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Abstract: This paper presents an affective neuro – fuzzy controller (NFC) to improve the transient stability of multi-

machine system with HVDC link. Fuzzy rules are used as neurons in artificial neural network (ANN) model. Excellent 

learning capability of ANN and heuristic fuzzy rules and input/output membership functions of fuzzy logic technique are 

optimally tuned from training examples by back propagation algorithm (BPA). Considerable time required for fuzzy 

inference system to match rules is saved using NFC. To illustrate the performance of NFC, transient stability study is 

carried out on a multi machine system and results are compared with conventional controller as well as fuzzy logic 

controller. 
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1. Introduction 

HVDC power transmission system offers several 

advantages, one of which is rapid control of the transmitted 

power. Therefore, they have a significant impact on the 

stability of the associated AC power systems. Moreover, 

HVDC link  effectively uses frequency control and 

improves the stability of the system using fast load-flow 

control. The importance of AC-DC power transmission 

systems in the improvement of stability has been a subject 

to much research. An HVDC transmission link is highly 

controllable. It is possible to take advantage of this unique 

characteristic of the HVDC link to augment the transient 

stability of the ac systems. In the past, numerous 

investigations have been carried out to improve transient 

stability of power system, ranging from theoretical studies 

to advanced control devices [1-4].  

A proper design of the HVDC controls is essential to 

ensure satisfactory performance of overall AC/DC system 

[5-6]. The control strategy, traditionally employed for a 

two-terminal HVDC transmission system is the current 

margin method, where the rectifier is in current control, and 

the inverter is in constant extinction angle (CEA) control [4]. 

Both ends of the dc system rely on PI controllers to provide 

fast robust control. The conventional methods often require 

a precise mathematical model of the controlled system. 

Because of fixed gains (Kp, Ki, Kd) these controllers 

perform well over a limited operating range as for power 

systems in practice, there exists parameter uncertainty in 

plant modeling and large variations in environmental 

conditions. Therefore HVDC systems are prone to repetitive 

commutation failure when connected to a weak AC systems 

and also when subjected to faults and disturbances. This 

leads to considerable research in the field of effective 

control of HVDC systems using adaptive, optimal, 

intelligent controllers such as neural network, fuzzy 

logic,neuro – fuzzy controllers etc. 

Artificial neural networks and fuzzy logic systems are 

successfully implemented for improvement of transient 

stability of power system [7]. The salient features of both 

techniques are combined to form a hybrid controller i.e. 

Neuro – fuzzy controller. Self-learning capability of neural 

network is combined with inference system of fuzzy logic 

to form self-organizing neuro – fuzzy controller. Thus in 

this paper, the feasibility of employing a neuro – fuzzy 

controller for an HVDC transmission system is explored. To 

demonstrate the effectiveness of proposed NFC, NFC is 

employed to improve transient stability of a WSCC 9 bus 

system and the response of the NFC is compared with 

conventional controller. 
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2. AC/DC Load Flow Analysis 

In transient stability studies it is a prerequisite to do 

AC/DC load flow calculations in order to obtain system 

conditions prior to the disturbance [5]. While the 

conventional approaches are available for conducting the 

calculations, the eliminated variable method proposed by 

Anderson, et al[8] is used here which treats the real and 

reactive powers consumed by the converters as voltage 

dependent loads. The dc equations are solved analytically or 

numerically and the dc variables are eliminated from the 

power flow equations. The method is however unified in the 

sense that the effect of the dc – link is included in the 

Jacobian matrix. 

2.1. DC System Model 

The equations describing the steady state behavior of a 

mono polar DC link can be summarized as follows [9], 

V�� � �√�
� a�V
�cosα� � �

� X�I�        (1) 
��� � �√�

� ���������� � �
� �� �         (2) 

��! � ��� " #� �              (3) 
 $�! � ��! �                (4) 
$�� � ��� �                 (5) 

%�! � & �√�
� �!��! �              (6) 

%�� � & �√�
� ����� �'             (7) 

(�! � )%�!� � $�!�               (8) 
(�� � )%��� � $���                (9) 

Where,  
Vdr, Vdi voltages at rectifier and inverter end 

respectively 
Vtr, Vti terminal voltages at rectifier and inverter 

ends 
Id  dc link current 
Xc, rd dc link reactance and resistance 
α,ϒ  firing and extinction angle respectively 
a  tap ratio 
Pdr, Pdi Real power at rectifier and inverter 

ends resp. 
Qdr,Qdi Reactive power at rectifier and inverter 

ends resp. 
Sdr, Sdi Apparent power at rectifier and inverter 

ends resp. 

2.2. The Eliminated Variable Method 

The real and reactive powers consumed by the converters 

are expressed as function of their ac terminal voltages, Vtr 

and Vti. Their partial derivatives with respect to Vtr and Vti 

are computed and used in modification of Jacobian 

elements of the Newton Raphson power flow solution as 

shown below, 
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∆4 4⁄ .            (10) 
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L’ is also modified analogously. Thus, in the eliminated 

variable method, four mismatch equations and up to eight 

elements of Jacobian have to be modified, but no new 

variables are added to solution vector, when a dc – link is 

included in the power flow. 

3. Representation of HVDC Systems 

Each DC system has unique characteristics tailored to 

meet the specific needs of its application. Hence, standard 

models of fixed structures have not been developed for 

representation of dc systems in stability studies. The current 

controller employed in this paper is shown in figure 1. It is a 

proportional integral controller and the auxiliary controller 

is assumed to be a constant gain controller. 

 

Fig. 1. Block diagram of current controller 

The HVDC link can be represented as transfer function 

model [9] as, 

 � � C=DE
FGHI@               (15) 

Where,  

Id dc link current 

Iref reference value of current 

Td Time constant of the system. 

3.1. Generator Representation 

The synchronous machine is represented by a voltage 

source, in back of a transient reactance, that is constant in 

magnitude but changes in angular position neglecting the 

effect of saliency and assumes constant flux linkages and a 

small change in speed [10]. The classical generator model 



100 Nagu Bhookya et al.: Enhancement of Power System Stability Using Self-Organized Neuro–Fuzzy Based HVDC Controls 

 

can be described by following set of differential and 

algebraic equations, 

Differential equations, 

�3
�� � J � 2LM               (16) 

�N3
��N � �O

�� � �P
Q 7$R � $S:           (17) 

Algebraic equations, 

T6 � T� "  �#U " VW�6  �           (18) 

Where E’ Voltage back of transient reactance 

Et Machine terminal voltage 

It Machine terminal current 

ra Armature resistance 

x’d Transient reactance 

δ Rotor angle 

ω Speed 

Pm, Pe Mechanical and Electrical Power 

H Inertia constant 

3.2. Load Representation 

The static admittance Ypo used to represent the load at 

bus P, can be obtained from, 

XYZ � C[\
][                  (19) 

4. Steps of AC-DC Transient Stability 

Study 

The basic structure of transient stability program is given 

below [14] 
1. The initial bus voltages are obtained from the ac/dc 

load flow solution prior to the disturbance. 
2. After the ac/dc load flow solution is obtained, the 

machine currents and voltages behind transient 
reactance are calculated. 

3. The initial speeds and the initial mechanical powers 
are obtained for each machine prior to the 
disturbance. 

4. The network data is modified for the new 
representation. Extra nodes are added to represent the 
generator internal voltages. Admittance matrix is 
modified to incorporate the load representation. 

5. The time is set as t = 0; 
6.  If there is any switching operation or change in 

fault condition, the network data is modified 
accordingly to run the ac/dc load flow. 

7. Using Runge-Kutta method, solution of the machine 
differential equations are obtained to find the 
changes in the internal voltage angle and machine 
speeds. 

8. Internal voltage angles and machine speeds are 
updated. 

9. Advance time, t = t + Dt. 

10. The time limit is to be checked, if t £ tmax, then the 
process has to be repeated from step 6,else the 
process has to be stopped. 

In case of multi machine system stability analysis the 

relative angles are plotted to evaluate the stability of the 

power system. 

5. Conventional Controller 

When a multi machine system is subjected to fault, 
generator closer to location of fault loses synchronism with 
the system. To stabilize the system, it is necessary to make 
equal accelerations of all the generators. So an error signal 
representing average difference in accelerations of the 
generators is considered. In case of multi machine system, 
the relative angles are to be maintained within limits to 
maintain the stability of the system. So, error signals 
derived from the average difference in the relative angles 
and average difference in the relative speeds of the 
generators are considered. 

 Considering a 3 machine system and first generator 
falling out of synchronism, the above mentioned errors can 
be formulated as below. 

^##�#F � *_`O7�:aO7F:bG`O7�:aO7F:b
� c � `J72: � J73:b.    (20) 

^##�#� � *_`�Se7�:a�Se7F:bG7�Se7�:a�Se7F::
� c � `f^g72: � f^g73:b. (21) 

^##�#� � hi
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Combination of the above three signals are considered, 
in order to improve the stability. Gains of the signals are 
varied in order to get better transient and dynamic 
performance. The signal error2 is  equivalent to the 
integration of the signal error1 and the signal error3 is 
equivalent to the differentiation of the signal error1. Hence, 
the controller is equivalent to a PID controller . Then the 
control signal can be  represented as, 

T##�# �  rs ^78: " rB  ^78: " rf t^78:      (23) 

^##�# � rs u ^##�#1 "  rB u ^##�#2 "  rf u ^##�#3(24) 

6. Neuro – Fuzzy Controller 

The structure of the Neuro – Fuzzy controller is shown in 

figure 2. The recent direction of research is to design a self-

organizing fuzzy logic system that has the capability to 

create the control strategy by learning [11, 12]. The 

proposed SONFC is a combination of both  neural network 

and fuzzy logic. The fuzzy method provides a structural 

control framework to express the input-output relationship 

of the neural network, and the neural network can embed 

the salient features of computation power and learning 

capability into the fuzzy controller. 
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Fig 2. Topology of Neuro Fuzzy Controller 

6.1. Topology of the Neuro – Fuzzy controller 

The proposed NFC is a multilayer neural network-based 

fuzzy controller. Its overall structure and topology is shown 

in Fig. 2. The system has a total of five layers. Since two 

input variables and one output variable are employed in the 

present work, there are two nodes in layer 1 and one node in 

layer 5. Nodes in layer 1 are input nodes that directly 

transmit input signals to the next layer. Layer 5 is the output 

layer. Nodes in layers 2 and 4 are term nodes that act as 

membership functions to express the input/output fuzzy 

linguistic variables. A bell-shaped function  is adopted to 

represent the membership function, in which the mean value 

m and the variance o will be adapted through the learning 

process. The fuzzy sets defined for the input/output 

variables are positive big (PB), positive medium (PM), 

positive small (PS), zero (ZE), negative small (NS), 

negative medium (NM), and negative big (NB), which are 

numbered in descending order in the term nodes. Hence, 14 

nodes and 7 nodes are included in layers 2 and 4, 

respectively, to indicate the input/output linguistic variables. 

Each node of layer 3 is a rule node that represents one fuzzy 

control rule. In total, there are 49 nodes in layer 3 to form a 

fuzzy rule base for two linguistic inputs. Layer 3 links and 

layer 4 links define the preconditions and consequences of 

the rule nodes respectively. The NFC adjusts the fuzzy 

control rules and their membership functions by modifying 

layer 4 links and the parameters that represent bell – shaped 

membership function for each node in layer 2 and 4. 

Following symbols are used to describe various functions: 

netiL: the net input value to the i-th node in layer L, 

OiL: the output value of the i-th node in layer L, 

miL,σiL:the mean and variance of the bell – shaped 

activation function of the i-th node in layer L, 

Wij: the link that connects output layer of j-th node in 

layer3 with the input to the i-th node in layer 4. 

Layer 1: This is a fan – out layer. Inputs are directly 

transmitted to next layer. 

Layer 2: The nodes of this layer act as membership 

function to express the terms of input linguistic variables. 

w^8�� � xyFF        M�# B � 1,2, … .7
y��       M�# B � 8,9 … 14� 

y�� � ^ai�D<AN�lAN�AN p
N
    M�# B � 1,2, … . .14   (25) 

Note that layer 2 links are all set to unity. 

Layer 3: The links in this layer are used to perform 

precondition matching of fuzzy rules. Thus, each node has 

two input values from layer 2. The correlation-minimum 

inference procedure[15] is utilized here to determine the 

firing strengths of each rule. The output of nodes in this 

layer is determined by the fuzzy AND operation. Hence, the 

functions of the layer are given below: 

w^8�� � min 7y��, y��:           (26) 

The link weights in this layer are also set to unity. 

Layer 4: Each node of this layer performs the fuzzy OR 

operation to integrate the fired rules leading to the same 

output linguistic variable.  Starting with the good initial 

fuzzy control rules will provide much faster convergence in 

the learning phase. The functions of this layer are expressed 

as follows: 

w^8�� � ∑ ���y������F              (27) 

y�� � min`1, w^8��b   M�# V � 1,2 … … 7   (28) 

The link weight Wijin this layer expresses the probability 

of the j-th rule with the i-th output linguistic variable. 

Layer5: The node in this layer computes the control 

signal of the NFC. The output node together with layer 5 

links act as a de-fuzzifier. The de-fuzzification aims at 

producing anon-fuzzy control action that best represents the 

possibility distribution of an inferred fuzzy control action. 

The centre of area de-fuzzificationscheme, in which the 

fuzzy centroidconstitutes the controller output signal, can be 

simulated. 

w^8F� � ∑ ���������F y��          (29) 

y�� � �S���
∑ ������� ���              (30) 

6.2. Self-organizing Learning Algorithm 

The problem for the self-organized learning can be stated 

as: Given the training input data xi(t), i = 1, . - . , n , the 

desired output value yi(t), i = 1,. . . , m ,the fuzzy 

partitions|T7x:|  and |T7y:|, and the desired shapes of 

membership functions, we want to locate the membership 

functions and find the fuzzy logic rules. In this phase, the 

network works in a two-sided manner; that is, the nodes and 

links at layer four are in the up-down transmission mode so 

that the training input and output data are fed into this 

network from both sides. First, the centres (or means) and 
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the widths (or variances) of the membership functions are 

determined by self-organized learning techniques analogous 

to statistical clustering. This serves to allocate network 

resources efficiently by placing the domains of membership 

functions covering only those regions of the input/output 

space where data are present. Kohonen’s feature-maps 

algorithm [20] is adapted here to find the centre mi, of the 

membership function:  

        �W78: � ��eZHSH�78:� � minF��� ¡�W78: � ��78:�¢ 

 ��eZHSH�78 " 1: � ��eZHSH�78:"£ 78:¤W78: � ��eZHSH�78:¥ 
��78 " 1: � ��78:M�# �� ¦ ��eZHSH� 

where α (t) is a monotonically decreasing scalar learning 

rate, and k = |§7W:| . This adaptive formulation runs 

independently for each input and output linguistic variable. 

The determination of which of the mi’s is mclosest can be 

accomplished in constant time via a winner-take-all circuit. 

Once the centres of membership functions are found, their 

widths can be determined by the N-nearest-neighbors 

heuristic by minimizing the following objective function 

with respect to the widths (σi’s) 

σi=*RAaR?¨\mDm<
! .    for i=1,2,....,7      (31) 

Then the optimal membership functions and fuzzy rules 

can be found by gradient – descent search techniques. Thus 

the energy function is defined as, 

T � F
� 7©�7&: � ©7&::�        (7.10) 

Now using generalized delta rule [14] to minimize the 

energy, in standard notations, the delta rule can be 

expressed as, 

ª�7& " 1: � ª�7&: " « _� ;]
;¬Ac " ­Δª�7&:   (7.11) 

The error signal term delta produced by the i-th neuron 

in layer L is defined as, 

¯�°7&: � � ;]
;�S�A±            (7.12) 

Using above equations, the learning rules of each layer 

are derived below: 

Layer 5: the error signal of the output node is 

�̄� � 7©�7&: � ©7&:           (7.13) 

The mean and variance of each output membership 

function are adapted by, 

���7& " 1: � ���7&: " «¯F�
���y��∑ ������F y��

" ­∆���7&: 

���7& " 1: � ���7&: " «¯F� 

���y��`∑ ������F y��b � ∑ ���������F y��
7∑ ������F y��:� " ­∆���7&: 

M�# B � 1,2, … 7                  (7.14) 

Layer 4: the error signal of each node is 

¯�� � ¯F�
���y��`∑ ������F y��b � ∑ ���������F y��

7∑ ������F y��:�  

     M�# B � 1,2, … .7; V � 1,2 … 49 

The weights between the i-th output linguistic variable 

and j-th rule is updated by, 

���7& " 1: � ���7&: " «¯��y�� " ­Δ���7&:  
 M�# B � 1,2, … .7 

Layer 3: No parameter needs to be adjusted in this layer, 

and only the error signal needs to be computed and 

propagated backwards. That is, 

¯�� � ∑ ������F �̄�                                  (7.15) 

Layer 2: The mean and variance of the input 

membership functions can be updated by, 

���7& " 1: � ���7&: � « ;]
;�AN

y�� �`���aRANb
7�AN:N "£ ∆���7&: (7.16) 

���7& " 1: � ���7&: � « ³T
³y��

y��
27yFF � ���:

7���:� "£ ∆���7&: 

    M�# B � 1,2, … . .14  
It should be noted that the function of layer 1 is only to 

distribute the input signal, and hence it is not involved in 

the learning process. The links connecting layers 4 and 3 

can be deleted when the weight is negligibly small or 

equals zero after learning because it means that this rule 

node has little or no relationship to the output linguistic 

variable. 

7. Case Study 

A WSCC-9 system [13] is taken for stability analysis, it 

is given in the below figure 4. 

 

Fig 3. WSCC 9 bus System 

To test the effectiveness of the above controllers the 

HVDC system is subjected to a Three-phase-to-ground 

fault at the converter end AC bus. Variation of dc link 

voltage and current, and converter firing angle due to a 
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three-phase-to-ground fault at the rectifier end AC bus. The 

dc bus voltage completely collapses and results in 

commutation failure of the converter thyristors. During the 

fault, the DC link current drops to zero and the firing angle 

settles at the minimum value. The zero current and zero 

power condition lead to complete de-energization of the 

DC link. As soon as the fault is cleared the converter 

current controller gets activated, and it is in this period 

when the performance is influenced by the controller 

actions. 

A grounded fault is assumed to occur on Line 4-6, near 

to Bus 6, at initial time zero and the line from Bus 4 to Bus 

6 is removed after 4 cycles. The HVDC line is located 

between buses 4 –5. Under these conditions, the impact of 

HVDC on system stability is presented. Initially, a case in 

which the HVDC line maintains the same control as in the 

normal state, in which the post-fault HVDC power flow 

setting remains the same as before, is investigated. It was 

found that, the system becomes unstable. Then a controller 

is used to stabilize the system. It is clearly seen from figure 

4that the system is becoming unstable, generator 2 and 

generator 3 are moving together whereas generator 1 

falling out of synchronism when no control action is 

performed. 

 

Fig 4. Plot of relative angles without any external control signal applied 

Different combinations of the three signals in eq. 20, 21, 

22 are considered, in order to improve the stability. 

Case 1: Considering the signal error3 as the control 

input, the plot of relative angles is as shown in the fig. 5.  

Case 2: Considering the combination of error2 and 

error3 signals to generate the control signals, the plot of 

relative angles will be as shown in figure 6. 

Case 3: Considering the combination of all the three 

signals to generate the control signal, the plots of the 

relative angles with different gains are as shown in fig.7. 

Thus from case 3 it is clear that the plot of relative 

angles of generators can be improved using conventional 

PID controller. Therefore Fuzzy logic PID controller is 

also implemented and the plot of relative angles of 

generators using fuzzy logic controller is shown in fig. 8. 

NFC is trained with the available data. Learned Fuzzy 

Rule matrix using NFC is shown in table 2. The 

performance of NFC in figures 8,10 is compared with 

conventional controller and fuzzy logic controller and is 

summarized in table 3. From table 3, it is clear that 

proposed NFC works satisfactorily for the given system 

and gives best results. Similar experiment is done by  

assuming fault on the line between buses 8 and 9 near bus 

8 and the HVDC link is in between buses 4 and 5 and the 

wave forms are plotted. 

 

Fig 5. Plot of relative angles with error3 as the control signal 

 

Fig 6. Plot of relative angles with error2 and error3 as control signals 

 

Fig 7. Plot of relative angles with PID controller. When hvdc link is in 

between buses 4-5and  fault is in between buses 4-6. 
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Fig 8. Plot of relative angles with NeuroFuzzy Controller When hvdc link 
is in between buses 4-5and  fault is in between buses 4-6. 

 

Fig 9. Plot of relative angles with PID controller. When hvdc link is in 

between buses 4- 5and ,fault is in between buses 8- 9. 

 

Fig 10. Plot of relative angles with Neuro-Fuzzy controller. When hvdc 

link is in between buses 4 and 5,fault is in between buses 8 and 9. 

Table 1. Initial Fuzzy Rule Matrix 

E
rr

o
r3

 

Error 1 

 LN MN SN VS SP MP LP 

LP VS SP MP LP LP LP LP 

MP SN VS SP MP MP LP LP 

SP MN SN VS SP SP MP LP 

VS MN MN SN VS SP MP MP 

SN LN MN SN SN VS SP MP 

MN LN LN MN MN SN VS SP 

LN LN LN LN LN MN SN VS 

Table 2. Learned Fuzzy Rule Matrix 

E
rr

o
r3

 

Error 1 

 LN MN SN VS SP MP LP 

LP    LP   LP 

MP    MP   LP 

SP  LN MN SP LP LP LP 

VS LN MN SN VS SP MP LP 

SN  LN LN SN SN LP LP 

MN  LN LN MN    

LN LN   LN    

Table 3. Comparison Of  Conventional, Fuzzy Logic And Neuro Fuzzy 

Controller when fault is in between the buses 4 and 6 

Sr. 

No. 
Type of Controller 

Generator 

Controlled 

Peak 

Overshoot 

Settling 

Time 

1 Conventional Gen1 80 deg. 25 sec 

2 
Fuzzy Logic Based 

Controller 
Gen1 140 deg. 20 sec 

3 NFC Gen1 55 deg. 5 sec 

8. Conclusions 

Considering the HVDC current controller and line 
dynamics, it is observed that the transient stability of the 
multi-machine system is improved only if the combination 
of all the three signals derived from relative speed (P), rotor 
angle (D) and average acceleration (I) is used. The paper 
presents the design of a very simple form of Neuro Fuzzy 
controller. In this paper, the possibility of replacing a 
traditional PID controller with a neuro fuzzy controller for 
the rectifier terminal of an HVDC link is explored.  

The neuro fuzzy controller gives better performance 
than the conventional controller and fuzzy logic controller 
as expected when compared various aspects of plot of 
relative angles of the generators such as settling time, peak 
overshoot etc. 
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Appendix 

Table 4. Generators Data 

Generator Xd’ H 

1 0.0608 23.64 

2 0.1198 6.4 

3 0.1813 3.01 

Table 5. Transformers Data 

Transformer X 

1 0.0576 

2 0.0625 

3 0.0586 

Table 6. Transmission Network Data 

Bus No. 
R X ypq/2 

P Q 

1 4 0.0000 0.0576 0.0000 

2 7 0.0000 0.0625 0.0000 

3 9 0.0000 0.0586 0.0000 

4 6 0.0170 0.0920 0.0790 

5 7 0.0320 0.1610 0.1530 

6 9 0.0390 0.1700 0.1790 

7 8 0.0085 0.0720 0.0745 

8 9 0.0119 0.1008 0.1045 

Table 7. Hvdc Line Data 

DC line data Initial conditions 

rd=0.017,              
Xc=0.6,          Ld=0.05. 

alfamin=5deg,              
alfamax=80deg 

taprmin=0.96,              
taprmax=1.06 

tapimin=0.99,              
tapimax=1.09 

alfa = 0.2094,             
Id=0.3691,             Pdi=0.406 

Vdi=1.1,         gama=0.3142,       
PM[1]=0.756646 

PM[2]=1.63,     PM[3]=0.85,      
δM[1]=2.388448deg 

δM[2]=18.603189deg,        
δM[3]=12.314856deg 

Table 8. Generator Data 

Bus No. PGEN PD QD Vsp 

1 0.00 0.00 0.00 1.040 

2 1.63 0.00 0.00 1.025 

3 0.85 0.00 0.00 1.025 

4 0.00 0.00 0.00 -- 

5 0.00 1.25 0.50 -- 

6 0.00 0.90 0.30 -- 

7 0.00 0.00 0.00 -- 

8 0.00 1.00 0.35 -- 

9 0.00 0.00 0.00 -- 
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