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Abstract: In this paper, point estimation approach is used to calculate the statistical moment of a random quantity that is a 

function of m input random variables. In this work, loads of the proposed network is considered as a random variable. Two 

special cases of point estimation approach are considered such as 2m and 2m+1 concentration schemes. In 2m concentration 

scheme, skewness is considered, but in 2m+1 concentration scheme, both skewness and kurtosis are taken into account for 

probability density function. The proposed model is investigated using P. M. Anderson 9-bus test system. As a result, by 

changing the value of a random variable that follows a predefined distribution, expected bus voltage magnitude and expected 

line loading are identified. For the comparison purpose, 2m and 2m+1 scheme was compared with deterministic load flow 

analysis. 
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1. Introduction 

Power flow study in power system is an important tool. It 

is mostly used to evaluate the voltage magnitude and angle at 

different buses in power system, active and reactive power 

flow through the line. For the expansion, operational 

planning, real-time operation, and control of power system; 

power flow has become a key. As the power system 

becoming more and more complex, several problems such as 

power system planning, operation, and control are a 

challenge for engineers. In order to tackle said problem, 

different studies are carried out in [1], [2]. 

Due to the integration of renewable energy in power 

system network, it is becoming more sensitive to above 

problems. The new challenges for the network are voltage 

Stability and transient stability. Although, different types of 

changes are noticed in recently published papers [3], [4]. 

Among of these problems, uncertainty in renewable sources 

is a major challenge for engineers. These uncertainties are 

unpredictable in a renewable generation such as the wind and 

solar energy, daily load variation, inherent randomness of 

fault, and failure of the power system.  

A classical way of power flow analysis is a deterministic 

power flow (DPF) analysis. DPF analysis has not the 

capability to handle the future problems. DPF analysis only 

calculates the values chosen by the analyst [5]. You can say 

that DPF analysis provides the variable values in term of 

certain load and generation characteristics. Its accuracy 

depends on the input data provided by the analyst. The 

generation pattern, future load characteristic, and faults in 

power system network become more unpredictable nowadays. 
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In DPL analysis, it is impractical to access the probabilistic 

power flow analysis. For each possible computation need to 

perform the analysis separately that is not only time 

consuming but also hectic. To handle the said problem, 

probabilistic power flow (PPF) analysis is taken into 

consideration. PPF analysis has the capability to handle 

almost all kind of uncertainties occurs in power system 

network. A few decay ago, PPL analysis has become a hot 

research topic as shown [6], [7], [8], [9], [10] recent 

publication. 

PPF analysis of power system can be categories into three 

approaches such as simulation approach, analytical approach, 

and approximate approach. In simulation approach, Monte 

Carlo simulation (MCS) is very famous and had been used in 

different papers [11], [12], [13]. In this method, a certain 

probability distribution is assigned to a certain variable. A 

random number is selected from the probability distribution, 

and computation is performed. In this approach, to attain the 

more precise results, need a large number of iteration that is 

the result of extensive computation time and storage, which 

are drawbacks of this approach. To overcome this 

computational time analytical approach was proposed in [14], 

[15], [16]. In analytical approach linearization of power flow 

equation is the main drawback, so that it can work with 

probability density function.  

In approximate practices, no need to linearization the 

power flow equation, it gives the approximate statistical 

information about the output random variables. By using 

several techniques, the evaluation point can be decreased. In 

this way computation time and storage can be considerably 

reduced. In approximate techniques, Point Estimation 

Method (PEM) can reduce the considerable computation time 

as well as a precise result. PEM calculate the statistical 

moments of a random variable that is a function of input 

random variable. 

Probabilistic PEM is proposed in this paper. Although, a 

number of research papers have been published at this 

method e.g. probabilistic optimal power flow in electricity 

market based on the 2m scheme is proposed in [17], and a 

probabilistic load flow based on nonparametric density 

estimator is proposed in [18] but in the above research papers 

2m and 2m+1 concentration scheme are used separately.  

In this paper, probabilistic power flow model is proposed 

with point estimation method, two special cases 2m and 

2m+1 concentration schemes are used, a total load of the 

proposed network is considered as a mean value, and an 

arbitrary value of standard deviation is selected for creating 

the uncertainty in load. In this work, few statistical moments 

(i.e. mean, variance, skewness, and kurtosis) are carried out 

to determine the effect of uncertainty on network parameters. 

Especially, by varying the value of skewness and kurtosis 

different results are observed. These results can be used for 

future planning, corrective action, and operation of electric 

power distribution system. The rest of the paper is organised 

as follow; Section 2 provides an introduction of PEM and 

corresponding schemes. Section 3 provides the information 

about test system. The simulation results and discussion is 

presented in Section 4. Finally, Section 5 conclude the paper. 

2. Point Estimation Method 

The main categorization of probability and statistic is as, 

(I) Descriptive statistic 

(II) Probability statistic 

(III) Inferential statistic 

In inferential statistic, it is used to draw a conclusion about 

a given population information about a representative in a 

decision making. It is impractical, expensive, and impossible 

to measure the large population, by using the samples, it can 

easily estimate, predict, generalise, and make a decision 

about large population. Two main methods are employed in 

this case i.e. point estimator and maximum likelihood method. 

Here, point estimate method has been considered. 

The first PEM was proposed in 1975 by Rosenblueth, at 

that time, it was used for symmetric variables. It was 

modified in 1981 for asymmetric variables. Since that, a 

different method was used to improve the origin Rosenbluth 

method, but the main difference is to change the types of 

random variables that they used to improve the performance. 

In this method, the sample is used to estimate 

corresponding population parameter desirable characteristic. 

Further, classification of this method depends on the 

selection of estimator value; it may be an unbiased estimator, 

consistence estimator, and maximum likelihood estimator. In 

this paper unbiased estimator is selected for analysis. 

In unbiased estimator, the mean of the sample distribution 

should be the same as the target parameter. Simply, the 

sample mean is an unbiased estimator for the population 

mean. Variance and minimal variance of the sample is also 

considered as an unbiased estimator of population variance 

but in this work mean is consider as an unbiased estimator 

because mean is the best possible estimator for the 

population mean if information is given in the sample. 

The aim of point estimator is to calculate the statistical 

moment of the random quantity that is a function of one or 

more input random variables. Let Z denote a random quantity 

that is a function of X input random variables. Then, evaluate 

the random quantity Z=F(X), to estimating the mean value of Z. 

2.1. Formulation of PEM 

Let ��  be an input random variable having a density 

function (DF) ��� , F is function that relate the input and 

output variable information about the uncertainty problems. 

This method concentrate the information provided by the first 

few central moment of input random variable. K is the 

number of points on the input random variable called 

concentration. By using k and F information, uncertainties 

associated with output random variables are calculated. The 

concentration of input random variable k is compose of two 

parameter (i.e. ��,�, ��,�). Here, ��,� is the kth value of 	��, it 
is a location parameter and ��,�	 is weighting factor, both 

contribute in the output random variable results. The number 

of k evaluation is depends upon the selection of concentration 

scheme. Total number of evaluation of F is k×m, here, m is 
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number of input variables. If 2m scheme is selected then k×m 

will be the evaluation points. If 2m+1 scheme is selected 

then k×m+1 will be the evaluation points. The input vector 

form input random variables m with mean is, 

	
�, �
 = ������, ���,……..,���,………..����	         (1) 

Kth Concentration of input random variable is evaluated by 

using statistical input data. The location parameter is 

calculated by using [22], that is: 

��,� = ��� + ��,���� 	                           (2) 

Here, 

��,� = location parameter of input random variable 

��� = mean of input random variable 

��,� = standard location of input random variable  

��� = standard deviation of input random variable 

Here, ��,�  depending upon the type of concentration 

scheme, in this paper two concentration scheme are 

considered. 

2.2. 2m Concentration Scheme 

In this scheme, standard location of input random variable 

is calculated by using below equation [22]: 

��,� = ��,�
� + 
−1
!"�#$ + 
%�,!/2
�	� = 1,2         (3) 

Here, ��,�  depend upon the number of input random 

variables, from the Eq. (2), it is clearly shown that as the m 

increase location of ��  move away from the mean ��� 
according to √$ . In Eq. (3) parameter %�,!  denoted the 

skewness of input random variable that is computed as:  

%�,! = )[
��"+,�
�]

.,�
� 	                                 (4) 

The weighting of the concentration located at Eq. (1), then 

used to estimates to take into account the skewness of 

probability distribution of Z. the value of ��,�  is range from 0 

to 1 and sum of all values of ��,�is unity. 

ω0,� = "�
1 ∗ 34,5


34,6"34,5
, ω0,� = �
1 ∗ 34,6

�34,6"34,5�	          (5) 

The advantage of the 2m scheme is related to its simplicity, 

lesser computation burden, and the real value of 

concentration. 

2.3. 2m+1 Concentration Scheme 

In this scheme, three points are taken from each input 

random variable and one location fixed for mean value. Four 

statistical moments are carried out for PDF of random 

variables. Standard location of k concentration can be found 

by using [19], [20], [21] below equation. 

��,� = ��,�
� + 
−1
!"�7%�,8 − !

8 ∗ 
%�,!
�	                   (6) 

K =1, 2 & ��,! = 0 

The weights are calculated as: 

��,� = 
"�
�:;
<�,;
<�,6"<�,5
k=1, 2 & 

��,! = �
� − �

���,="��,=5�	                                (7) 

From the Eq. (7), %�,8 is kurtosis taken into account that’s 

why 2m+1 scheme is more accurate then 2m scheme but 1 

additional evaluation is needed.  

In this method, after estimating the sample point, the 

fitness function is calculated for all estimated points. The 

uncertainty is transfer from the input random variables to the 

output random variables by using F function, and Z (l, k) is 

the vector of the output random variables associated with the 

Kth concentration of random variable �� . The total number of 

deterministic analyses to be run depends on the concentration 

scheme considered. Finally, the expected results is computed 

as: 

>|	| = ∑ .��A� ∑ ���,��B�A� ∗ 	
�, �
                   (8) 

Here, output random variable is Z and E|Z| is the expected 

value of vector Z, input random variable, and the number of 

points is denoted by m and k respectively. 

2.4. Skewness 

It measures the asymmetry of the distribution data of the 

random variable about its mean. It is a third central moment 

of distribution, three different value of the coefficient is used 

for analysis. Its value may be positive, negative, and even 

undefined. Fisher Pearson gave an excellent concept about 

skewness. He gave the constant value of each distribution, by 

using (9). In this work, random variable follows the normal 

distribution. 

CD = ∑ 
EF"E:
�GFH6 I⁄
.� 	                                    (9) 

Here, N is used rather than N-1, for calculating the 

standard deviation. 

Ks = coefficient of skewness 

For a normal distribution, if Ks =0, it is symmetrical 

distribution, if Ks<0, it mean data distribution is negatively 

skewed, if Ks> 0, it means data is positively skewed. 

2.5. Kurtosis 

It is a fourth central moment of distribution data set. It 

measures the peak of distribution. Three different value of 

the coefficient of kurtosis is used for analysis purpose. 

Pearson explained that value of kurtosis coefficient is equal 

to 3 in the case of normal distribution, its formula is given 

below: 

CB = ∑ 
EF"E:
=GFH6 I⁄
.= 	                          (10) 

Here, CB  is coefficient of kurtosis, when, CB = 3,  it is 

called Mesohurtic, when the value of kurtosis coefficient is 

more than 3, this is called Leptokurtic. Leptokurtic 
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distribution mean that data is distributed around the mean 

value. When the value of kurtosis coefficient is less than 3, it 

is called Platykurtic distribution. Platyhurtic distribution 

mean that data is distributed far from the mean value of 

distribution. 

2.6. Flow Chart for PEM 

In this section, step-by-step implementation of PEM is 

presented. 

Step 1: First of all, set the parameter such as a probabilistic 

characteristic of an input random variable (i.e. mean, 

standard deviation, skewness, and kurtosis) and the number 

of estimation points k is determined. In this paper, 2m and 

2m+1 concentration schemes are used. So, 2 points in case of 

the 2m scheme and 3 points in case of the 2m+1 scheme are 

generated. In this paper, a random variable is a total system 

load that follows a normal distribution and considered one 

variable (m=1). 

Step 2: In this step, standard central moment and standard 

location %�,� and ��,�  are calculated respectively 

corresponding to selected scheme. Here, %�,�, 	%�,�, %�,!, 	%�,8 

are the mean, standard deviation, skewness, and kurtosis 

respectively. 

Step 3: In this step, input vector for power flow is 

calculated by using the Eq. (1).  

Step 4: In this step, the fitness function is evaluated by the 

DFL analysis. DFL is derived from the input vector. If the 

algorithm reached maximum input random variable, it will 

stop. Otherwise, it follows the step 3. 

Step 5: In this step, the algorithm checks the number of 

point K if it is reached to a maximum number of point it will 

stop. Otherwise, it follows the step 3. 

 

Figure 1. Flowchart of PEM. 
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3. P. M. Anders on 9-Bus Test System 

For the results demonstration purpose, P. M. Anderson 9-

bus test system is used. All related data to this test system is 

available in [22], [23]. The total load for base case is 315 

MW and 115 Mvar, bus 1 was considered as a reference bus. 

Some information related to load and line data is given in 

Tables 1 & 2 respectively. 

 

Figure 2. P. M. Anderson 9-bus test system. 

4. Results and Discussion 

In order to verify the accuracy and efficiency of the 

proposed model, P. M. Anderson 9-bus test system was 

simulated through DIgSILENT Power Factory software 15.1. 

In this test system, all PV buses voltage magnitude are set 1.05 

(p.u.), and balance Ac load flow analysis was implemented. 

All results for base case are presented in Tables 2 and 3. 

4.1. 2m Concentration Scheme 

In 2m point concentration scheme, the standard deviation 

is considered as an arbitrary parameter. Three different 

values of coefficient of skewness are set on 0, 0.5, and -0.5, 

its explanation is presented in Section 2.4. Firstly, standard 

location, weighting coefficient, Active, and Reactive power 

will be calculated; these parameter values depend upon the 

selection of standard deviation and the value of the 

coefficient of skewness. In this study, when standard 

deviation was selected 10% and coefficient of skewness 0. 

The value of standard location and a weighting coefficient 

for both point was (1 & -1) and (0.5 & 0.5) respectively, then 

voltage magnitude at each point was calculated (see Fig. 3a). 

When ks = 0.5, the value of standard location and a weighting 

coefficient for both point was (1.368 & -0.868) and (0.326 & 

0.515) respectively, then voltage magnitude at each point was 

calculated (see Fig. 3b). Similarly, when Ks = -0.5, the value 

of standard location and a weighting coefficient for both 

point was (0.868 & -1.368) and (0.515 & 0.326) respectively, 

then voltage magnitude at each point was calculated (see Fig. 

3c). From the above analysis, it is clearly shown that as the 

value of the coefficient of skewness was increased, the 

magnitude of active and reactive power injection to the buses 

also increased. This claim can be confirmed by the Table 4. 

 

Figure 3. Voltage magnitude at each bus, when Ks=0, 0.5, & -0.5. 

Table 1. Base case load data. 

Loads Load (MVA) 

Load A 125+j50 

Load B 90+j30 

Load C 100+j35 

Table 2. Base Case voltage magnitude. 

Bus Number Voltage Magnitude (p.u.) 

Bus 01 1.040 

Bus 02 1.025 

Bus 03 1.025 

Bus 04 1.024 

Bus 05 0.991 

Bus 06 1.009 

Bus 07 1.024 

Bus 08 1.013 

Bus 09 1.030 

Table 3. Base Case Line Loading. 

Line Number Loading (%) 

Line 01 16.160 

Line 02 20.943 

Line 03 19.699 

Line 04 09.129 

Line 05 14.700 

Line 06 10.331 
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Table 4. Active and Reactive Power of two points. 

Skewness (Ks) Points No 
Active Power 

(MW) 

Reactive Power 

(Mvar) 

0 
1 365.539 133.450 

2 299.077 109.187 

0.5 
1 377.769 137.915 

2 303.463 110.788 

-0.5 
1 361.154 131.849 

2 286.847 104.722 

4.2. 2m+1 Concentration Scheme 

In this scheme, arbitrary parameters such as standard 

deviation, skewness, and kurtosis (kk ) are set at 10%, 0.5, and 

2.5 respectively. The simulation was carried out for three 

different value of the coefficient of kurtosis such as 2.5, 3, and 

3.5 respectively. Its explanation is provided in Section 2.5. 

Firstly, standard location and weighting coefficient were 

calculated by using Eq. (3 & 4) respectively. When kk =2.5, the 

value of standard location and weighting coefficient related to 

three point was (1.723, -1.419 & 0) and (0.184, 0.224 & 0.698) 

calculated respectively, then voltage magnitude at each point 

was calculated (see Fig. 4a). The voltage magnitude When Kk = 

3, the value of standard location and weighting coefficient 

related to three points was (1.863, -1.559 & 0) and (0.156, 0.187 

& 0.759) calculated respectively, then voltage magnitude at each 

point was calculated (see Fig. 4b). When Kk = 3.5, the value of 

standard location and weighting coefficient related to three 

points was (2.004, -1.700 & 0) and (0.134, 0.158 & 0.806) 

calculated respectively, then voltage magnitude at each point 

was calculated (see Fig. 4c). From the above analysis, it is 

clearly shown that, as the value of the coefficient of kurtosis was 

increased, the load injection in buses are increased. This claim 

can be confirmed by the Table 5. 

Table 5. Active and Reactive Power of three points. 

kurtosis (kk) Point No 
Active Power 

(MW) 

Reactive Power 

(Mvar) 

2.5 

1 389.585 142.229 

2 285.136 104.097 

3 332.308 121.319 

3 

1 394.249 143.932 

2 280.473 102.394 

3 332.308 121.319 

3.5 

1 398.911 145.634 

2 275.811 100.692 

3 332.308 121.319 

Table 6. Camparrision of EVM, when Ks= 0 & kk = 3. 

Bus # 
Base 

Case 

2m 

scheme 

2m+1 

scheme 

SD* 2m & 

Base 

SD* 2m+1 & 

Base 

1 1.04 1.56 1.422 0.26 0.191 

2 1.025 1.537 1.401 0.256 0.188 

3 1.025 1.537 1.401 0.256 0.188 

4 1.024 1.535 1.399 0.255 0.187 

5 0.991 1.487 1.354 0.247 0.181 

6 1.009 1.513 1.379 0.252 0.184 

7 1.024 1.535 1.399 0.255 0.187 

8 1.013 1.519 1.384 0.253 0.185 

9 1.030 1.546 1.409 0.257 0.189 

SD*= standard deviation 

 

Figure 4. Voltage magnitude at each bus, when Kk=2.5, 3, & 3.5. 

Finally, the expected voltage magnitude (EVM) at each 

bus was calculated. The 2m and 2m+1 scheme was compared 

with the base case (see Table 6), by looking the value of 

standard deviation, the results of the 2m scheme is more 

deviate than 2m+1 scheme. So the value of EVM computed 

through the 2m+1 scheme is closer to the base case (see Fig. 

5). Similarly, it applies to the line loading case (see Table 7), 

except those lines that are connected to the PV buses. 

 

Figure 5. Comparison of EVM, when Ks= 0 & kk= 3. 
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Table 1. Comparison of ELL, when Ks= 0 & kk= 3. 

Line 

# 

Base 

Case 

ELL 

2m 

ELL 

2m+1 

SD 2m & 

Base 

SD 2m+1 & 

Base 

1 16.160 16.393 18.064 0.116 0.952 

2 20.943 19.711 21.742 0.615 0.399 

3 19.699 9.1581 10.099 5.270 4.799 

4 9.1294 14.917 16.368 2.894 3.619 

5 14.700 10.468 11.544 2.115 1.578 

6 10.331 20.979 23.164 5.324 6.416 

5. Conclusion 

In this paper Probabilistic power flow model used to study 

uncertainty with power system network. The proposed model 

based upon the point estimation method, 2m and 2m+1 

concentration scheme were used to evaluate the points of an 

input random variable. The program was written in DPL code 

by using the DIgSILENT Power Factory software. This 

model is used to create the uncertainty in load and compute 

the effect of this uncertainty in the power system network 

parameters. Especially, in this paper, expected voltage 

magnitude and expected line loading are considered for 

analysis purpose. From the analysis, it is shown that 2m+1 

concentration scheme is more reliable than 2m scheme. 

The proposed model can address all possible uncertainties 

in loads and provide more reliable distribution of output data. 

Its implementation is investigated by using the P. M. 

Anderson 9-bus test system, and reliable corresponding 

results are shown in this paper. These results can be used for 

future planning, corrective action, and operation of electric 

power system. 
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