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Abstract: In the teaching of dynamic games with incomplete information, the solution of perfect Bayesian equilibrium is a 

difficult point. Although there is no general solution to the general dynamic games with incomplete information, there is a 

general solution method to the signaling games. Most of the existing game theory textbooks do not give clear solving methods 

and specific calculation steps. This paper analyses how to calculate the perfect Bayesian equilibrium of an extensive-form 

signaling game through an example. In this paper, Gibbons' definition of perfect Bayesian equilibrium is taken as the definition 

of perfect Bayesian equilibrium. The definition attaches four requirements to Nash equilibrium. That is, in a dynamic game with 

incomplete information, the Nash equilibrium satisfying these four requirements is a perfect Bayesian equilibrium. The 

calculation process is divided into 4 steps. First, the belief hypothesis. Second, analysis of the signal receiver’s strategy and the 

requirements for the posterior probability. Third, analysis of the signal sender’s behavior according to different belief 

combinations. Finally, the posterior probabilities are analyzed using the requirements 3 and 4 in the perfect Bayesian equilibrium 

definition. On the basis of the previous analyses, the perfect Bayesian equilibria of the signaling game can be calculated step by 

step. 
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1. Introduction 

In the learning or teaching of game theory, the concept of 

perfect Bayesian equilibrium (PBE) usually can be understood, 

but the solution of perfect Bayesian equilibrium is a difficult 

problem. The definition of perfect Bayesian equilibrium is 

given in many game theory textbooks, but it seems that few 

textbooks or papers give detailed solutions to this problem. 

For example, Weiying Zhang [1], Guangming Hou and Cunjin 

Li [2] both give the same example and give the perfect 

Bayesian equilibria of the game. But they don’t give the 

specific solution method. Other game theory textbooks 

(Gibbons [3]; Fudenberg and Tirole [4]; Osborne and 

Rubinstein [5]; Dutta [6]; Shiyu Xie [7]; Changde Zheng [8]) 

and papers (Fudenberg and Tirole [9]; Giacomo Bonanno 

[10]; Julio and Miguel [11]) don’t either give the specific 

solution method. Of course, there are a few game theory 

textbooks, for example, Steven [12], Peters [13] and 

Rasmusen [14], which have analysed this problem. When 

many students study this section, they usually can understand 

the concept of perfect Bayesian equilibrium, but they don’t 

know how to solve the equilibrium. 

This brings some confusion to the study and application of 

the dynamic game theory of incomplete information. Tirole 

thinks that there exists no general method. However, a few 

systematic tricks are of use in solving these games [15]. This 

paper considers that the role of this systematic technique may 

be more embodied in solving the perfect Bayesian equilibrium 

of the signaling games. 

This paper attempts to illustrate how to solve the perfect 

Bayesian equilibrium of a dynamic game of incomplete 

information by an example. 

A perfect Bayesian equilibrium is a set of strategies and 

beliefs such that, at any stage of the game, strategies are 

optimal given the beliefs, and the beliefs are obtained from 

equilibrium strategies and observed actions using Bayes’ rule 

[9]. 

In order to make the calculation more operable in this paper, 

the definition of Gibbons is used as the definition of perfect 

Bayesian equilibrium. 
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2. Definition of Perfect Bayesian 

Equilibrium 

The definition involves four requirements [3]. 

Requirement 1 At each information set, the player with the 

move must have a belief about which node in the information 

set has been reached by the play of the game. 

For a non-singleton information set, a belief is a probability 

distribution over the nodes in the information set; for a 

singleton information set, the player’s belief puts probability 

one on the single decision node. 

Requirement 2 Given their beliefs, the players’ strategies 

must be sequentially rational. 

Requirement 3 At information sets on the equilibrium path, 

beliefs are determined by Bayes’ rule and the players’ 

equilibrium strategies. 

Requirement 4 At information sets off the equilibrium path, 

beliefs are determined by Bayes’ rule and the players’ 

equilibrium strategies where possible. 

Requirement 1 implies that if the play of the game reaches 

certain player’s non-singleton information set, then the player 

must have a belief about which node has been reached. 

Requirement 2 implies that given the player’s belief, how the 

player should choose his own strategies. Requirements 3 and 4 

stipulate how the belief should be inferred. 

Definition A perfect Bayesian equilibrium consists of 

strategies and beliefs satisfying Requirements 1 through 4. 

3. Calculation of Perfect Bayesian 

Equilibrium 

This section uses the example mentioned in the introduction 

to illustrate how to calculate the perfect Bayesian equilibrium 

that satisfies the above 4 requirements (only pure strategies 

are discussed in this paper). 

Consider the following signaling game (market entry 

game). 

Suppose that there are two stages and two firms in the 

signaling game. Firm 1, the incumbent, is a monopoly at the 

first stage and chooses a price. Firm 2, the entrant, then 

decides whether to enter the market at the second stage after 

observing the price of firm 1. If firm 2 enters, there is 

duopolistic competition between the two firms at stage 2. 

Otherwise, firm 1 remains a monopoly. 

Information is asymmetric: firm 1 knows its cost type from 

the start. Firm 2 does not know firm 1’s specific cost type, but 

knows that firm 1 has two possible types: high cost (with 

probability µ) or low cost (with probability 1-µ). These two 

types are denoted by t1 and t2, respectively. Suppose that the 

entrant has only one type: in the case of entry, it’s cost is the 

same as the cost of the high cost incumbent. 

At the first stage, firm 1, as a monopolistic incumbent, 

decides its price. Suppose that it has three prices to choose: 

p=4, p=5 or p=6. if the incumbent’s cost is high, the profits 

corresponding to the three prices are 2, 6 or 7; if the 

incumbent’s cost is low, the profits corresponding to the three 

prices are 6, 9 or 8. Therefore, the single stage optimal 

monopoly price of the high cost incumbent is p=6, and the 

single stage optimal monopoly price of the low cost 

incumbent is p=5. 

At the second stage, if the entrant enters, the cost function 

of the incumbent becomes common knowledge. If the 

incumbent is a high cost type, the cost functions of the two 

firms are the same. The price of symmetrical Cournot model is 

p=5, the profit of each firm is 3. Deducting the entry cost 2, the 

net profit of the entrant is 1. If the incumbent is low cost type, 

the cost functions of the two firms are different. The price of 

asymmetrical Cournot model is p=4, the profit of firm 1 is 5, 

deducting the entry cost 2, the net profit of the entrant is -1. If 

firm 2 does not enter, firm 1 remains a monopoly, the profits 

under different prices are the same as the first stage’s. So, 

under such hypotheses, in the complete information case, the 

incumbent would enter if and only if firm 1’s cost is high. 

 
Figure 1. Market entry game. 
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The above game can be depicted in Figure 1. 

Obviously, this is a signaling game. 

Let T={t1, t2} denotes the type set of the incumbent, where 

t1 and t2 denote high cost and low cost types, respectively. 

M={4, 5, 6} denotes the signal set of the incumbent, where 4, 

5 and 6 denote prices. A={u, d} denotes the action set of the 

entrant, where u and d represent entry and exit, respectively. 

We can calculate the perfect Bayesian equilibrium of the 

signaling game according to the following steps. 

Step 1 belief hypothesis 

Suppose that firm 2 has beliefs p1, p2 and p3 in its three 

information sets (denoted by h (4), h (5) and h (6) 

respectively), these beliefs are depicted in Figure 1. 

Step 2 Analysis of the behavior choice of the receiver 

(entrant) 

Now, we analyse the actions of the receiver and the 

requirements for the posterior probability. 

For the receiver (firm 2), when he receives the signal p=4, 

his action, a
*
(4), should maximize his expected returns. That 

is, a
*
(4) is the solution of the following equation. 

)]4(,4,[maxarg)4(*
kiR

Aa
atEua

k ∈
∈         (1) 





≤
≥−

=−=

×−+×−×−+×=
∈

2/10

2/112
}0,12max{

}0)1(0),1()1(1max{)]4(,4,[max

1

11

1

1111

p

pp
p

ppppatEu kiR
Aak

                   (2) 

The receiver’s optimal actions can be deduced. 
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In the same way, when p=5 and p=6 are observed, his 

decisions are the same as a*(4). 
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From equations (3) and (4), If the incumbent considers the 

posterior probability pi≥1/2 (i=1, 2, 3), no matter what price 

the incumbent chooses in the first stage, the entrant will 

choose to enter. Otherwise, he will choose not to enter. 

Step 3 Analysis of the behavior choice of the sender 

(incumbent) 

The following different eight cases are discussed according 

to step 2. In table 1, eight belief combinations are listed. 

Table 1. 8 combinations of belief. 

 p1 p2 p3 

1 ≥1/2 ≥1/2 ≥1/2 

2 ≥1/2 ≥1/2 ≤1/2 

3 ≥1/2 ≤1/2 ≥1/2 

4 ≤1/2 ≥1/2 ≥1/2 

5 ≤1/2 ≤1/2 ≥1/2 

6 ≤1/2 ≥1/2 ≤1/2 

7 ≥1/2 ≤1/2 ≤1/2 

8 ≤1/2 ≤1/2 ≤1/2 

 

When nature endows the incumbent with type ti (i=1, 2), 

under the condition of inferring the receiver’s optimal action 

a
*
(ti), The sender selects the signal m

*
(ti) to maximize its own 

revenue. that is, m
*
(ti) is the solution of the following 

equation. 
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Where mj∈M={4, 5, 6}, j=1, 2, 3. 

For the type of t1, according to different combinations of 

beliefs, this problem is discussed in eight different cases. 
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The sender’s optimal signals can be deduced. 
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From equation (6), If p1≥1/2, p2≥1/2, p3≥1/2 or p1≤1/2, p2≤1/2, p3≤1/2, the sender will choose high price, i. e. p=6, in the first 

stage. 

(2) p1≥1/2, p2≥1/2, p3≤1/2 or p1≤1/2, p2≤1/2, p3≥1/2 
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The sender’s optimal signals can be deduced. 
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From equation (7), If p1≥1/2, p2≥1/2, p3≤1/2, the sender will 

choose p=6. if p1≤1/2, p2≤1/2, p3≥1/2, the sender will choose 

p=5 in the first stage. 

(3) p1≥1/2, p2≤1/2, p3≥1/2 or p1≤1/2, p2≥1/2, p3≤1/2 

Since 





≤≥≤
≥≤≥

=





≤≥≤
≥≤≥

=

∈

2/1,2/1,2/1}14,9,9max{

2/1,2/1,2/1}10,13,5max{

2/1,2/1,2/1)},6,(),,5,(),,4,(max{

2/1,2/1,2/1)},6,(),,5,(),,4,(max{

)](,,[max

321

321

321111

321111

*
1

}6,5,4{

ppp

ppp

pppdtuutudtu

ppputudtuutu

mamtu

sss

sss

jjs
m j

 

The sender’s optimal signals can be deduced. 
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From equation (8), If p1≥1/2, p2≤1/2, p3≥1/2, the sender will choose p=5. if p1≤1/2, p2≥1/2, p3≤1/2, the sender will choose p=6 

in the first stage. 

(4) p1≤1/2, p2≥1/2, p3≥1/2 or p1≥1/2, p2≤1/2, p3≤1/2 

Since 
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The sender’s optimal signals can be deduced. 
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From equation (9), If p1≤1/2, p2≥1/2, p3≥1/2 or p1≥1/2, 

p2≤1/2, p3≤1/2, the sender will choose high price, i e. p=6, in 

the first stage. 

For the type of t2, according to different combinations of 

beliefs, this problem is discussed in eight different cases. 

(1) p1≥1/2, p2≥1/2, p3≥1/2 or p1≤1/2, p2≤1/2, p3≤1/2 

Since 
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The sender’s optimal signals can be deduced. 
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From equation (10), If p1≥1/2, p2≥1/2, p3≥1/2 or p1≤1/2, p2≤1/2, p3≤1/2, the sender will choose p=5 in the first stage. 

(2) p1≥1/2, p2≥1/2, p3≤1/2 or p1≤1/2, p2≤1/2, p3≥1/2 
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The sender’s optimal signals can be deduced. 
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From equation (11), If p1≥1/2, p2≥1/2, p3≤1/2, the sender 

will choose p=6. if p1≤1/2, p2≤1/2, p3≥1/2, the sender will 

choose p=5 in the first stage. 

(3) p1≥1/2, p2≤1/2, p3≥1/2 or p1≤1/2, p2≥1/2, p3≤1/2 

Since 
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The sender’s optimal signals can be deduced. 
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From equation (12), If p1≥1/2, p2≤1/2, p3≥1/2, the sender will choose p=5. if p1≤1/2, p2≥1/2, p3≤1/2, the sender will 
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choose p=6 in the first stage. 

(4) p1≤1/2, p2≥1/2, p3≥1/2 or p1≥1/2, p2≤1/2, p3≤1/2 

Since 
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The sender’s optimal signals can be deduced. 
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From equation (13), If p1≤1/2, p2≥1/2, p3≥1/2 the sender 

will choose p=4, if p1≥1/2, p2≤1/2, p3≤1/2, the sender will 

choose p=5 in the first stage. 

The above analyses are summarized as following: 
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Therefore, the eight preliminary results are obtained. 

Step 4 Analysis of requirements for the posterior probability 

It can be seen from the above analysis that we obtain the 

eight preliminary results without considering the requirements 

3 and 4. On this basis, the requirements 3 and 4 will be 

considered. We analyse these eight strategy combinations and 

beliefs one by one, so as to obtain the final analysis results. 
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This result, p2=0, is not in conformity with p2≥1/2, so this 

strategy combination and belief is not a perfect Bayesian 

equilibrium. 

(2) strategy combination ((6, 6), (u, u, d)) and belief p1≥1/2, 

p2≥1/2, p3≤1/2. 

The strategy combination means 

1)|6(,0)|5(,0)|4(,1)|6(,0)|5(,0)|4( 222111 ====== tptptptptptp
 

According to the given equilibrium strategy, the 

information set h (6) is on the equilibrium path, but h (4) and h 

(5) are not on the equilibrium paths. 

According to requirement 3 

µ
µµ
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−×+×
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⋅+⋅
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1
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Here, because the sender’s strategy is pooling, the signal 

does not bring the receiver new useful information, so the 

posterior probability p(t1|6) is equal to the prior probability µ. 

Since p(4|t1)=0, p(4|t2)=0, p(5|t1)=0 and p(5|t2)=0, p(t1|4), 

p(t2|4), p(t1|5), p(t2|5) cannot be calculated by the Bayes 

formula. 

According to Requirement 4, the inference of the 

information set, which is off the equilibrium path, must 

conform the player’s equilibrium strategy. 

We now analyse how the receiver should infer p(t1|4), p(t2|4) 

when the game reaches information set h (4). 

If the receiver infers p1=0, i e. 1-p1=1, then entrance is 

obviously not the optimal choice. And this inference is 

incompatible with the preliminary analysis result (p1≥1/2) 

either. 

If the receiver infers p1=1, the inference is both consistent 

with his equilibrium strategy and compatible with the 

preliminary analysis result (p1≥1/2). So in the given 

equilibrium strategy combination, the receiver will infer p1=1 

in information set h (4). 

In the same way, in the given equilibrium strategy 

combination, the receiver will infer p2=1 in information set h 

(5). 

Therefore, if µ is not greater than 1/2, strategy combination 

((6, 6), (u, u, d)) and belief p1=1, p2=1, p3=µ is a perfect 

Bayesian equilibrium. 

(3) strategy combination ((5, 5), (u, d, u)) and belief p1≥1/2, 

p2≤1/2, p3≥1/2. 

The strategy combination means 

0)|6(,1)|5(,0)|4(,0)|6(,1)|5(,0)|4( 222111 ====== tptptptptptp  

According to the given equilibrium strategy, the information set h (5) is on the equilibrium path, but h (4) and h (6) are not on 

the equilibrium path. 

According to requirement 3 

µ
µµ

µ =
−×+×
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⋅+⋅
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)1(11
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Since 0)|4(,0)|4( 21 == tptp , 0)|6(,0)|6( 21 == tptp , )4|(),4|( 21 tptp , )6|(),6|( 21 tptp can not be calculated 

by the Bayes formula. 

According to Requirement 4, the inference of the 

information set, which is off the equilibrium path, must 

conform the player’s equilibrium strategy. 

We now analyse how the receiver should infer 

)4|(),4|( 21 tptp when the game reaches information set h 

(4). 

If the receiver infers p1=0, i e. 1-p1=1, then entrance is 

obviously not the optimal choice. And this inference is 

incompatible with the preliminary analysis result (p1≥1/2) 

either. 

If the receiver infers p1=1, the inference is both consistent 

with his equilibrium strategy and compatible with the 

preliminary analysis result (p1≥1/2). So in the given 

equilibrium strategy combination, the receiver will infer p1=1 

in information set h (4). 

In the same way, in the given equilibrium strategy 

combination, the receiver will infer p3=1 in information set h 

(6). 

Therefore, if µ is not greater than 1/2, strategy combination 

((5, 5), (u, d, u)) and belief p1=1, p2=µ, p3=1 is a perfect 

Bayesian equilibrium. 

Similar to cases (2) and (3), for cases (4), (5) and (6), we 

can obtain the following results. 

(4) Strategy combination ((6, 4), (d, u, u)) and belief p1=0, 

p2=1, p3=1 is a perfect Bayesian equilibrium. 

(5) if µ is not greater than 1/2, strategy combination ((5, 5), 

(d, d, u)) and belief p1=0, p2=µ, p3=1 is a perfect Bayesian 

equilibrium. 

(6) if µ is not greater than 1/2, strategy combination ((6, 6), 

(d, u, d)) and belief p1=0, p2= 1, p3=µ is a perfect Bayesian 

equilibrium. 

(7) strategy combination ((6, 5), (u, d, d)) and belief p1≥1/2, 

p2≤1/2, p3≤1/2. 

The strategy combination means 

0)|6(,1)|5(,0)|4(,1)|6(,0)|5(,0)|4( 222111 ====== tptptptptptp  

According to the given equilibrium strategy, the 

information sets h (5) and h (6) are on the equilibrium path, 
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but h (4) is not on the equilibrium paths. According to requirement 3 

1
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This result, p3=1, is not in conformity with p3≤1/2, so this 

strategy combination and belief is not a perfect Bayesian 

equilibrium. 

(8) strategy combination ((6, 5), (d, d, d)) and belief p1≤1/2, 

p2≤1/2, p3≤1/2. 

The strategy combination means 

0)|6(,1)|5(,0)|4(,1)|6(,0)|5(,0)|4( 222111 ====== tptptptptptp  

According to the given equilibrium strategy, the 

information sets h (5) and h (6) are on the equilibrium paths, 

but h (4) is not on the equilibrium path. 

According to requirement 3 

0
)1(10

0
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)()t|p(5
5)|p(tp
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1 1
3 1

1 1 2 2

p(6 | t ) ( ) 1
p p(t | 6) 1

p(6 | t ) ( ) p(6 | t ) ( ) 1 0 (1 )

µ
µ µ

⋅ ×= = = =
⋅ + ⋅ × + × −

p t

p t p t  

This result, p3=1, is not in conformity with p3≤1/2, so this 

strategy combination and belief is not a perfect Bayesian 

equilibrium. 

Synthesizing the above analyses, the signaling game has 

five perfect Bayesian equilibria. 

(2) strategy combination ((6, 6), (u, u, d)) and belief p1=1, 

p2=1, p3=µ, µ≤1/2. 

(3) strategy combination ((5, 5), (u, d, u)) and belief p1=1, 

p2=µ, p3=1, µ≤1/2. 

(4) srategic combination ((6, 4), (d, u, u)) and belief p1=0, 

p2=1, p3=1. 

(5) strategy combination ((5, 5), (d, d, u)) and belief p1=0, 

p2=µ, p3=1, µ≤1/2. 

(6) strategy combination ((6, 6), (d, u, d)) and belief p1=0, 

p2= 1, p3=µ, µ≤1/2. 

It can be seen from (3), (5) that although the strategies of 

the incumbent are the same, the strategies of the entrant are 

different. This is because of different beliefs. The similar 

scenarios occur in the cases of (2), (6). 

If the incumbent can only use the separation equilibrium, 

the game has only one perfect Bayesian equilibrium. If µ>1/2, 

there also exists only one perfect Bayesian equilibrium. 

4. Conclusion 

The purpose of this paper is to illustrate a PBE solution 

method of a signaling game in detail. It can be seen from the 

analysis process of this paper that PBE of a signaling game 

can be calculated by the method of this paper. 

The PBE of a signaling game may be multiple. If we want to 

reduce the number, this involves refinements of PBE. 
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