 
coke consumption during the burdening process by 
controlling the optimal position and amount of the charging 
materials in the furnace top hopper. 

In terms of hot metal quality control, considering the 
crucial importance of silicon, sulfur, and phosphorus content 
in pig iron for the economic operation of blast furnaces, 
literature [94] applies state-space method for predicting and 
controlling the hot metal quality indicators. Literature [95] 
proposes a method for controlling the silicon and sulfur 
content in hot metal based on neural networks and expert 
systems. Literature [96] uses sliding-window linear Volterra 
filter for predicting and controlling the silicon content in hot 
metal. In contrast, literature [97] utilizes a dynamic linear 
adaptive control method to control the hot metal quality 
indicators. Besides chemical composition, hot metal quality 
indicators also include the physical temperature of hot metal. 
Literature [98] achieves the control of hot metal temperature 
using the Hammerstein-Wiener model. Literature [99] builds 
a model tree to relate operational parameters with hot metal 
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temperature, enabling the control of the internal thermal state 
in the blast furnace through predicting the hot metal 
temperature. 

In other aspects of blast furnace control, literature [100] 
proposes a temperature control method for the thermal 
insulation zone to improve the reaction efficiency inside the 
furnace. For the control of top pressure in the blast furnace, 
literature [101] models the top gas pressure based on 
subspace identification to maintain stability in top pressure 
after the operation of blast furnace gas pressure recovery 
turbine. Similarly, to maintain stable top pressure, literature 
[102] uses fuzzy decoupling control to limit the fluctuation 
range of top gas pressure within ±2kPa. For the control of 
slag-making process, literature [103] employs extreme 
learning machine to control the slag-making system in blast 
furnace production with different operating conditions. By 
combining fuzzy rules and neural networks, literature [104] 
presents a domain knowledge-based optimization control 
method for blast furnace gas flow distribution. To control the 
nitrogen oxides content in the exhaust gas emission from the 
blast furnace, literature [105] simulates chemical reactions in 
the fluid using computational fluid dynamics to assist 
operators in controlling the blast furnace hot blast 
temperature and composition. For controlling the liquid level 
in the hearth, literature [106] calculates the slag-iron 
generation rate to provide engineering personnel with 
recommendations on opening and closing the tapping hole. 

3.5. Ironmaking Process Operation Optimization 

In order to improve the performance indicators of large 
blast furnaces and ensure their overall operation is in the 
optimal state, it is necessary to accurately characterize the 
dynamic coupling relationship between process indicators 
such as hot metal quality, production, and energy consumption, 
and the quality of raw fuels, operational parameters, and state 
parameters. Additionally, real-time monitoring of 
performance indicators and their trend changes in large blast 
furnaces, along with deep optimization of raw fuel quality and 
key process parameters, is required. Furthermore, coordinated 
optimization decisions must be made for multiple operating 
parameters to regulate the performance indicators of large 
blast furnaces. 

Regarding the single-objective optimization problem in 
blast furnace ironmaking, when the steel market environment 
is favorable for maximizing hot metal production, literature 
[107] optimizes the hot metal yield by constructing theoretical 
models and analyzes the effects of oxygen enrichment rate, 
wind rate, blast humidity, sinter ratio, and pulverized coal 
injection. To achieve a higher pulverized coal utilization rate, 
literature [108] optimizes operational parameters such as 
oxygen enrichment rate, wind velocity, and coal powder 
particle size based on computational fluid dynamics and grey 
relational analysis. Literature [109] introduces a wavelet 
neural network based on probability density function and its 
application in optimizing the blast furnace top temperature. 
For minimizing CO2 emissions, literature [110] establishes 
multiple mass and energy conservation equations and solves 

the objective function using quadratic programming. 
Literature [111] utilizes particle swarm optimization to obtain 
the optimal solution for the difference between the actual and 
ideal burden surfaces, which is then applied to optimize the 
blast furnace burden distribution. Literature [112] employs 
machine learning algorithms to identify and optimize 
operating parameters that affect the economic and technical 
indicators of the blast furnace. Literature [113] uses ANSYS 
to simulate the temperature and flow fields inside the blast 
furnace and optimizes the ironmaking process indicators by 
adjusting operating parameters such as cold air flow rate and 
pulverized coal injection. 

Regarding the multi-objective optimization problem in 
blast furnace ironmaking, literature [114] solves the Pareto 
boundary values of throat cooling loss, gas flow rate, throat 
velocity, utilization coefficient, and coke ratio using 
multi-objective genetic planning and evolutionary neural 
network algorithm. To achieve the goal of "energy saving, 
reduction of consumption, emission reduction, and production 
increase", literature [115] optimizes process parameters based 
on modern thermodynamic theory. Similarly, for energy 
saving and emission reduction, literature [116] establishes 
material and energy conservation equations as constraints and 
takes cost, CO2 emissions, and carbon loss as optimization 
objectives, optimizing control variables such as coke ratio, 
coal ratio, wind temperature, and metalization rate of furnace 
burden. Literature [117] first establishes the mapping 
relationship between operational parameters and process 
indicators based on BP neural network and then solves the 
multi-objective problem using genetic algorithm to find the 
operating conditions that simultaneously achieve the lowest 
cost and coke ratio while maximizing hot metal quality. 
Building upon this, literature [118] investigates the 
multi-objective optimization problem in large blast furnaces 
based on LSTM neural network and NSGA-II genetic 
algorithm, and the research results are verified in industrial 
sites, showing significant optimization effects on various 
process indicators. 

4. Conclusion and Outlook 

After years of rapid development, China's iron and steel 
industry has transformed from backwardness to standing side 
by side with the iron and steel powerhouses in Europe and 
America. Especially in the field of large blast furnace 
ironmaking, it has achieved numerous remarkable 
achievements that have drawn worldwide attention. However, 
the existing research mainly focuses on individual processes 
of the blast furnace, lacking studies on intelligent coordinated 
optimization of the entire ironmaking process, including raw 
material yard, sintering, and blast furnace operations 
[119-122]. This has resulted in issues such as high energy 
consumption, low efficiency, poor coordination, and unstable 
product quality in ironmaking production, severely hindering 
the green, efficient, and intelligent development of the 
steelmaking process. Currently, research conducted within the 
"detection-modeling-diagnosis-control-optimization" 
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framework still has the following deficiencies: 
Lack of fine material blending and dynamic tracking; 
Difficulty in precise regulation and strong subjectivity in 

operations; 
Delayed detection and low credibility in abnormal 

condition monitoring; 
Insufficient intelligent optimization decision-making 

methods. 

4.1. Key Information Perception and Tracking 

In the raw material blending yard, to address issues such as 
frequent fluctuations in material information and the inability 
to determine performance indicators in real-time, research 
focuses on intelligent tagging techniques based on material 
information detection, intelligent supplementation techniques 
based on spatiotemporal scale matching, and intelligent 
verification techniques based on reading labels. These 
methods achieve full-process tracking of material information. 
During the sintering process, for the difficulty in accurately 
measuring the content of ferrous oxide online, research 
explores intelligent perception methods that integrate multiple 
heterogeneous features and multiphase thermodynamic 
models. 

To overcome the low signal-to-noise ratio and high noise in 
detecting the sinter layer thickness and red layer morphology 
in the sintering machine, the study investigates the fusion of 
infrared thermal imaging and stereoscopic vision imaging for 
detecting the sinter layer thickness and red layer morphology. 
In the blast furnace ironmaking process, due to the harsh 
environment at the top of the furnace, making it challenging to 
detect furnace burden information, the research focuses on 
multi-spectral, multi-lens, and multi-dimensional holographic 
imaging methods and techniques for furnace burden imaging. 
Additionally, to address difficulties in accurately detecting 
key parameters of molten iron, such as temperature, flow rate, 
and dust content, due to the high temperature, fast flow, and 
high dust in the taphole, research explores online perception 
methods and techniques using non-cooled infrared imagers 
and high-speed industrial cameras. To tackle the global 
challenge of real-time online detection of molten iron 
composition, the study investigates intelligent perception 
methods that combine laser-induced breakdown spectroscopy 
and hyperspectral techniques. 

Furthermore, to deal with the slow erosion process of the 
blast furnace lining, complex furnace wall structure, and 
difficulty in obtaining the furnace thickness, research focuses 
on online detection methods and techniques for furnace 
thickness based on shock wave reflection theory. Finally, the 
study analyzes the correlation between individual processes 
such as raw material blending, sintering, and blast furnace 
operations in terms of time, space, and functionality. It 
explores deep fusion and collaborative methods for 
multi-source, multi-dimensional, and multi-scale key 
information, aiming to lay a scientific data foundation for 
intelligent coordinated optimization in large-scale ironmaking 
systems. 

4.2. Intelligent Raw Material Blending Methods and 

Implementation 

For uniform raw material blending in the blending yard, 
research focuses on optimal blending theories and methods 
under multiple constraints such as the blending ore grade and 
alumina content. The sintering process is a complex coupled 
chemical reaction process, making it difficult to characterize 
its internal mechanisms, and the empirical knowledge gained 
from on-site experience may have a limited shelf life. 
However, process data contains rich internal patterns of the 
sintering process. Therefore, research is conducted on 
intelligent raw material blending methods for the sintering 
process that integrate sintering mechanisms, operational data, 
and expert experience while satisfying conditions related to 
sintering ore chemical composition, quality, and strength. 

For large-scale blast furnace charging research, it is 
essential to meet requirements related to molten iron quality, 
slagging regime, harmful element load, smooth operation, etc. 
The focus should not be limited to the details of multivariate 
coupling within the blast furnace smelting process. Instead, it 
should explore blast furnace intelligent raw material blending 
theories and methods from the perspectives of energy flow, 
material flow, and information flow. 

The interactions and constraints between uniform raw 
material blending, sintering ore blending, and large-scale blast 
furnace charging are complex and involve intricate coupling 
factor transmissions among the three. To achieve optimal raw 
material blending for the entire ironmaking system, it is 
necessary to consider coordinated optimization among the 
three blending systems. Hence, the study integrates process 
mechanisms, material information, and experiential 
knowledge to investigate multi-level intelligent and 
coordinated raw material blending methods and their 
implementation in large-scale ironmaking systems. 

4.3. Intelligent Optimization of Operational Parameters 

Based on the real-time detection technology of the internal 
endoscopic three-dimensional material surface in the charging 
process, research is conducted to achieve intelligent operation 
control of the three-dimensional shape optimization of the 
blast furnace charging process. By considering the desired 
ideal material surface shape under different burden and 
furnace conditions, the actual material surface distribution is 
adjusted optimally, including adjustments to the chute angle, 
the number of charging circles at each angle, and the circular 
angle of the chute, to make it close to the ideal material surface 
shape. This approach enables stable and low-consumption 
operation of the blast furnace. 

A multi-objective operation control system is established, 
relating to the iron quality indicators (molten iron temperature, 
Si content) and energy consumption indicators (fuel ratio) to 
key control inputs such as hot air and coal injection. Research 
is conducted to implement a multi-objective operation 
optimization control method for ironmaking processes in the 
blast furnace with a focus on optimizing both iron quality and 
fuel ratio. To obtain iron ore raw materials with stable 
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composition and uniform particle size for the blast furnace 
ironmaking process and to reduce uncertainties and 
fluctuations in blast furnace production and operation control, 
research is conducted to comprehensively consider the 
sintering end point and sinter quality in an intelligent control 
method for the sintering process. Additionally, an intelligent 
optimization control method for the sintering raw material 
blending process is studied, with the aim of achieving 
high-quality sinter with low costs. 

4.4. Intelligent Monitoring and Diagnosis of Operational 

Conditions 

Research is conducted on the intelligent dynamic 
monitoring of leakage conditions in the sintering machine, 
which integrates data and knowledge. Based on multiple 
sensor data sources, such as sintering fan current, voltage, 
waste gas temperature, bed thickness, oxygen content, etc., the 
leakage rate in the sintering machine is dynamically 
monitored in real-time. The relationship between the leakage 
rate and sintering production indicators (yield, quality, power 
consumption, etc.) is also studied. 

Methods for early detection of abnormal conditions in large 
blast furnaces based on artificial intelligence are investigated, 
including unsupervised learning-based multi-mode adaptive 
identification methods and deep learning-based early 
detection methods for time-varying mode conditions. 
Artificial intelligence-based diagnostic methods for abnormal 
conditions in large blast furnaces are studied. This includes 
unsupervised data clustering methods considering 
multivariate correlations and abnormal condition diagnostic 
methods based on transfer learning under imbalanced sample 
conditions. 

Methods for the collaborative integrated monitoring and 
diagnosis of multi-process-coupled ironmaking systems are 
explored. The coupling relationship between sintering and 
subsequent ironmaking processes is analyzed to understand 
the impact of sintering on the subsequent ironmaking process. 
The combination of blast furnace variables, such as charging 
matrix, material distribution, material surface curve, with 
sintering process variables is investigated. Process operation 
knowledge is also integrated with operational data to achieve 
collaborative integrated monitoring across multiple 
processes. 

4.5. Intelligent Collaborative Optimization and Scheduling 

To address the challenges of decentralized production 
processes and diverse equipment networks with inconsistent 
production objectives in sintering and blast furnace operations, 
an integrated modeling approach based on deep learning, 
dynamic programming, and distributed networks is proposed. 
This approach achieves integrated optimization and 
scheduling modeling for sintering and blast furnace operations, 
considering multiple constraints such as production objectives 
and equipment networks. For the variability in ore grade and 
coke quality, equipment status switches, and diverse 
production indicators, a route optimization method based on 

graph theory, EM algorithm, and genetic algorithm is 
proposed. This method optimizes the process paths by 
coupling the quality of raw materials, equipment status, and 
production indicators. 

Considering the dynamic changes and mutual influences of 
process parameters, operating parameters, and process 
parameters in multiple processes, a multi-objective 
optimization control method based on neural networks, 
random forests, and NSGA-II algorithm is proposed. This 
method achieves dynamic optimization of process parameters 
across multiple processes, focusing on energy saving, cost 
reduction, and achieving optimal process matching. An 
indicator system and evaluation method are proposed for 
intelligent collaborative optimization in large-scale 
ironmaking systems. This allows information fusion and 
mechanism coupling in large-scale ironmaking systems, 
constructing a verification platform for intelligent 
collaborative optimization and scheduling in large-scale 
ironmaking systems. 
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