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Abstract: The published literature on porous media is filled with erroneous and contradicting assertions relating to 

measurements of permeability. In this paper, we present a new and novel approach to remedy this situation, by demonstrating a 

standard methodology using a new fluid flow model. This model is different from any model currently in use and provides a 

unique analytical solution for the input variables underlying packed beds containing porous media of discrete particles, be they 

porous or nonporous in nature. The model is based upon the fundamental principles of the physics involved in fluid flow 

through packed beds which includes, amongst other things, a unique normalization coefficient which acts as an exchange rate 

between viscous and kinetic contributions, on the one hand, and certification, via a built-in methodology, on the other hand, 

that the Laws of Continuity are always adhered to. In addition, the model is thorough with respect to both wall effect and fluid 

path tortuosity, which means that a new Law of Fluid Flow in closed conduits is identified as a straight-line relationship 

between viscous normalized pressure drop, on one side of the equality sign, and normalized fluid flow, on the other side of the 

equality sign. The model is based upon the discovery of a new vector entity, np, the number of particles of a given diameter, say 

dp, present in a packed conduit and, therefore, applies seamlessly to both packed and empty conduits which, in turn, enables its 

validation over 10 orders of magnitude of the modified Reynolds number. This vector has never been identified heretofore and 

is valid for all particle porosities which include fully porous particles, i.e., particles of free space and, hence, empty conduits 

are considered as packed conduits with particles of free space. The vector np specifies, simultaneously, the matched set of a 

given value for the particle diameter dp and the external porosity, ε0, in any packed conduit under study, much the same as a 

velocity vector specifies, simultaneously, the matched set of a given value for the speed and direction of a projectile or moving 

object. The model is explained herein and applied to a number of experimental studies, demonstrating a standardized 

methodology which guarantees an exact correlation between measured and calculated values in the permeability relationship, 

when reporting on actual experiments in closed conduits. 
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1. Introduction 

In this paper we use the new fluid flow model, now known 

as The Quinn Fluid Flow Model (QFFM), to teach a new 

methodology to practitioners of fluid flow in closed conduits. 

This teaching applies seamlessly to both empty and packed 

conduits. The QFFM is to be found in the published literature 

[1] wherein it is written in its dimensionless form as: 

PQ = k1 + k2CQ                                     (1) 

The term on the left-hand side of equation (1), PQ, 

represents the pressure drop across the conduit normalized 

for both drag and viscous contributions. The right hand side 

of the equality sign represents the sum of the normalized 

viscous contributions, k1, and the viscous normalized kinetic 

contributions, k2CQ. This equation is represented by a straight 

line on a xy plot of PQ v CQ, where the intercept on the y axis 

represents the value of k1 and the slope of the line represents 

the value of k2. This means that no matter what permeability 

result a practitioner may report, whether it pertains to an 

empty or packed conduit, it must by necessity fall on this 

straight line. This is an amazing discovery which is even 

more astonishing given the fact that it has been validated 
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over 11 orders of magnitude of the modified Reynolds 

number, i.e., over the entire fluid flow regime, from creeping 

flow to fully developed turbulence. 

Why is this relationship so important and why has it not 

been identified heretofore? The answer to this question is that 

no one up until now was successful at developing a 

comprehensive equation which captures all the physics 

underlying fluid flow in closed conduits in a single 

relationship, including the wall effect elements of viscous 

boundary layer and roughened inner wall surface, on the one 

hand, and fluid path tortuosity and porosity, on the other 

hand. The current state of understanding in the art, 

unfortunately, treats the Reynolds number as the governing 

fluid flow parameter, which is a fatal flaw found in most 

every other fluid flow model. The QFFM not only contains 

all these missing elements but, in addition, has a built-in 

methodology which guarantees that the Laws of Continuity 

are adhered to every time the model is used to generate a 

solution to a permeability measurement. This is another 

critical feature of the QFFM not found in other extant fluid 

flow models, because they all embrace mathematical 

equations as though they were an integral part of the Laws of 

Nature, which they are not. Accordingly, applying 

mathematical equations, indiscriminately, which means 

without first grounding them by experiment, leads to 

erroneous results, something that is widespread in the 

published literature on this subject matter. We will now 

explain the underlying rationale for equation (1) and why it is 

a unique relationship dictated by the Laws of Nature. 

Firstly, we explain in detail the basis for the universal 

constants, k1 and k2. Unlike the constants found in most other 

fluid flow models, i.e., the Ergun model [2], for instance, 

wherein their values are based upon a “residual” 

computation, i.e., the remainder after all other contributions 

are applied and are, therefore, fundamentally “fudge factors” 

used to create a correlation between measured and calculated 

values, these two parameters, found only in the QFFM, are 

based upon first principles of the Laws of Nature and, 

accordingly, are not fudge factors. In addition, the values of 

k1 and k2 are related to one another, to the extent that they are 

both derived from considerations driven by the manner in 

which Nature controls both viscous and kinetic contributions. 

Viscous contributions are caused by the phenomenon of a 

fluid passing a solid obstacle in its flow path, wherein the 

interaction between the fluid and the solid object produces a 

retarding force which acts in the opposite direction to the 

fluid flow. In addition, the force generated is a function of the 

surface area of the interaction, i.e., the larger the surface area 

of contact the larger the retarding force. Thus, we can see that 

there is a direct proportionality between the retarding force 

and the surface area of the interaction. On the other hand, 

kinetic contributions are caused by the fluid flowing through 

a fixed orifice wherein the retarding force acting against the 

fluid is related to the size of the perimeter through which the 

fluid is forced to pass. Accordingly, our intuition tells us that 

the larger the perimeter, the smaller the retarding force, 

which means that there is an indirect proportionality between 

the retarding force and the perimeter of the opening in the 

orifice. 

In considering an equation which captures both viscous 

and kinetic contributions, therefore, we begin with defining a 

control element of free space. To do this we, advantageously, 

take the case of a perfect sphere, since all the characteristics 

of a sphere are well-known in relation to its diameter D, i.e., 

surface area = πD
2
, cross sectional area = πD

2
/4, volume = 

πD
3
/6. Next, we recognize that with respect to our control 

element of free space, the viscous contributions are directly 

related to the surface area of our sphere, i.e., πD
2
, whereas 

the kinetic contributions are related to the reciprocal of the 

perimeter of the channel defined by our sphere, i.e., the 

cross-sectional area πD
2
/4. In addition, since we need to add 

both viscous and kinetic contributions, we need to have an 

“exchange rate” between the two, much as we need an 

exchange rate between dollars and pounds sterling. Thus, we 

can see that the ratio between the surface area and the cross-

sectional area of our sphere is the common denominator, 

representing this exchange rate, i.e., [πD
2
]/[πD

2
/4] = 4. 

Accordingly, to establish a controlling mechanism between 

viscous and kinetic contributions, we, advantageously, define 

our unit sphere as having a unit radius of rh = 4, on the one 

hand, and our unit channel having a unit radius of rh = 1 and 

thus a perimeter of 2πrh = 2π, on the other hand. We then 

establish the control volume of (4/3)πrh
3
 as the volume of our 

unit sphere. Next, we apportion this volume in accordance 

with our understanding of how the Laws of Nature controls 

viscous and kinetic contributions. This we accomplish by 

dividing the control volume of (4/3)πrh
3
 by rh = (4/3)πrh

2
 = 

64π/3, which represents our contact area direct 

proportionality normalization coefficient, i.e., k1 and 

applying this same adjustment to our unit channel we get for 

the adjusted perimeter 2πrh, where rh = 4, which when 

inverted to reflect an indirect (reciprocal) relationship = 

1(8π), and represents our perimeter normalization coefficient, 

i.e., k2. Finally, we also need to apply the same multiplier, 

i.e., rh = 4 on the left-hand side of the equality sign in 

equation (1) to maintain the equality, i.e., ∆P/rh which is 

embedded in PQ. Thus, k1 and k2 are the controlling elements 

within the QFFM which maintains the balance between 

viscous and kinetic contributions in the dimensionless 

normalized equation (1). 

Secondly, looking again to equation (1), we now examine 

the components of the viscous normalized kinetic term on the 

right hand side of the equality sign: 

CQ = λQN = λδRem                             (2) 

Where QN = δRem 

This term represents one of the critical distinguishing 

features of the QFFM, as mentioned above, where we see 

that the well-known term, Rem, the modified Reynolds 

number, must be modified to accommodate two additional 

elements not found in other fluid flow models, i.e., the term: 

δ =
�

��
�
                                         (3) 
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Where, δ represents a kinetic porosity normalization coefficient, 

where ε0 = the external conduit porosity, and the term: 

λ = (1 + WN)                                         (4) 

Where λ is a wall effect normalization coefficient, and WN = 

the net wall-effect. We will not dwell here on a lengthy 

explanation of what the term ε0 represents, since this external 

conduit porosity parameter is found in all other fluid models and 

is a well-understood parameter. Rather, we will drill down on 

the term WN, the net wall effect, which is yet another 

distinguishing feature of the QFFM not present in other models. 

The QFFM teaches that there are just five elements to the 

wall effect: 

1. primary wall effect (W1); 

2. secondary wall effect (W2); 

3. residual secondary wall effect (W2R); 

4. net wall effect (WN) and finally, 

5. wall normalization coefficient (λ). 

The wall normalization coefficient λ = 1 +WN, and enters the 

pressure flow relationship in the QFFM through the kinetic term. 

Accordingly, the λ parameter has no effect when the flow is 

laminar, i.e., when the kinetic contributions are negligible and 

the value of QN is very small, i.e., less than unity, say. 

The net wall effect WN = W1 + W2R, and will only 

manifest in measured pressure drop values where kinetic 

contributions are significant. In other words, the net wall 

effect has no impact on pressure drop in laminar flow. 

The QFFM also defines five distinct categories of 

boundary conditions underlying the various fluidic milieus 

found in packed conduits. These categories are: 

1A. Conduits packed with solid particles (εp<1) in which the 

ratio D/dp is large, say greater than 10, and the particles have 

either smooth surfaces or are operated only in laminar flow. It 

will be appreciated that since the impact of the parameter λ is 

only manifest when kinetic contributions are significant, one 

cannot tell if particles are rough or smooth based upon 

permeability measurements taken only in laminar flow. 

1B. This category is the same as 1A above except that the 

particle surfaces are manifestly rough. This category, then, 

represents permeability measurements taken at high values of 

QN, say QN > 1. 

1C. This category is a special category in which the ratio 

D/dp is close to 1 but the particles have a solid skeleton. This 

is an unusual case of a packed conduit, not typically found in 

practice, but created within the teachings of the QFFM, for a 

special experiment, wherein one can independently verify the 

external porosity value, ε0, by counting the number of 

particles, np, having a given designated value of dp-the 

spherical particle diameter equivalent of the particles- in any 

packed conduit under study. This experiment is critical to 

verifying the authenticity of the QFFM model, since it 

provides the independent means for reconciling the two 

partial fractions in conduits packed with nonporous particles, 

and the three partial fractions in conduits packed with 

partially porous particles, i.e., ε0, εi and (1 - ε0). 

2A. Conduits packed with fully porous particles (εp=1), i.e., 

an empty conduit or capillary, in which the ratio D/dp = 1 and 

the inner wall surfaces of which are hydraulically smooth. 

2B. This category is the same as 2A above except that the 

inner wall surfaces are rough and permeability measurements 

are taken at sufficiently high values of QN where the wall 

roughness punches through the viscous boundary layer. 

2. Theory 

No wall Effect 

A packed conduit with solid particles and a ratio of D/dp 

which is large, say greater than 10, will have no wall effect 

when the permeability measurements are taken in laminar flow. 

As shown in Figure 1, all our samples are packed conduits 

with smooth solid particles. They have no wall effect which 

means they all fall on the line for λ =1 which is apparent on the 

plot of Θ versus QN. The source for these samples can all be 

found in the designated references herein [3-6]. 

 
Figure 1. No wall Effect. 

2.1. The Primary Wall Effect (W1) 

The primary wall effect has the symbol W1 and is a 

derivative of two distinct parameters defined in the QFFM. 

Firstly, W1 is a derivative of the dimensionless viscous 

boundary layer β0 = (k1/k1 +k2QN), where k1 = (64π/3) and k2 

= (1/8π), and are the universal Quinn constants. QN = δRem is 

the fluid current (Quinn number). The symbol Rem stands for 

the well-known modified Reynolds number and δ = (1/ε0
3
). 

Secondly, the formula for the primary wall effect is W1 = 

(β0
(1/3)

/τ). It is, therefore, also a derivative of the tortuosity 

factor, τ, = δγ, where γ, = (npqD/L) is a structural feature of the 

flow embodiment under study (packed or empty conduit), 

where npq is the volume of the empty conduit expressed in 

terms of number of particle equivalents having a diameter of dp. 
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2.1.1. W1 Has Its Maximum Value W1 = 5.33 Approx 

There is just one operating condition when the value of the 

primary wall effect has its maximum value of 5.33 approx. 

This condition exists when D/dp has its minimum value of 

unity [(D/dp) = 1.0], which only occurs in a conduit packed 

with particles of free space wherein the particles are fully 

porous (εp =1), i.e., an empty conduit, and the value of QN is 

very small. In this scenario, the tortuosity coefficient, τ, is 

relatively small but always has a constant value, which 

results in a thick boundary layer when the value of QN is very 

small (Laminar flow). As the value of QN increases, however, 

the boundary layer starts to dissipate which reduces its 

thickness and eventually approaches a value of zero at very 

large values of QN (fully developed turbulence). 

2.1.2. W1 Manifestation 

 
Figure 2. The Primary Wall Effect maximum value. 

The primary wall effect W1 will only manifest when the 

value of (D/dp) is very small, such as in an empty conduit, 

and when kinetic contributions are significant. At very high 

values of QN, on the other hand, where the boundary layer is 

totally depleted, the value of W1 = 0, and thus will not 

manifest at all. Additionally, when D/dp is very large, say 

greater than 10, which only occurs in a conduit packed with 

solid particles, the tortuosity coefficient, τ, is very large and 

this reduces the thickness of the boundary layer to an 

insignificantly small value, hence the value for W1= 0 

approx., at all values of QN. As shown in Figure 2 for 

category 2A, an empty conduit with hydraulically smooth 

walls, the net wall effect will have a maximum value of W1 = 

WN = 5.33 approx., at low values of the Quinn number. This 

represents the steady/stable viscous boundary layer adjacent 

to the channel wall. At a value of QN > 1 (approx.), the 

viscous boundary layer starts to be dissipated and the value 

of W1 will decrease until it reaches a value of zero at very 

high values of the QN number, i.e., fully developed 

turbulence. This is shown in Figure 3 by the third party 

published works of Nikuradze [7] and the Princeton Super 

Pipe smooth wall data [8, 9], which falls in this decreasing 

region of the viscous boundary layer because all the 

measurements were taken at relatively high values of QN, i.e., 

QN > 1. Included on this plot also is the data measured by the 

current author in a smooth walled Teflon tubing at lower 

values of QN, to establish the viscous boundary layer 

baseline. 

It will be appreciated that W1 = WN, the net wall effect, for 

all values of QN in a smooth walled empty conduit. 

 
Figure 3. The Primary Wall Effect selected studies. 

 

Figure 4. The secondary wall effect. 
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Figure 5. The secondary wall effect comparison. 

2.2. The Secondary Wall Effect (W2) 

The secondary wall effect has the symbol W2 and is a 

derivative of the sand-grain roughness, k, and the diameter of 

the hypothetical fluid channel dc. In fact, it is proportional to 

the ratio of the two where W2 = 30 kdc
(1/3)

 and kdc = k/dc 

where k is the sand grain roughness and dc = dp/[abs(1-ε0)] is 

the diameter of the hypothetical fluid channel. The constant 

of proportionality is the value of 30, which is due to end 

effects. It will be appreciated that dp stands for the spherical 

particle diameter equivalent of the particles in the conduit, 

either packed with solid particles (εp< 1) or particles of free 

space (εp= 1), i.e., an empty conduit, where εp stands for the 

particle porosity. 

2.2.1. The Value of W2 Is Not Always Constant 

When the particle sand grain roughness value, k, has a 

value greater than zero, i.e., k > 0, the value of W2 will be 

a function of the channel diameter dc. A constant value of 

k, therefore, will not always produce the same value of 

W2. The larger the value of the channel diameter dc, the 

smaller is the value of W2 for any given value of the sand 

grain roughness coefficient k. In other words, wall 

roughness has less of an impact at larger diameters of the 

channel. 

2.2.2. The Value of W2 Is Only Apparent at High Values of 

QN When (D/dp) Is Very Small 

Because, in an empty conduit, the viscous boundary layer 

may sometimes be greater in depth than the sand grain 

roughness value, k, in which case it will mask the effect of 

the wall roughness, W2 will only manifest at high values of 

QN when the boundary layer has been reduced and the sand 

grain roughness punches through the viscous boundary 

layer. 

2.2.3. The Value of W2 Is Always Apparent When (D/dp) Is 

Very Large and QN Is Very Large 

In packed conduits where the value of (D/dp) is very large, 

i.e., a typical packed conduit with solid particles, the secondary 

wall effect, W2, manifests at all high values of QN wherein the 

kinetic contributions are significant. As shown in Figures 4 

and 5, all 10 Klinker packed conduits in our study here with 

solid particles, from the Buchwald et al article, have a range of 

value for W2 = WN between 1.0 and 6.0 approx. [10]. As 

compared to smooth walled data, all the Klinker data fall under 

the boundary layer line for smooth walls. This is because, due 

to the very high tortuosity of the fluid flow in the Klinker 

conduits, there is no boundary layer and hence W1 = 0, i.e., the 

primary wall effect is negligible. This plot also includes a 

sample measured by this author (HMQ-1) which has a net wall 

roughness of 12.0, i.e., WN = 12 [1]. 

 

Figure 6. The Residual Secondary Wall Effect. 

 

Figure 7. Residual Secondary Wall Effect. 
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2.3. The Residual Secondary Wall Effect (W2R) 

The residual secondary wall effect is a derivative of both 

the primary and secondary wall effects. Indeed, it is a 

derivative of the difference between the two, i.e., W2R = W2-

W1
(1.2)

. 

2.4. The Net Wall Effect (WN) 

The net wall effect is the sum of the primary wall effect 

and the residual secondary wall effect, i.e., WN = W1 +W2R. It 

is the net wall effect WN that influences the measured 

pressure drop. In our plot in Figure 6 the samples have both a 

primary and secondary wall effect and represent the six levels 

of sand-roughened empty conduits from Nikuradze [11] 

(levels 1-6 in legend). Note that all 6 of the Nikuradze 

roughened conduits fall on the opposite side of the boundary 

layer line, represented by the smooth-walled data than does 

the Klinker data shown above in Figure 4. This is because, 

although some of the Nikuradze measurements were taken in 

the region where the boundary layer masked the secondary 

wall effect, i.e., the sand grain roughness was buried in the 

boundary layer, most of the Nikuradze measurements were 

taken at high enough values of QN, where the sand grain 

roughness punched through the boundary layer, hence the 

appearance of the line to the right of the boundary layer line. 

This shows how the residual secondary wall effect, W2R, 

manifests in the overall value of λ. 

 
Figure 8. The Impact of . 

2.5. The Wall Normalization Coefficient (λ) 

We define the wall normalization coefficient λ = (1 +WN). 

This is the parameter that accounts for the impact of wall 

effect in fluid dynamics. When there is no wall effect, i.e., 

WN = 0, the value of λ = 1.0. 

As can be seen from Figure 7, in the QFFM, a plot of Θ 

versus QN normalizes for all samples, and allows us to view 

their fluid dynamic profile in one single frame of reference. 

All the Klinker packed conduits fall between the line for λ = 

1 (no wall effect) and the line for empty conduits with 

smooth walls which represents the viscous boundary layer. 

This is because the Klinker samples have no primary wall 

effect and their sand grain roughness equivalent corresponds 

to a range of values of λ less than 6.0 approx. All the six 

levels of the roughened Nikuradze conduits, on the other 

hand, falls on the right hand side of the boundary layer line. 

This is because the roughened samples have a residual 

secondary wall effect W2R due to the protrusion of the sand-

grain roughness through the viscous boundary layer. 

 
Figure 9. The Impact of . 

As shown in Figure 9, the QFFM has been validated over 

11 orders of magnitude of the modified Reynolds number, 

from the low values of the Farkas packed conduit, to the high 

values of the Nikuradze and Princeton studies pertaining to 

empty conduits. This is only possible with the QFFM 

because it is the only fluid flow model extant that seamlessly 

embraces both types of fluid flow embodiments. It will be 

appreciated that this reality, in turn, is dictated by the Laws 

of Nature, since pressure drop is the price one pays for 

studying the extreme fringes of the fluid flow regime. Thus, 

packed conduits with solid particles cannot be studied at very 

high values of the modified Reynolds number because the 

pressure drops would be prohibitively high, on the one hand, 

and, on the other hand, empty conduits cannot be studied at 
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very low values of the modified Reynolds number because 

the pressure drops would be prohibitively low. 

3. Restoring the Dimensional 

Manifestation of the QFFM 

Now that we have identified all the elements of the 

normalized relationship in equation (1) and how they relate 

to one another, let us now restore the dimensional 

manifestation of the QFFM. 

Let PQ = ∆P/(rhnv) and Rem = nk/nv and substituting into 

equation (1) gives: 

∆�

	
��
= 
� + 
���

��

��
                        (5) 

where, nv and nk are the actual viscous and kinetic 

contributions, respectively. Thus, equation (5) is the explicit 

form of equation (1) based upon our control volume for our 

unit sphere. 

Multiplying equation (5) across by (rhnv) and substituting 

for k1 and k2 gives: 

∆P =
������

�
+

����

��
                           (6) 

Let nv = µsδηL/dc
2
 and nk = µs

2
δρfL/dc and substituting into 

equation (6) gives: 

∆P =
���������

���
 +

����
 �!"�

����
                     (7) 

Where µs = 4q/(πD
2
) is the fluid flux (superficial fluid 

velocity), q = the fluid volumetric flow rate, η = the fluid 

absolute viscosity and ρf = the fluid density. 

Dividing equation (7) across by L gives the pressure 

gradient as: 

∆�

#
=

��������

���
 +

� ���
 !"

����
                    (8) 

Equation (8) represents the general dimensional 

permeability equation within the QFFM based upon the flow 

term expressed as the superficial velocity. We point out here, 

for the purpose of making the QFFM more transparent and 

more easily understood, that when equation (8) is arranged in 

the format of the Ergun fluid flow model, by the grouping of 

certain terms in the QFFM, we can identify the Q-modified 

Ergun model coefficients of A and B as follows: 

A = 256π/3 = 268.19 approx., and B = δλ/2π     (9) 

Accordingly, in direct contradiction to the Ergun model’s 

expressed values of 150 and 1.75 for the viscous and kinetic 

constants, respectively, the Q-modified Ergun model’s value, 

dictated by the QFFM, for the viscous constant is always A = 

268.19 approx., a constant value, and the kinetic coefficient 

is B = δλ/2π , the latter, a variable, and not a constant. 

We now identify a special case which applies to an empty 

conduit by applying the two limiting boundary conditions of, 

(1) dp = D and, (2) np = -npq and substituting into equation (8) 

gives: 

∆�

#
=

�������

�$% 
+

���
 !"

��&�%
                               (10) 

Where np = the number of particles of diameter dp present 

in the packed conduit. 

Equation (10) represents the permeability equation within 

the QFFM which applies to an empty conduit based upon the 

flow term expressed as the superficial velocity. 

We wish to point out here that, in the QFFM, the absolute 

value of the particle fraction in a packed conduit is defined 

as: 

abs*1 − ε./ =
01

012
                              (11) 

This is a critical differentiating element of the QFFM not 

found in any other fluid flow model, because it certifies that 

the particle fraction, (1−ε0), and the external porosity, ε0, of a 

packed conduit are dependent variables, not independent 

variables, as is typically found in most, if not all, other fluid 

flow models. The parameter np is the independent packed 

conduit variable based upon the other independent packed 

conduit variables of D, L, which specifies, simultaneously, 

the values of dp and ε0. We suggest that the reader study the 

original QFFM publication paying special attention to the 

discussion therein of the parameter, np, a vector quantity 

driving the external porosity values in both empty and packed 

conduits. Without prior knowledge of the value of np, 

therefore, the QFFM will not allow a practitioner to execute 

the permeability equation, and this is the built-in mechanism 

that guarantees that the Laws of Continuity are always 

adhered to when the QFFM is used to create a solution in any 

experiment under study. Consequently, in order to identify 

the value of np, one must be able to determine accurately the 

volume occupied by a single particle of diameter dp. This is 

the methodology embedded in the QFFM that prevents the 

flawed practice, commonly found in other fluid flow models, 

of using nominal and independently derived values for dp and 

ε0, when using fluid flow models to calculate important 

variables. 

4. Methods 

We will now describe the standardized approach we 

recommend for any empirical study involving permeability 

measurements in closed conduits. 

10-Step Standard method protocol: 

Step 1. Make a plot of the measured pressure drop versus 

the measured flow rate data. 

Step 2. Determine the Forchheimer “fudge factor” 

coefficients a, and, b. [12] 

Step 3. Refine the Forchheimer values of a, and, b from 

above, to best correlate the measured data. 

Step 4. Apply the QFFM simultaneous solution to back-

calculate and identify the values of, dc and ε0, assuming that 

the value of WN =0, i.e., λ =1 (no wall effect). 

Step 5. Correlate the measured and calculated values for 
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∆P using the QFFM by setting the value of λ. 

Step 6. Determine the Q-Modified Ergun model 

coefficients, A, and B. 

Step 7. Determine the Universal Constants, k1 and k2. 

Step 8. Compare the measured and calculated pressure 

drops. 

Step 9. Document a first summary table. 

Step 10. Document a second summary table. 

Worked Example 1-The Buchwald et al Article 

The data contained in this example represents a packed 

conduit with nonporous particles, εp = 0, which corresponds 

to our category 1B mentioned above. It is important to point 

out that the authors of the Buchwald et al paper [10] 

determined the external porosity values by measuring the 

mass of particles packed into each conduit and using the 

known bulk density of the solids to establish the value of ε0. 

Since this process establishes the particle fraction in the 

packed conduit, (1-ε0), by default, i.e., it is a dependent 

variable, and provides no information relating to particle 

shape or size, the QFFM uses the independent methodology 

of establishing np, the number of particles present with a 

value of dp for particle diameter-the spherical particle 

diameter equivalent- to reconcile the partial fractions within 

the packed conduit. This is accomplished by using the 

formula for a sphere to determine the volume occupied by a 

single particle of diameter dp. 

Using this worked example we will demonstrate our 

proposed methodology by evaluating the results of the 

Klinker particle permeability measurements which were the 

subject of the Buchwald et al paper. We will demonstrate our 

methodology by focusing on just one (sample # 1.00) out of 

ten of the packed conduits in that study. 

Step 1. Make a plot of the measured pressure drop versus 

the measured flow rate data. 

 
Figure 10. Pressure versus flow rate. 

In Figure 10 we show a plot of the measured pressure 

drops in units of Pascal versus measured flow rate in units of 

mL/sec for sample 1.00 of the Klinker study. The measured 

data may now be reported as the 2
nd

 order polynomial 

equation of the line, shown in the plot. This allows any 

practitioner to reproduce the measured results easily. 

Step 2. Determine the Forchheimer “fudge factor” 

coefficients a and b. 

 
Figure 11. Hydraulic conductivity versus fluid velocity. 

As shown in Figure 11, the second order polynomial fit to 

the measured data identifies the Forchheimer coefficients a, 

and, b. Once again, this equation of the line makes it easy for 

any practitioner to reproduce the data. 

Step 3. Refine the Forchheimer values of a, and b, from 

above to best correlate the measured data. 

This step is accomplished by comparing the calculated 

values for ∆H(meas) = ∆P(meas)/(ρfgL), the hydraulic gradient 

based upon measured values, and ∆H(For) = aµs + bµs
2
, the 

hydraulic gradient based upon the Forshheimer fudge 

factor coefficients. To do this, we recommend adjusting 

the value of a, until both values of ∆H are identical, at the 

lowest flow rate measurement, and adjusting the value of 

b, until both values of ∆Η are identical at the highest flow 

rate. This step is necessary because viscous and kinetic 

contributions are based upon completely different fluid 

flow characteristics. Accordingly, an “average” algorithm 

does not produce the best fit to the measured permeability 

data. 

Step 4. Apply the QFFM simultaneous solution to back-

calculate the values of dc and ε0 when λ = 1. 

Using the optimized Forchheimer values for a, and, b, in 

step 3 above, we can now apply the QFFM simultaneous 

solution, which is contained in equations 18 and 19, 

described in reference [13]. We recommend that the 

practitioner set up a spreadsheet to carry out this back-

calculation, as shown below. 

Initially, as shown in Table 1 below, set the independent 
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parameter λ=1 and apply the optimized Forchheimer 

coefficients, a, and, b, for all 7 flow rates measured. Note 

that in this initial back-calculate attempt, for this worked 

example, the QFFM does not return the correct pressure 

drop, i.e., ∆P (calc) does not match the ∆P (meas). This means 

that the particles in this worked example are not smooth 

because if they were smooth, the pressure drops would 

correlate at a value λ = 1 and, thus, a value of k = 0. 

Therefore, this initial trial tells us that these particles are 

not hydraulically smooth. 

Table 1. First back-calculation. 

Sample q ∆P(meas) µs a b ∆H(FOR) ∆H(meas) λ dc ε0 ∆P(calc) 

ID mL/sec Pa cmsec-1 s/cm s2/cm2 none none none cm none Pa 

Klinker 0 0 0.00 
  

0.00 0.00 
   

0 

 
4,956 127 16.76 2.5511 0.0754 63.93 63.93 1.00 0.475 0.407 300 

 
7,147 206 24.17 2.5511 0.0754 105.69 103.27 1.00 0.475 0.407 569 

1.00 9,339 304 31.58 2.5511 0.0754 155.73 152.45 1.00 0.475 0.407 922 

 
11,604 431 39.24 2.5511 0.0754 216.16 216.38 1.00 0.475 0.407 1,376 

 
15,294 646 51.72 2.5511 0.0754 333.56 324.56 1.00 0.475 0.407 2,306 

 
19,073 911 64.50 2.5511 0.0754 478.11 457.34 1.00 0.475 0.407 3,506 

 
22,891 1,293 77.41 2.5511 0.0754 649.13 649.13 1.00 0.475 0.407 4,971 

Step 5. Correlate the values of ∆P(meas) and ∆P(calc) by solving for the value of λ. 

Table 2. Second back-calculation. 

Sample q ∆P(meas) µs a b ∆H(FOR) ∆H(meas) λ dc ε0 ∆P(calc) k 

ID mL/sec Pa cmsec-1 s/cm s2/cm2 none none none cm none Pa cm 

Klinker 0 0 0.00 
  

0.00 0.00 
   

0 0.0 

 
4,956 127 16.76 2.5511 0.0754 63.93 63.93 5.99 0.261 0.605 127 0.00120 

 
7,147 206 24.17 2.5511 0.0754 105.69 103.27 5.99 0.261 0.605 211 0.00120 

1.00 9,339 304 31.58 2.5511 0.0754 155.73 152.45 5.99 0.261 0.605 310 0.00120 

 
11,604 431 39.24 2.5511 0.0754 216.16 216.38 5.99 0.261 0.605 431 0.00120 

 
15,294 646 51.72 2.5511 0.0754 333.56 324.56 5.99 0.261 0.605 664 0.00120 

 
19,073 911 64.50 2.5511 0.0754 478.11 457.34 5.99 0.261 0.605 952 0.00120 

 
22,891 1,293 77.41 2.5511 0.0754 649.13 649.13 5.99 0.261 0.605 1,293 0.00120 

 

Note that, as shown in Table 2, in this second and final 

back-calculate attempt, the QFFM identifies the value of 

0.261 cm for dc, and the value of 0.605 for ε0, 

corresponding to the set value of 5.99 for λ. Note also that 

the values for ∆P (calc) and ∆P (meas) are a virtual perfect 

match at all flow rates measured, allowing for 

experimental error. Finally, note that the value of λ which 

correlates the data is 5.99 and corresponds to a value of k 

= 0.00120 cm i.e., 12 µm approx. Thus, this result tells us 

that this packed conduit can be represented as a 

hypothetical flow channel with diameter dc = 0.261 cm 

and a wall sand grain roughness of 12 µm approximately, 

i.e., it establishes the roughness of the particles on the 

same relative basis as the classical sand grain roughness 

taught by Nikuradze. 

Step 6. Determine the Q-Modified Ergun model 

coefficients, A, and B. 

As shown in Figure 12, we can now establish the Q-

modified Ergun coefficients, A, and, b, because we now have 

defined the modified Reynolds number in step 5 above. Note 

that the values on both axes are all derived based upon 

measured values. The best straight line is always achieved 

with an intercept value set of 268.19. 

As shown in Figure 13, the values of k1 and k2 are 

identified. Additionally, note that the relevant governing 

parameter on the x- axis is CQ = δλRem, not the Reynolds 

number Rem. Again, the best straight-line fit is achieved when 

the intercept of the line = 67.05. 

 
Figure 12. The Q-modified Ergun equation. 

Step 7. Determine the Universal constants, k1 and k2. 
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Figure 13. Universal Quinn constants. 

Step 8. Compare the measured and calculated pressure 

drops. 

As shown in Figure 14, the correlation between the 

measured and calculated values of ∆P is excellent. This step 

is critical to validate the methodology and cannot be omitted 

in any credible fluid flow model analysis. 

 
Figure 14. Measured data versus calculated data. 

Step 9. Document a first data summary table. 

Table 3. First data summary. 

Sample 

ID 

∆P Forchheimer Q-Mod. Ergun Net Wall Effect Impact of λ Univ. Consts. 

∆P = aq + bq2 
∆H = aµs + bµs

2 fv = A + BRem WN = W1 + W2R λ= 1 + WN PQ = k1 + k2CQ 

a b A B R2 W1 W2R k λ k1 k2 R2 

Pa seccm-1 sec2cm-2 none none none none none cm none none none none 

1.00 0.0161q + 2 x10-6 q2 2.5511 0.0754 268.19 4.17 0.9950 2 x 10-8 5.00 0.00120 5.99 67.05 0.0398 1.000 

1.25 0.0073q + 6 x10-7 q2 2.2397 0.0368 268.19 2.12 0.9790 2 x 10-8 2.30 0.00012 3.31 67.05 0.0398 1.000 

1.60 0.0219q + 1 x10-6 q2 1.3990 0.0414 268.19 3.34 0.9900 5 x 10-8 3.41 0.00052 4.40 67.05 0.0398 1.000 

2.00 0.0183q + 1 x10-6 q2 0.9114 0.0335 268.19 3.17 0.9900 1 x 10-7 2.72 0.00034 3.72 67.05 0.0398 1.000 

2.50 0.0207q + 2 x10-6 q2 0.5170 0.0294 268.19 3.67 0.9900 3 x 10-7 3.38 0.00089 4.39 67.05 0.0398 1.000 

3.15 0.0161q + 1 x10-6 q2 0.4894 0.0188 268.19 2.36 0.9940 3 x 10-7 1.74 0.00013 2.74 67.05 0.0398 1.000 

4.00 0.003q + 4 x10-7 q2 0.2883 0.0161 268.19 2.62 0.9990 7 x 10-7 2.18 0.00033 3.20 67.05 0.0398 1.000 

5.00 0.0052q + 6 x10-7 q2 0.2263 0.0128 268.19 2.33 0.9970 9 x 10-7 1.89 0.00023 2.88 67.05 0.0398 1.000 

6.30 0.0047q + 7 x10-7q2 0.1459 0.0110 268.19 2.50 0.9980 2 x 10-6 2.07 0.00038 3.07 67.05 0.0398 1.000 

8.00 0.0042q + 7 x10-7 q2 0.0893 0.0080 268.19 2.31 0.9960 4 x 10-6 1.74 0.00029 2.74 67.05 0.0398 1.000 

Step 10. Document a second data summary table. 

Table 4. Second summary data. 

Sample 

ID 

D L Conduit Conduit Hypoth. Ext. SPH. Part. No. Nom. Part. Part. 

Diam. length Archt. Tortuosity Channel Porosity Diam. Parts. Part. Spher. Porosity 

  
Coeff. 

 
Diam. 

 
Equiv. 

 
Diam. 

  

  
γ τ dc ε0 dp np dpm Ωp εp 

cm cm none none cm none cm none cm none none 

1.00 19.4 15.7 1.E+07 4.E+07 0.261 0.606 0.103 3.19E+06 0.113 0.916 0 

1.25 19.4 9.7 9.E+06 4.E+07 0.274 0.614 0.106 1.79E+06 0.143 0.742 0 

1.60 19.4 27.1 4.E+06 2.E+07 0.354 0.604 0.140 2.20E+06 0.180 0.778 0 

2.00 19.4 30.0 2.E+06 8.E+06 0.465 0.581 0.195 9.63E+05 0.225 0.865 0 

2.50 19.4 49.5 6.E+05 3.E+06 0.614 0.583 0.256 6.97E+05 0.283 0.905 0 

3.15 19.4 49.6 5.E+05 3.E+06 0.641 0.577 0.271 5.94E+05 0.358 0.759 0 

4.00 19.4 19.1 2.E+05 1.E+06 0.823 0.583 0.343 1.11E+05 0.450 0.762 0 

5.00 19.4 36.1 2.E+05 1.E+06 0.929 0.583 0.388 1.46E+05 0.565 0.686 0 

6.30 19.4 44.2 1.E+05 5.E+05 1.158 0.583 0.483 9.24E+04 0.715 0.676 0 

8.00 19.4 49.3 4.E+04 2.E+05 1.500 0.578 0.634 4.62E+04 0.703 0.704 0 

 

Table 4 displays some of the more important values in this 

study. For instance, it demonstrates that the sphericity of the 

particles, Ωp, varied from sample to sample, but was 

generally between the values of 0.7 and 0.9. We used as our 
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nominal particle diameter, dpm, the average of the upper and 

lower vibratory screen openings, as a basis for estimating the 

sphericity. It also demonstrates the enormous value of the 

fluid path tortuosity, τ, in direct contradiction to what other 

fluid flow models teach. 

Worked Example 2-Special case 

 
Figure 15. Measureable wall effect. 

This is a special category of conduit packed with large 

glass beads in which the ratio of D/dp = 1.12. We created this 

packed conduit so that we could count the number of glass 

beads, i.e., 297 which reconciles our value for the external 

porosity ε0 [13]. This packed conduit has a measurable wall 

effect as is evidenced in the plot shown in Figure 15. 

We want to emphasize that our methodology when applied 

to this special case or any empty conduit under study, must 

be modified to accommodate this special milieu of fluidic 

characteristics. The Forchheimer coefficients equivalent in 

this special case will not be constant. This is because of the 

ever-changing boundary layer, which means that the value of 

λ is different for each measured flow rate. Accordingly, in 

step 5 of our methodology outlined above the back-

calculation must be done separately for each measured 

pressure drop and flow rate combination, in order to ensure 

that the correct value of λ is identified for each flow rate. We 

include here Table 5 to demonstrate the ever-changing value 

of the Forchheimer coefficient b equivalent, established as 

part of the back-calculation process. 

Table 5. The changing value of b. 

I.D. 
q a b λ dc ε0 dp np k ∆P(calc) ∆P(meas) 

ml/sec s/cm s2/cm2   cm   cm   cm Pa Pa 

HMQ - 14 0.92 0.0704 0.026082 1.030 0.618 0.467 0.329 297 0.00 24,355 24,355 

1. 1.15 0.0704 0.026039 1.028 0.618 0.467 0.329 297 0.00 36,427 36,427 

2. 1.38 0.0704 0.026004 1.027 0.618 0.467 0.329 297 0.00 50,872 50,872 

3. 1.60 0.0704 0.025976 1.026 0.618 0.467 0.329 297 0.00 66,407 66,407 

4. 1.82 0.0704 0.025953 1.025 0.618 0.467 0.329 297 0.00 83,985 83,985 

5. 2.08 0.0704 0.025928 1.024 0.618 0.467 0.329 297 0.00 108,421 108,421 

6. 2.27 0.0704 0.025913 1.023 0.618 0.467 0.329 297 0.00 127,013 127,013 

7. 2.50 0.0704 0.025896 1.023 0.618 0.467 0.329 297 0.00 152,786 152,786 

8. 2.72 0.0704 0.025882 1.022 0.618 0.467 0.329 297 0.00 178,835 178,835 

9. 2.92 0.0704 0.025870 1.022 0.618 0.467 0.329 297 0.00 204,688 204,688 

10. 3.13 0.0704 0.025858 1.021 0.618 0.467 0.329 297 0.00 234,653 234,653 

11. 3.68 0.0704 0.025832 1.020 0.618 0.467 0.329 297 0.00 318,487 318,487 

12. 3.53 0.0704 0.025839 1.020 0.618 0.467 0.329 297 0.00 295,322 295,322 

13. 3.75 0.0704 0.025829 1.020 0.618 0.467 0.329 297 0.00 331,080 331,080 

14. 3.97 0.0704 0.025820 1.020 0.618 0.467 0.329 297 0.00 368,873 368,873 

15. 4.17 0.0704 0.025813 1.019 0.618 0.467 0.329 297 0.00 405,563 405,563 

16. 4.42 0.0704 0.025804 1.019 0.618 0.467 0.329 297 0.00 453,863 453,863 

17. 4.67 0.0704 0.025795 1.019 0.618 0.467 0.329 297 0.00 504,869 504,869 

18. 4.88 0.0704 0.025789 1.018 0.618 0.467 0.329 297 0.00 551,264 551,264 

19. 5.05 0.0704 0.025784 1.018 0.618 0.467 0.329 297 0.00 588,335 588,335 

20. 5.25 0.0704 0.025778 1.018 0.618 0.467 0.329 297 0.00 634,407 634,407 

21. 5.42 0.0704 0.025773 1.018 0.618 0.467 0.329 297 0.00 674,123 674,123 

22. 5.67 0.0704 0.025767 1.018 0.618 0.467 0.329 297 0.00 735,951 735,951 

23. 5.83 0.0704 0.025763 1.017 0.618 0.467 0.329 297 0.00 778,672 778,672 

24. 6.17 0.0704 0.025755 1.017 0.618 0.467 0.329 297 0.00 867,720 867,720 

25. 6.25 0.0704 0.025753 1.017 0.618 0.467 0.329 297 0.00 890,733 890,733 

26. 6.42 0.0704 0.025749 1.017 0.618 0.467 0.329 297 0.00 937,660 937,660 

 

As shown in Table 5, we have used our procedure outlined 

in step 5 above to back-calculate for the value of the b 

coefficient, by correlating the measured data for each 

measured flow rate. This is possible, in this particular case, 

because we have independently identified the number of 

particles present in the packed conduit, i.e., 297. We 

accomplished this by actually counting the number of 

perfectly spherical smooth glass beads present in the packed 

conduit. Note in the table that the value of b is slightly 

different for each measured data point. 

Worked Example 3-Van Lopik et al 

We chose this example because it is a very comprehensive 

study of varying the particle size distribution in packed 

conduits [14, 15]. Thus, this data base show off the ability of 

the QFFM to differentiate between conduits packed with 

different particle shapes and distributions. 

The results of this worked example demonstrate that the 

QFFM can identify the impact of particle shape and distributions 
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via the calculated value of Ωp, the particle sphericity, which is the “fudge factor” which normalizes for these variables. 

Table 6. Van Lopik first data summary. 

I.D. 

Forchheimer Q-Mod. Ergun Net Wall Effect Impact of λ Univ. Consts. 

∆H = aµs + bµs
2 fv = A + BRem WN = W1 + W2R λ= 1 + WN PQ = k1 + k2CQ 

a b A B W1 W2R k λ k1 k2 

seccm-1 sec2cm-2 none none none none cm none none none 

2017 d50 Reference 
          

1 19.2130 1.3541 268.19 3.42 0.00 0.00 0.00 1.00 67.05 0.0398 

2 14.2650 1.2523 268.19 3.58 0.00 0.00 0.00 1.00 67.05 0.0398 

3 6.9695 0.7008 268.19 3.09 0.00 0.00 0.00 1.00 67.05 0.0398 

4 5.6216 0.6782 268.19 3.25 0.00 0.00 0.00 1.00 67.05 0.0398 

5 3.5856 0.5641 268.19 3.34 0.00 0.00 0.00 1.00 67.05 0.0398 

6 2.4575 0.4396 268.19 3.20 0.00 0.00 0.00 1.00 67.05 0.0398 

7 2.4723 0.3881 268.19 2.94 0.00 0.00 0.00 1.00 67.05 0.0398 

8 1.4060 0.3104 268.19 3.06 0.00 0.00 0.00 1.00 67.05 0.0398 

9 1.0584 0.2489 268.19 2.90 0.00 0.00 0.00 1.00 67.05 0.0398 

10 0.6450 0.1745 268.19 2.70 0.00 0.00 0.00 1.00 67.05 0.0398 

11 0.0796 0.0611 268.19 2.70 0.00 0.00 0.00 1.00 67.05 0.0398 

2017 d50 Composites 
          

3.1 7.4018 0.8220 268.19 3.37 0.00 0.00 0.00 1.00 67.05 0.0398 

4.1 6.2357 0.7839 268.19 3.46 0.00 0.00 0.00 1.00 67.05 0.0398 

5.1 4.1833 0.6349 268.19 3.43 0.00 0.00 0.00 1.00 67.05 0.0398 

6.1 3.6231 0.5561 268.19 3.29 0.00 0.00 0.00 1.00 67.05 0.0398 

6.2 3.2626 0.5182 268.19 3.25 0.00 0.00 0.00 1.00 67.05 0.0398 

6.3 2.5680 0.4380 268.19 3.15 0.00 0.00 0.00 1.00 67.05 0.0398 

6.4 4.1274 0.6351 268.19 3.45 0.00 0.00 0.00 1.00 67.05 0.0398 

7.1 2.8351 0.4966 268.19 3.31 0.00 0.00 0.00 1.00 67.05 0.0398 

8.1 1.6836 0.3519 268.19 3.13 0.00 0.00 0.00 1.00 67.05 0.0398 

2019 d50 Blended 
          

M.1 15.9710 1.6572 268.19 4.16 0.00 0.00 0.00 1.00 67.05 0.0398 

M.2 16.1250 1.4464 268.19 3.79 0.00 0.00 0.00 1.00 67.05 0.0398 

M.3 13.3490 2.1103 268.19 5.19 0.00 0.00 0.00 1.00 67.05 0.0398 

W.1 13.2610 3.6662 268.19 7.51 0.00 0.00 0.00 1.00 67.05 0.0398 

W.2 2.6337 0.9958 268.19 5.40 0.00 0.00 0.00 1.00 67.05 0.0398 

S.1 2.4723 0.3881 268.19 2.94 0.00 0.00 0.00 1.00 67.05 0.0398 

1.1 4.0647 0.5723 268.19 3.23 0.00 0.00 0.00 1.00 67.05 0.0398 

1.2 5.0505 0.7155 268.19 3.49 0.00 0.00 0.00 1.00 67.05 0.0398 

1.3 7.2465 0.9701 268.19 3.79 0.00 0.00 0.00 1.00 67.05 0.0398 

1.4 8.1194 1.4249 268.19 4.71 0.00 0.00 0.00 1.00 67.05 0.0398 

1.5 14.1180 2.4222 268.19 5.58 0.00 0.00 0.00 1.00 67.05 0.0398 

S.2 1.0498 0.2498 268.19 2.92 0.00 0.00 0.00 1.00 67.05 0.0398 

2.1 1.5956 0.3282 268.19 3.05 0.00 0.00 0.00 1.00 67.05 0.0398 

2.2 3.0529 0.5726 268.19 3.56 0.00 0.00 0.00 1.00 67.05 0.0398 

2.3 5.8496 1.1219 268.19 4.48 0.00 0.00 0.00 1.00 67.05 0.0398 

2.4 8.2669 1.6280 268.19 5.12 0.00 0.00 0.00 1.00 67.05 0.0398 

2.5 15.7350 3.1612 268.19 6.43 0.00 0.00 0.00 1.00 67.05 0.0398 

S.3 0.0796 0.0611 268.19 2.70 0.00 0.00 0.00 1.00 67.05 0.0398 

3.1 0.4016 0.1577 268.19 2.96 0.00 0.00 0.00 1.00 67.05 0.0398 

3.2 1.6384 0.6187 268.19 4.61 0.00 0.00 0.00 1.00 67.05 0.0398 

3.3 2.8755 0.8941 268.19 4.88 0.00 0.00 0.00 1.00 67.05 0.0398 

Table 7. Van Lopik second data summary. 

Sample 

ID 

D L Conduit Conduit Hypoth. Ext. 
SPH. 

Part. 
No. Nom. Part. Part. 

Diam. length 

Archt. 
Tortuosity 

Channel 
Porosity 

Diam. 
Parts. 

Part. 
Spher. Porosity 

Coeff. Diam. Equiv. Diam. 

γ τ dc ε0 dp np dpm Ωp εp 

cm cm none none cm none cm none cm none none 

2017 d50 Reference 
           

1 9.8 50.7 3.E+07 7.E+08 0.055 0.360 0.035 1.05E+08 0.039 0.908 0 

2 9.8 50.7 2.E+07 4.E+08 0.066 0.354 0.042 6.17E+07 0.039 1.088 0 
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Sample 

ID 

D L Conduit Conduit Hypoth. Ext. 
SPH. 

Part. 
No. Nom. Part. Part. 

Diam. length 

Archt. 
Tortuosity 

Channel 
Porosity 

Diam. 
Parts. 

Part. 
Spher. Porosity 

Coeff. Diam. Equiv. Diam. 

γ τ dc ε0 dp np dpm Ωp εp 

cm cm none none cm none cm none cm none none 

3 9.8 50.7 9.E+06 2.E+08 0.087 0.372 0.055 2.79E+07 0.061 0.899 0 

4 9.8 50.7 6.E+06 1.E+08 0.100 0.366 0.063 1.84E+07 0.071 0.890 0 

5 9.8 50.7 3.E+06 6.E+07 0.126 0.363 0.081 8.89E+06 0.084 0.960 0 

6 9.8 50.7 2.E+06 3.E+07 0.150 0.368 0.095 5.44E+06 0.099 0.956 0 

7 9.8 50.7 2.E+06 4.E+07 0.143 0.378 0.089 6.45E+06 0.105 0.847 0 

8 9.8 50.7 8.E+05 2.E+07 0.193 0.373 0.121 2.57E+06 0.136 0.891 0 

9 9.8 50.7 6.E+05 1.E+07 0.217 0.380 0.135 1.85E+06 0.150 0.898 0 

10 9.8 50.7 3.E+05 5.E+06 0.268 0.389 0.164 1.01E+06 0.211 0.777 0 

11 9.8 50.7 1.E+04 2.E+05 0.763 0.389 0.466 4.40E+04 0.634 0.735 0 

2017 d50 Composites 
          

0 

3.1 9.8 50.7 8.E+06 2.E+08 0.088 0.361 0.056 2.59E+07 0.062 0.915 0 

4.1 9.8 50.7 6.E+06 1.E+08 0.098 0.358 0.063 1.91E+07 0.071 0.878 0 

5.1 9.8 50.7 3.E+06 7.E+07 0.119 0.359 0.076 1.06E+07 0.084 0.904 0 

6.1 9.8 50.7 3.E+06 6.E+07 0.125 0.364 0.079 9.25E+06 0.099 0.800 0 

6.2 9.8 50.7 2.E+06 5.E+07 0.131 0.366 0.083 8.09E+06 0.099 0.840 0 

6.3 9.8 50.7 2.E+06 4.E+07 0.145 0.370 0.092 6.00E+06 0.099 0.925 0 

6.4 9.8 50.7 3.E+06 7.E+07 0.120 0.359 0.077 1.03E+07 0.101 0.763 0 

7.1 9.8 50.7 2.E+06 4.E+07 0.142 0.363 0.090 6.33E+06 0.105 0.861 0 

8.1 9.8 50.7 1.E+06 2.E+07 0.179 0.370 0.113 3.22E+06 0.136 0.826 0 

2019 d50 Blended 
           

M.1 9.8 50.7 2.E+07 4.E+08 0.067 0.337 0.044 5.55E+07 0.045 0.986 0 

M.2 9.8 50.7 2.E+07 5.E+08 0.064 0.348 0.041 6.69E+07 0.054 0.767 0 

M.3 9.8 50.7 8.E+06 3.E+08 0.082 0.313 0.056 2.84E+07 0.077 0.729 0 

W.1 9.8 50.7 4.E+06 2.E+08 0.099 0.277 0.071 1.45E+07 0.148 0.482 0 

W.2 9.8 50.7 6.E+05 2.E+07 0.188 0.309 0.130 2.31E+06 0.950 0.137 0 

S.1 9.8 50.7 2.E+06 4.E+07 0.143 0.378 0.089 6.45E+06 0.105 0.847 0 

1.1 9.8 50.7 3.E+06 7.E+07 0.117 0.367 0.074 1.14E+07 0.105 0.705 0 

1.2 9.8 50.7 4.E+06 9.E+07 0.109 0.357 0.070 1.37E+07 0.105 0.667 0 

1.3 9.8 50.7 6.E+06 1.E+08 0.095 0.348 0.062 2.02E+07 0.105 0.589 0 

1.4 9.8 50.7 5.E+06 1.E+08 0.100 0.323 0.068 1.60E+07 0.105 0.644 0 

1.5 9.8 50.7 8.E+06 3.E+08 0.082 0.305 0.057 2.70E+07 0.105 0.545 0 

S.2 9.8 50.7 6.E+05 1.E+07 0.219 0.379 0.136 1.81E+06 0.150 0.905 0 

2.1 9.8 50.7 1.E+06 2.E+07 0.181 0.374 0.113 3.14E+06 0.150 0.756 0 

2.2 9.8 50.7 2.E+06 4.E+07 0.141 0.355 0.091 6.20E+06 0.150 0.608 0 

2.3 9.8 50.7 3.E+06 9.E+07 0.115 0.329 0.077 1.07E+07 0.150 0.514 0 

2.4 9.8 50.7 4.E+06 1.E+08 0.103 0.314 0.071 1.42E+07 0.150 0.472 0 

2.5 9.8 50.7 7.E+06 3.E+08 0.084 0.291 0.059 2.47E+07 0.150 0.396 0 

S.3 9.8 50.7 1.E+04 2.E+05 0.763 0.389 0.466 4.40E+04 0.634 0.735 0 

3.1 9.8 50.7 1.E+05 2.E+06 0.356 0.377 0.222 4.18E+05 0.634 0.349 0 

3.2 9.8 50.7 4.E+05 1.E+07 0.220 0.326 0.148 1.51E+06 0.634 0.234 0 

3.3 9.8 50.7 9.E+05 3.E+07 0.171 0.319 0.116 3.16E+06 0.634 0.183 0 

 

Worked Example 4-Neue et al 

This is an example taken from the field of HPLC (High 

pressure Liquid Chromatography) [16]. The particles are very 

small, less than 2 micron in diameter, are spherical and 

porous, i.e., εp = 0.578. 

Table 8. Neue first data summary. 

Sample 

ID 

∆P Forchheimer Q-Mod. Ergun Net Wall Effect Impact of λ Univ. Consts. 

∆P = aq + bq2 
∆H = aµs + bµs

2 fv = A + BRem WN = W1 + W2R λ= 1 + WN PQ = k1 + k2CQ 

a b A B R2 W1 W2R k λ k1 k2 R2 

Pa seccm-1 sec2cm-2 none none none none none cm none none none none 

1 5 x 1010q + 6 x 108q2 374,308 141 268.19 2.50 1.00 0.00 0.00 0.00000 1.00 67.05 0.0398 1.00 

2 8 x 109 q + 3 x 108 q2 56,486 66 268.19 2.84 1.00 0.00 0.00 0.00000 1.00 67.05 0.0398 1.00 

3 3 x 1010 q + 3 x 108 q2 376,635 142 268.19 2.51 1.00 0.00 0.00 0.00000 1.00 67.05 0.0398 1.00 

4 2 x 1010 q + 5 x 108 q2 56,486 66 268.19 2.84 1.00 0.00 0.00 0.00000 1.00 67.05 0.0398 1.00 
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Table 9. Neue second data summary. 

Sample 

ID 

D L Conduit Conduit Hypoth. Ext. SPH. Part. No. Nom. Part. Part. 

Diam. length 

Archt. 
Tortuosity 

Channel 
Porosity 

Diam. 
Parts. 

Part. 
Spher. Porosity 

Coeff. Diam. Equiv. Diam. 

γ τ dc ε0 dp np dpm Ωp εp 

cm cm none none cm none cm none cm none none 

1 0.21 5.0 3.E+09 4.E+10 2.83E-04 0.399 1.7E-04 4.03E+10 1.7E-04 1.00 0.578 

2 0.21 5.0 1.E+08 2.E+09 7.78E-04 0.383 4.8E-04 1.85E+09 4.8E-04 1.00 0.578 

3 0.21 3.0 3.E+09 4.E+10 2.83E-04 0.399 1.7E-04 2.43E+10 1.7E-04 1.00 0.578 

4 0.21 10.0 1.E+08 2.E+09 7.78E-04 0.383 4.8E-04 3.69E+09 4.8E-04 1.00 0.578 

 

Worked Example 5-Cabooter et al 

This example is also taken from the field of HPLC [17]. 

The particles are porous in all 6 conduits. Note that in the 

samples numbered 5 and 6, the particles are identical to 

those used in the Neue example above. However, in these 

packed conduits, the particle porosity is significantly 

decreased which suggests that the particles are 

compressed due to the enormous packing pressures used 

(20,000 psi). Accordingly, this example demonstrates the 

ability of the QFFM to evaluate particle porosity which is 

an additional significant advantage over other fluid flow 

models. 

Table 10. Cabooter first data summary. 

Sample 

ID 

∆P Forchheimer Q-Mod. Ergun Net Wall Effect Impact of λ Univ. Consts. 

∆P = aq + bq2 
∆H = aµs + bµs

2 fv = A + BRem WN = W1 + W2R λ= 1 + WN PQ = k1 + k2CQ 

a b A B R2 W1 W2R k λ k1 k2 R2 

Barye seccm-1 sec2cm-2 none none none none none cm none none none none 

1 3.51 x 1010q + 1.97 x 108q2 349,159 68.02 268.19 2.03 1.00 0.00 0.00 0.00 1.00 67.05 0.0398 1.00 

2 4.00 x 1010q + 2.38 x 108q2 398,449 82.34 268.19 1.87 1.00 0.00 0.00 0.00 1.00 67.05 0.0398 1.00 

3 4.67 x 1010q + 2.76 x 108q2 464,173 95.16 268.19 2.13 1.00 0.00 0.00 0.00 1.00 67.05 0.0398 1.00 

4 9.50 x 109q + 1.16 x 107q2 453,322 92.01 268.19 2.10 1.00 0.00 0.00 0.00 1.00 67.05 0.0398 1.00 

5 4.62 x 1010q + 2.32 x 108q2 460,066 79.97 268.19 1.09 1.00 0.00 0.00 0.00 1.00 67.05 0.0398 1.00 

6 4.95 x 1010q + 2.63 x 108q2 492,927 90.80 268.19 2.02 1.00 0.00 0.00 0.00 1.00 67.05 0.0398 1.00 

Table 11. Cabooter second data summary. 

I.D. D L γ τ dc dp ε0 dpm Ωp np εp 

Cabooter 2008 cm cm none none cm cm none cm none none none 

Hypersil Gold C18 
           

1 0.21 5.00 2.21E+09 2.60E+10 3.29E-04 1.845E-04 0.4398 1.900E-04 0.971 2.95E+10 0.345 

Hypersil Gold C18 
           

2 0.21 5.00 2.23E+09 2.85E+10 3.21E-04 1.839E-04 0.4278 1.900E-04 0.968 3.04E+10 0.302 

Zorbax C18 
           

3 0.21 5.00 2.53E+09 3.39E+10 3.05E-04 1.763E-04 0.4213 1.800E-04 0.980 3.49E+10 0.240 

Zorbax C18 
           

4 0.46 5.00 2.66E+10 3.50E+11 3.06E-04 1.765E-04 0.4234 1.800E-04 0.981 1.66E+11 0.200 

Acquity BEH C18 
           

5 0.21 5.00 3.23E+09 3.85E+10 2.89E-04 1.627E-04 0.4350 1.700E-04 0.957 4.32E+10 0.325 

Acquity BEH C18 
           

6 0.21 5.00 3.11E+09 3.95E+10 2.88E-04 1.647E-04 0.4286 1.700E-04 0.969 4.23E+10 0.281 

 

5. Conclusions 

In this paper we have used the QFFM to demonstrate that 

permeability measurements can be used as a starting point 

in a back-calculation process to identify the values of the 

input variables, of dp, and εo in packed conduits. This is a 

significant advancement over all prior fluid flow models 

since it is effective even when the particle shape and 

roughness does not permit accurate measurements of 

particle size dimensions, on the one hand, and when the 

wall effect manifests, on the other hand. Moreover, by 

establishing the standardized methodology outlined herein, 

this paper defines the gold standard of how to 

systematically design, execute and report permeability 

studies on packed conduits containing porous media, which 

applies equally well to conduits packed with solid particles 

as well as empty conduits, i.e., conduits packed with fully 

porous particles. 
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