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Abstract: It has been shown earlier that the measure of entanglement between two nearest neighbor spins ina spin system 

given by concurrence is related to the Berry phase acquired by the ground state whenit evolves in a closed path. The significant 

aspect of this quantization procedure is that it has the specific property of coordinate independence and is governed by 

geometry. It has been pointed out that this formulation is equivalent to the geometric quantization where the Hermitian line 

bundle takes a significant role. Also it has been shown that this procedure has its relevance in the quantization of a fermionin 

the framework of Nelson’s stochastic quantization procedurewhen a spinning particle is endowed with an internal degree of 

freedom through a direction vector (vortex line) which is topologically equivalent to a magnetic flux line. In view of this 

specific feature of the role of magnetic field in all these formulations of quantization procedure it is expected that the peculiar 

property of entanglement in quantum mechanics has its relevance with the magnetic flux associated with the quantization 

procedure. In a seminal paper Berry has shown that when a quantum particle moves in a closed path in a parameter space it 

attains a geometric phase apart from the dynamical phase. It is here argued that as the Berry phase is related to chiral 

anomalyentanglement leads to topological mass generation through this anomaly. It is pointed out thatwhen a spin 1 state is 

considered to be an entangled system of two spin 1/2 states, the maximallyentangled state corresponds to the longitudinal 

component and gives rise to mass leading to gaugesymmetry breaking. 

Keywords: Berry Phase, Chiral Anomaly, Berry Phase, Quantization, Topological Mass Generation, Gauge Symmetry, 
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1. Introduction 

It is observed in the context of quantum field theory that 

the Berry phase is related to chiralanomaly [1]. Indeed the 

origin of anomaly lies in the fact that some symmetries 

which arehonored classically are violated quantum 

mechanically and the anomaly is a manifestationofquantum 

mechanical symmetry breaking. The fact that the Berry 

phase is related to chiral anomaly arises from the 

relationship of the space-time integral of the anomaly with 

thePontryagin index which is given by twice the magnetic 

monopole charge [2]. It is noted thatthe quantization 

procedure of a fermion where spinning degrees of freedom 

are endowed witha direction vector (vortex line) attached to 

a space-time point effectively depicts a fermionas a scalar 

particle attached with a magnetic flux line. In this 

formalism a massive fermionappears as a styrmion [3]. This 

helps us to consider entanglement of spin systems as to 

becaused by the deviation of the magnetic flux line 

associated with one particle under the influence of the 

magnetic flux line in the configuration of the other particle. 

This implies thatentanglement appears as a consequence of 

chiral symmetry breaking which is manifestedthrough 

chiral anomaly. The measure of entanglement of a bipartite 

spin system in a mixedstate given by concurrence is related 

to the Berry phase acquired by a spin state when it evolves 

in a closed path and the relationship of Berry phase with 

chiral anomaly associatesentanglement with chiral anomaly. 

The chiral anomaly is found to be instrumental in 

topological mass generation [4-6]. In viewofthis we may 

consider that entanglement has a specific role in topological 

mass generation. In this note we shall explore this and shall 

show that topological mass generation can indeedbe achieved 

through quantum entanglement. In this section we shall 
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consider therelevance of maximally entangled state in chiral 

anomaly and topological mass generation. 

2. Maximally Entangled State, Chiral 

Anomaly and Topological Mass 

Generation 

In a recent paper [5] it has been shown that a spin 1 state 

can be represented as an entangled system of two spin 1/2 

states. As we know a gauge boson with spin J=1 has only 

transverse components 1zJ = ±  which suggests that in the 

system of two spin 1/2 statesboth spins are in the up or down 

direction. But for a massive spin 1 boson there is the 

longitudinal component ( 0)zJ =  also where in the two spin 

1/2 system one is in the up directionand other in the down 

direction. From our analysis in the previous section we note 

that forthe transverse components the two spins are in the 

product state where the entanglemententropy vanishes. The 

relationship between concurrence and the Berry phase as well 

as withthe chiral anomaly suggests that in this case there is 

no chiral anomaly. However for the longitudinal component

0zJ =  where two spins are such that their orientations are 

oppositeto each other we have the maximally entangled state 

(MES) with concurrence corresponding to the effective 

monopole charge 1µ =ɶ  and the system exhibits a 

combination of chiralspinors Rψ  and Lψ  represented by up 

and down spins which generates chiral anomaly [7-10]. 

Thefact that the very presence of this component is an 

indicator of mass for the spin 1 bosonimplies that MES and 

chiral anomaly takes a significant role in mass generation. 

In an earlier paper [4] it has been shown that the weak 

interaction gauge bosons attainmass from the topological 

current given by: 

a a
aJ a F fµνλ µνλ

µ ν λσ ν λε ε
→

= × = ∂
���

                (1) 

which is associated with the axial vector current. 

The Lagrangian for the interaction of the Dirac field with 

the (2, )SL C  gaugefield (neglecting the mass term) is given 

by 

1

4
L D Tr F Fαβγδ

µ µ αβ γδψγ ψ ε= − −                    (2) 

where Dµ  is the (2, )SL C  gauge covariant derivative given 

by D igAµ µ µ≡ ∂ −  where is some coupling constant. Here 

Dµ  is the gauge covariant derivative defined by 

D igAµ µ µ≡ ∂ − , g being the coupling constant. If we split 

the Dirac massless spinor in chiral form and identify the 

internal helicity+1/2 (-1/2) with left (right) chirality 

corresponding to ( )L Rψ ψ  we can write: 

1 2 2 3( )
2

a a
R R R R L L L L

ig
D ig A g A A A Aµ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µψγ ψ ψγ ψ ψγ ψ ψγ ψ ψ γ ψ ψ γ ψ ψ γ ψ ψ γ ψ= ∂ = = ∂ − − + +          (3) 

This gives rise to the following three conservation laws [2] 

11
[ ( ) ] 0
2

R Rig Jµ µ µψ γ ψ∂ − + =  

21
[ ( ) ] 0
2

L L R Rig ig Jµ µ µ µψ γ ψ ψ γ ψ∂ − + + =  

31
[ ( ) ] 0
2

L Lig Jµ µ µψ γ ψ∂ − + =                      (4) 

where ( 1,2,3)iJ iµ =  are gauge field currents given by eqn.(1). 

These three equations represent a consistent set of 

equations if we choose 
1 1

2

zJ Jµ µ= − , 
3 1

2

zJ Jµ µ= + . This 

guarantees the vector current conservation. From this we can 

write 

2[ ] 0R R Jµ µ µψ γ ψ∂ + =  

and 

2[ ] 0L L Jµ µ µψ γ ψ∂ − =                            (5) 

5 2
5( ) 2J Jµ µ µ µ µ µψγ γ ψ∂ = ∂ = − ∂                     (6) 

In fact from the relations (5) and (6) it is observed that the 

axial vector current arises from a combination of the right-

handed and left-handed chiral currents andthe divergence of 

this current is related to the divergence of the topological 

current 
2Jµ . Ithas been pointed out that when we represent 

the chiral currents ( )R R L Lµ µψ γ ψ ψ γ ψ  as the charged current 

the relation (4) suggests that the topological current 
1 3( )J Jµ µ  

corresponds to a charged current which may be thought as 

the source of the charged gauge field [4]. 

In fact we may asociate the three weak-interaction gauge 

fields Wµ
+

,
0Wµ , Wµ

−
 with the topological currents 

1Jµ , 
2Jµ  

and 
3Jµ  

1

2 0

3

J W

J J W

J W

µ µ

µ µ µ

µ µ

+

−

   
   
   = →
   
   
   

�
                            (7) 

From the relation (4) we may associate 
0Wµ  with the state 

0

2

W W
W

µ µ
µ

+ −+
= . This implicitlysuggests that there should be 



 Engineering Physics 2022; 6(1): 1-4 3 

 

a U(1) sing let 0

2

W W
X

µ µ
µ

+ −+
= . The mixing effect of 

0Wµ  

and 
0X µ  gives rise to the gauge boson 

0Zµ  and photon. 

It is noted that the Pontryagin index q as well as the 

monopole charge µ is related to thedivergence of the axial 

vector current through the relation 

2 3 2 4 5 4
0

1
2

2
q J d x J d x J d xµ µ µ µµ= = = ∂ = − ∂∫ ∫ ∫        (8) 

From the relation 
2 51

2
J Jµ µ µ µ∂ = − ∂  we can write 

2 51
( )

2

VJ J Jµ µ= − +                                   (9) 

where VJµ  is a conserved vector current [11-13]. So we 

can write the equivalent formulation of the topological 

current 2Jµ  as a chiral current 

2
5

1
( (1 ) )

2
Jµ µψγ γ ψ= − +                          (10) 

where ψ  is a fictitious spin or which satisfies Dirac equation. 

Since the Dirac spinor satisfiesthe eigenvalue equation: 

2 2mµψ ψ∂ = −                                   (11) 

we find from eqns.(10) and (11) 

2 2 5 2 21
( 4 )

2
WJ m J m Jµ µ µ= − − = − ɶ                     (12) 

with 0m ≠ɶ . W -symbol is the D’Alembert Operator. Now as 

shown in topological mass generation, we write 

2 2 2W J m Jν µ ν µ∂ = − ∂ɶ                                (13) 

which implies 

2 2 2 2 2( ) ( )W J J m J Jν µ µ ν ν µ µ ν∂ − ∂ = − ∂ − ∂ɶ              (14) 

Now noting from eqn.(1)that 

2 2 2J J W Fν µ µ ν µν
∗∂ − ∂ =                             (15) 

we have from eqn. (15) 

2 2 2WW F m W Fµν µν
∗ ∗= − ɶ                              (16) 

implying 

2 2( ) 0W m Fµν
∗+ =ɶ                                   (17) 

This suggests that mɶ  is the mass of the gauge boson. This 

implies that after mixing effect 
0Zµ  becomes massive. This 

analysis when generalized to 
1 3( )J Jµ µ  leads to the mass of 

gauge bosons. As mentioned earlier the attribution of mass to 

a gauge field involves the introduction ofthe longitudinal 

component to the spin J=1 field and the existence of MES 

ensures this. In fact we can associate a scalar field ( )xφ  

representing the longitudinal component to the topological 

current 
2Jµ  which is responsible for the topological mass 

generation through chiralanomaly. We can write: 

2 2 ( )vJ F xµνλσ µνλσ
µ ν λσ χσε ε ε φ= ∂ =                  (18) 

which follows from the fact that 
2Fµν  is an antisymmetric 

tensor. This is true for 
1 3( )J Jµ µ  also when the scalar field 

bears charge [14]. Thus we find that the MES for a two spin 

1/2 staterepresenting a spin 1 boson bears the signature of 

chiral anomaly through the Berry phasefactor which 

corresponds to the measure of entanglement viz. concurrence 

and gives rise tothe mass topologically through chiral 

anomaly [15]. This essentially corresponds to the existenceof 

longitudinal component of the spin 1 boson. 

In a generalized form the MES of a spin 1/2 system of two 

spins can be written as 

1
( 00 01 10 11 )

2
ψ α β β α∗ ∗= + − +       (19) 

where α, β are complex coefficients and ( )α β∗ ∗
 denotes the 

complex conjugate. For MESthe concurrence is given by
2 2

1C α β= + = . Milman and Mosseri [16] have pointed out 

that the MES is related to the double connectedness of the 

SO(3) group. In fact as we have 
2( , ) Cα β ∈  with

2 2
1C α β= + =  and we have the symmetry 

( , ) ( , )α β α β→ − − , the Hilbert space of all the MES can be 

defined as S3/Z2=SU(2)/Z2=SO(3). Now we notethat in the 

definition of the topological current 
iJµ (i=1,2,3) the 

antisymmetric tensor eµνλα  suggests that the topological mass 

will not possess discrete symmetries of space (P)and time (T) 

inversion implying Z2 symmetry breaking. However for the 

two gauge fields Wµ
+

 and Wµ
−

 with mass m+  and m−
respectively P and T conservation will be restoredwhen the 

coordinate inversion is associated with the field exchange. This 

corresponds tothe double connectedness of SO(3). In fact as 

long as the field exchange is not performed, the P and T 

inverted mass m+  and m−  for the two fields Wµ
+

 and Wµ
−

 

is attributed to the right-handed and left-handed universes. 

This implies that an internal helicity is inducedin the 

configuration of gauge bosons during mass generation. The 

U(1) character of thishelicity breaks the gauge symmetry SU(2) 

→U(1) [17, 18]. When there is full breaking of SU(2) 
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symmetry the gauge fields reside only in a single universe 

whether left-handed orright-handed indicating that we are 

concerned with only particles or anti-particles. Thusthe 

signature of mass becomes irrelevant. This analysis suggests 

that the significant role ofMES in topological mass generation 

as well as electroweak symmetry breaking when spin 1bosonic 

state is considered as an entangled system of two spin 1/2 

states. 

3. Discussion 

We have analyzed here the relationship between 

entanglement and Berry phase, suggests that entanglement 

is associated with chiral anomaly as the Berry phase is 

related to this. Indeed chiral anomaly gives rise to the 

Pontryagin index which is twice the monopole charge and 

the Berry phasefactor is related to this monopole charge. 

Again chiral anomaly is found to be instrumentalin 

topological mass generation and this suggests that 

entanglement has also its role in thegeneration of mass. It is 

shown here that when a spin 1 state is viewed as an 

entangled system of two spin 1/2 states the maximally 

entangled state corresponds to nonvanishingchiralanomaly 

and leads to the mass generation. 

4. Conclusion 

In view of this we may consider that entanglement has a 

specific role in topological mass generation. In this note we 

shall explore this and shall show that topological mass 

generation can indeed be achieved through quantum 

entanglement. Certainly the MES corresponds to the 

longitudinalcomponent of the spin 1 state and thus breaks the 

gauge symmetry. In an earlier paper [4] it has been argued 

that chiral anomaly leads to the topological massgeneration 

and gauge symmetry breaking in electroweak theory. This 

can be transcribedin the framework of quantum entanglement 

when the spin 1 state is viewed as an entangled system of two 

spin 1/2 states. In view of this we find that entanglement has 

a moregeneralized role in various aspects of quantum 

phenomena. 
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