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Abstract: Hybrid systems are systems that involve continuous and discrete event dynamical behaviors. A impulsive system 

is a special hybrid system. The continuous dynamics of impulsive systems are usually described by ordinary differential 

equations and the discrete event dynamics with instantaneously rapid jumps are described by switching laws. Various complex 

dynamical phenomena that can be modeled by impulsive systems arise in many areas of modern science and technology such 

as economics, physics, chemistry, biology, information science, radiotherapy, acupuncture, robotics, neural networks, 

automatic control, artificial intelligence, space technology, and telecommunications, etc. In modern control theory, 

controllability is one of the most important dynamical properties of considered impulsive systems, therefore, the controllability 

problem is regarded as one of the fundamental issues of impulsive systems. The basic questions for controllability of impulsive 

systems as well as for the ordinary systems without impulses and with control function are to obtain useful criteria that allow 

us to identify whether given dynamic systems are controllable or not. Up to now there have been being many investigation 

results for controllability of different kinds of impulsive systems with respect to the terminal state constraints of a point type. 

The purpose of this paper is to study relative controllability with respect to the terminal state constraint of a general type for a 

class of linear time-varying impulsive systems. In this paper, several types of criteria for relative controllability of such 

systems are established by a algebraic method, that is, specially speaking, by the matrix rank method. Some corresponding 

necessary and sufficient conditions for controllability of linear time-invariant impulsive systems are also obtained more 

compactly. Meanwhile, for given impulsive systems some equivalent relationships between different kinds of controllability 

are investigated and our criteria for relative controllability are compared with the existing results. A simple example is given to 

illustrate the utility of our criteria. 

Keywords: Impulsive Systems, Impulsive Control, Complete Controllability, Null Controllability, Relative Controllability, 

Relative Null Controllability 

 

1. Introduction 

Each impulsive system is characterized by a certain 

combination of continuous evolution and discrete transition 

and sometimes is called special discrete-continuous system 

[9]. As mentioned in the literature of modern control theory, 

most processes have been described and analyzed by 

impulsive control systems (see, e.g., [11, 13, 16, 19] and 

references therein). Therefore, it is very important and actual 

to more actively study impulsive control systems and the 

study has been receiving increasing interest in the control 

community recently due to its theoretical challenges and 

practical significances in many real world applications. In 

particular, it is worth to note that the study of controllability 

problems plays an important role in the whole control theory 

and in this area fundamental issue is to obtain criteria for 
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controllability of various systems. Nowadays, most efforts 

have been focused on the research of criteria for 

controllability of impulsive systems by using different 

approaches. But differently from continuous systems, till now, 

there are comparatively few results on controllability for 

various kinds of impulsive systems. 

The study for controllability of impulsive systems first 

had begun by the work [7] of Leela in 1993 and then a 

significant progress has been being made in the past three 

decades [5, 10, 11, 16, 18-20]. In 1995 when impulsive 

control was yet to become popular, Liu [8] investigated 

the necessary and sufficient conditions of complete 

controllability for a class of linear impulsive system only 

with impulse actions without continuous control. In the 

literature there have been some serious investigative 

results undertaken dealing with necessary and sufficient 

conditions for controllability of impulsive systems. 

However, greatly to our regret, such developments have 

been being made mainly in terms of null and/or complete 

controllabilities. Complete controllability of impulsive 

systems have been extensively studied by many researches, 

for instance, see works [2, 6, 8, 11, 19] and references 

therein. On the aspects for null controllability of impulsive 

systems we refer to works [1, 3, 4, 7, 12-14, 17, 18] and 

references therein. In particular, in 2010 Zhao and Sun [18] 

investigated the sufficient and necessary conditions for 

null controllability of linear impulsive systems in complex 

fields, inspired by [3] (2002) and [17] (2009), where the 

authors considered the fundamental concepts of null 

controllability of real linear time-varying impulsive 

systems by an algebraic approach. It was noted by George 

in [2] (2000) that generally speaking, the concepts “null 

controllability” and “complete controllability” are not 

equivalent for impulsive systems. There has been an 

increasing interest in the investigation for relative 

controllability of impulsive systems with the right end 

state in one point over the state space (in the origin or 

other), however, there are still very few results, see for 

instance [16] (2022) and the references therein. Moreover, 

to the best of our knowledge, there are not results for 

relative controllability of impulsive systems with respect 

to the more general right terminal state constraints. 

The main purpose of this paper is to drive necessary and 

sufficient criteria for relative controllability of linear 

time-varying and linear time-invariant impulsive systems 

with respect to linear right terminal state constraint of a type. 

The rest of this paper is organized as follows. In Section 2 

we give some notations, concepts and hereafter required 

lemmas. The main results for relative controllability of the 

linear time-varying impulsive system are given in Section 3. 

New criteria for relative controllability of linear 

time-invariant impulsive system are obtained in Section 4. 

Furthermore, in Sections 3, 4, several equivalent 

relationships between the different kinds of controllability are 

also established. Section 5 contains a simple example to 

illustrate the utility of obtained results. Finally, we provide 

the conclusion in Section 6. 

2. Preliminaries 

Consider the linear time-varying impulsive system 

*
0 0

( ) ( ) ( ) ( ) ( ),    

    ( ) ( ) ( ) ,    

    ( ) ,   ( ) ,

i

i i i i i

x t A t x t B t u t t t

x t x t D t v t t

x t x Hx t g

+ −

+

= + ≠

= + =

= =

&

        (1) 

where 
*

0( ) :[ , ]
n n

A t t R
×⋅ → is known n n×  matrix valued 

continuous function, 
*

0( ) :[ , ]
n r

B t t R
×⋅ → , 

*
0( ) :[ , ]

n q
D t t R

×⋅ → are known matrix valued left and 

piecewise continuous functions respectively, 0
n

x R∈  is 

initial state, H  is m n×  constant matrix with 

 ,   
m

rank H m g R= ∈ is constant vector, ( )ix t
+

, ( )ix t
−

are 

right, left limits respectively and ( ) ( )i ix t x t
−= , which 

implies that the solution of (1) is left continuous at time 

instant it . Note that the initial condition 0 0( )x t x
+ =  is used 

rather than 0 0( )x t x= . If the initial time 0t  corresponds to 

a transition time instant then 0( )x t
+

 is understood to be the 

initial condition of the ordinary differential equation. The 

time evolutionary process of impulsive systems is expressed 

by continuous and jump discontinuous functions. We 

introduce the following notations for our convenience which 

we use in the proof of next theorems: 

 : {1,  2,  , }K r= L -the set of indices of columns for the 

matrix ( )B t  

 : {1,  2 ,  , }P q= L -the set of indices of columns for the 

matrix ( )D t . 

Now, we make the following assumptions about rest 

components of impulsive control system (1): 

1) Vector valued function 
*

0( ) :[ ,  ]
r

u t t R⋅ →  is piecewise 

continuous one, which is unknown. 

2) For action of impulses { }: ( ,  ),  1,  2,  ,  i iw t v i l= = L  

natural number l , time instants 
*

0[ ,  ]it t t∈ , 

1,  2,  ,  i l= L  and vectors 
q

iv R∈ , 1,  2,  ,  i l= L  

all are parameters which are unknown. 

Given a vector valued piecewise continuous function 
*

0( ) :[ ,  ]
r

u t t R⋅ →  and an action of impulses 

{ }( ,  ),  1,  2,  ,  i iw t v i l= = L , then the pair { }( ),  u w⋅  is said 

to be impulsive control. Corresponding to the impulsive 

control system (1), we consider the homogeneous system 

0 0( ) ( ) ( ),  ( ) .x t A t x t x t x
+= =&            (2) 

According to ordinary differential equation theory, suppose 

that ( )X t  is the fundamental solution matrix of the system 

(2). Then 

)1
0( ,  ) : ( ) ( ),  ,  ,  X t s X t X s t s t−= ∈ + ∞  
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is the transition matrix associated with matrix ( )A t . It is 

clear that, 

for any )0,  ,  ,  ,  t s tτ ∈ + ∞  

( ,  ) ( ,  ) ( ,  ),   ( ,  )X t X s X t s X t t Iτ τ = =  

and 

1
( ,  ) ( ,  )X t s X s t

−= , 

where I  is the identity matrix of order n  [4]. 

Lemma 2.1. Provided the impulsive control 

{ } { }{ }*
0( ),  ( ),  [ ,  ],  ( ,  ),  1,  2,  ,  ,i iu w u t t t t t v i l⋅ = ∈ = L  

then for any 1( ,  ],  0,  1,  2,  ,  i it t t i l+∈ = L , the general 

solution of system (1) is given by 

0

0 0

1

( ) ( ,  ) ( ,  ) ( ) ( ) ( ,  ) ( )

it

j j j
t

j

x t X t t x X t s B s u s ds X t t D t v

=

= + +∑∫                     (3) 

where 
*

1 :lt t+ = . 

Proof. It follows from the initial condition of system (1) that 

0

0 0 0 1( ) ( ,  ) ( ,  ) ( ) ( ) ,    [ ,  ],
t

t
x t X t t x X t s B s u s ds t t t= + ∈∫  

which leads to 

1

0

1 1 0 0 1( ) ( ,  ) ( ,  ) ( ) ( ) .
t

t
x t X t t x X t s B s u s ds= + ∫  

On one hand, since 

( ) ( ) ( )i i i ix t x t D t v
+ −= + , 

then 

1

0

1 1 0 0 1 1 1( ) ( ,  ) ( ,  ) ( ) ( ) ( ) .
t

t
x t X t t x X t s B s u s ds D t v

+ = + +∫  

Next, for ( ]1 2,  t t t∈ , we have following: 

1

1

0 1

1

0 1

1 1

1 1 0 0 1 1 1

0 0 1 1 1

( ) ( ,  ) ( ) ( ,  ) ( ) ( )

( ,  ) ( ,  ) ( ,  ) ( ) ( ) ( ) ( ,  ) ( ) ( )

( ,  ) ( ,  ) ( ) ( ) ( ,  ) ( ) ( ,  ) ( ) ( )

( ,

t

t

t t

t t

t t

t t

x t X t t x t X t s B s u s ds

X t t X t t x X t s B s u s ds D t v X t s B s u s ds

X t t x X t s B s u s ds X t t D t v X t s B s u s ds

X t

+= +

 = + + + = 
 

= + + + =

=

∫

∫ ∫

∫ ∫

0

0 0 1 1 1 ) ( ,  ) ( ) ( ) ( ,  ) ( )
t

t
t x X t s B s u s ds X t t D t v+ +∫

 

which leads to 

2

0

2

0

2 2 0 0 2 2 1 1 1

2 2 0 0 2 2 1 1 1 2 2

( ) ( ,  ) ( ,  ) ( ) ( ) ( ,  ) ( )

( ) ( , ) ( , ) ( ) ( ) ( , ) ( ) ( ) .

t

t

t

t

x t X t t x X t s B s u s ds X t t D t v

x t X t t x X t s B s u s ds X t t D t v D t v
+

= + +

= + + +

∫

∫
 

Hence, for 2 3( ,   ]t t t∈ , we have following: 
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2

2

0

2 0

2 2

0 0 1 1 1 2 2 2

0 0

1 1 1 2 2 2

( ) ( ,  ) ( ) ( ,  ) ( ) ( )

( ,  ) ( ,  ) ( ) ( ) ( ,  ) ( ) ( ,  ) ( )

( ,  ) ( ) ( ) ( ,  ) ( ,  ) ( ) ( )

( ,  ) ( ) ( ,  ) ( )

t

t

t

t

t t

t t

x t X t t x t X t s B s u s ds

X t t x X t s B s u s ds X t t D t v X t t D t v

X t s B s u s ds X t t x X t s B s u s ds

X t t D t v X t t D t v

+= +

= + + + +

+ = +

+ +

∫

∫

∫ ∫

 

By repeating the procedure as above, we easily can obtain 

the general solution (3) for 0,  1,  2,  ,  i l= L . This 

completes our proof. 

Remark 2.1. From the condition ( ) ( )i ix t x t
−=  and 

formula (3), we can know that with the impulsive control 

{ }( ),  u w⋅ , corresponding solution of system (1) is a vector 

valued piecewise continuous function with left continuity. 

Remark 2.2. It is clear that if ( ) 0D t ≡ , that it follows 

from formula (3) that for ordinary control system 

0 0

( ) ( ) ( ) ( ) ( )

             ( )

x t A t x t B t u t

x t x

= +

=

&
 

the general solution is expressed as 

0

0 0 0( ) ( , ) ( , ) ( ) ( ) ,    [ ,  *],
t

t
x t X t t x X t s B s u s ds t t t= + ∈∫  

which implies that Lemma 2.1 gives a generalization of the 

usual solution formula for the continuous linear system, see 

[4]. In like manner, we verify from the formula (3) that for 

linear impulsive system without ordinary control 

0 0

     ( ) ( ) ( ),  

( ) ( ) ( ) ,  

              ( )

i

i i i i i

x t A t x t t t

x t x t D t v t t

x t x

+ −

+

= ≠

= + =

=

&

 

the general solution is equal to 

(0 0 1

1

( ) ( ,  ) ( ,  ) ( ) ,    ,  

i

j j j i i

j

x t X t t x X t t D t v t t t +
=

= + ∈ ∑ , 

0,  1,  2,  ,  i l= L  

which so too implies that Lemma 2.1 is regarded as a 

generalization of the result in the reference [6]. 

The following definition for the relative controllability of 

the system (1) is adopted in this paper. 

Definition 2.1. Impulsive system (1) is said to be relatively 

state controllable with respect to terminal constraint 
*

( )Hx t g=  on 
*

0[ ,  ]t t (or simply relatively controllable if 

no confusion), if for any initial state vector 0
n

x R∈  and any 

output vector ,
m

g R∈  there exists at least one impulsive 

control 

*
0{ ( ),  } { ( ),  [ ,  ],  {( ,  ),  1,  2,  ,  }}i iu w u t t t t t v i l⋅ = ∈ = L  

such that with impulsive control ( ){ },  u w⋅ , corresponding 

solution (trajectory) of system (1) with initial condition 

0 0( )x t x
+ =  satisfies terminal condition 

*
( )Hx t g= . 

Definition 2.2. If the above definition 2.1 always let 

0g = , then impulsive system (1) is said to be relatively state 

null controllable with respect to terminal constraint 
*

( ) 0Hx t =  on 
*

0[ ,  ]t t  (or simply relatively null 

controllable if no confusion). 

Remark 2.3. Note that both in the definitions 2.1 and 2.2, if 

H I= , where I  is the identity matrix of order n , then we 

have the definitions of complete and null controllabilities, 

respectively. 

For (1) and some special cases of (1), various sufficient 

and necessary conditions for complete or null 

controllabilities of linear impulsive with additional 

assumptions were studied in the literature, e.g. [4, 6, 8, 15, 

18]. It is necessary to recall beforehand the previous results 

in the references above so that we may verify that our results 

in this paper are more general and/or new. In [8], the 

impulsive system (1) with ( ) 0B t ≡ , or only with action of 

impulses without ordinary control 
*

0( ),  [ ,  ]u t t t t∈ , namely 

( ) ( ),  

( ) ( ) ,  

i

i i i i

x t Ax t t t

x t x t Dv t t+ −

= ≠

= + =

&
            (4) 

where ,  A D  are constant matrices, was investigated and the 

necessary and sufficient condition for complete 

controllability of system (4) is obtained as follows. 

Lemma 2.2. (See [8, Theorem 1].) Impulsive control system 

(4) is completely controllable on 
*

0[ ,  ]t t  if and only if 

2 1
 ( ,  ,  ,  ,  )

n
rank D AD A D A D n

− =L       (5) 

In [4, 18] the impulsive system 

( ) ( ) ( ),

( ) ( ) ,

i

i i i i

x t Ax t Bu t t t

x t x t Du t t+ −

= + ≠

= + =

&
            (6) 

where ,  ,  A B D  are ,  ,  n n n r n r× × ×  constant matrices 

respectively and instants 
*

0[ , ],  1,  2,  ,  it t t i l∈ = L  are 

fixed, was considered as a special case and sufficient and 

necessary conditions for null controllability of system (6) are 

obtained as below. 

Lemma 2.3. (See [4, Theorem 3.4] and [18, Theorem 3].) 

Fixed instants 
*

0[ , ],  1,  2,  ,  it t t i l∈ = L , then the following 
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sufficient and necessary null controllability conclusions hold. 

i) If 

2 1
( ,  ,  ,  ,  )

n
rank B AB A B A B n

− =L       (7) 

then impulsive system (6) is null controllable on 
*

0[ ,  ]t t . 

ii) If impulsive system (6) is null controllable on 
*

0[ ,  ]t t , 

then 

2 1 1
( ,  ,  ,  ,  ,  ,  ,  ,  )

n n
rank B AB A B A B D AD A D n

− − =L L .                       (8) 

We also introduce following lemmas. 

Lemma 2.4. (See [15, Theorem 2.3.1].) Provided impulsive system 

( ) ( ) ( ) ( ) ( ),  

( ) ( ) ( ) ,  

i

i i i i i

x t A t x t B t u t t t

x t x t D t u t t+ −

= + ≠

= + =

&
                                   (9) 

where 
*

0( ),  ( ),  ( ),  [ ,  ]A t B t D t t t t∈  are ,  ,  n n n r n r× × ×  continuous matrix functions respectively, then the corresponding 

linear system without impulses and with ordinary control, or, without ordinary control and with impulses, is completely 

controllable, if and only if 

1) the n r×  matrix function 
1

0( ) ( ) ( )X t X t B t
−

 are linearly independent on 
*

0[ ,  ]t t , 

or, 

2) there exist time instants 
*

0 1 2[ ,  ],   1,  2,  ,  ,   ,   i lt t t i l l N t t t∈ = ∈ < < <L L  and vectors 
r

iu R∈ , 1,  2,  ,  i l= L , such 

that 

1 1 1
1 1 2 2( ( ) ( ),  ( ) ( ),  ,  ( ) ( ))l lrank X t D t X t D t X t D t n

− − − =L                      (10) 

Lemma 2.5. (See [6, Theorem 3].) Impulsive system (4) is completely controllable, if and only if pair { ,  }A B is controllable. 

3. Relative Controllability of a Linear Time-Varying Impulsive System 

Now we first are ready to state a necessary and sufficient condition as a criterion to guarantee linear time-varying impulsive 

system (1) is relatively controllable. 

Theorem 3.1. System (1) is relatively controllable, if and only if there exists a certain family of set 

: { ( ),  ;  ( ),  }sp B sp D spT T k k K T p p P= ∈ ∈  

such that 

* *
0 0

*

*

( ) [ ,  ],  ;  ( ) [ ,  ],  

                      ( ) ( )

               ( ( ,  ) ( ),  ( ),  ;

            ( ,  ) ( ),  ( ),  )

sp sp

B sp D sp

B D

k K p P

k B sp

p D sp

T k t t k K K T p t t p P P

T k T p m

rank HX t t b t t T k k K

HX t t d t t T p p P rankH

∈ ∈

⊆ ∈ ⊆ ⊆ ∈ ⊆

+ =

∈ ∈

∈ ∈ =

∑ ∑
                      (11) 

hold, where in left side of last equality the expression with bracket denotes the matrix taking columns 

* *( ,  ) ( ),  ( ),  ;  ( ,  ) ( ),  ( ),  k B sp p D spHX t t b t t T k k K HX t t d t t T p p P∈ ∈ ∈ ∈ , 

and ( ) ,   ( )B DT k T p - numbers of elements of given finite sets ( ),   ( )B DT k T p  respectively. 

Proof. Necessity. We divide the proof of necessity into two steps. 

Step 1. We claim that if impulsive system (1) is relatively controllable, then for any vector 
m

y R∈  with 1y = , 

' * *
0( ,  ) ( ) 0,  [ ,  ]y HX t t B t t t t≠ ∈  or 

' * *
0( ,  ) ( ) 0,  [ ,  ]y HX t t D t t t t≠ ∈                   (12) 

holds, where 
'

y  denotes the transpose of y . By contradiction we are going to prove our claim. In fact, in opposition to the 
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claim, let’s assume that for a certain vector *
m

y R∈  with * 1y =  

' * *
* 0( ,  ) ( ) 0,  [ ,  ]y HX t t B t t t t≡ ∈  and 

' * *
* 0( ,  ) ( ) 0,  [ ,  ]y HX t t D t t t t≡ ∈                  (13) 

simultaneously hold. Now we choose a vector *
m

g R∈  satisfying the relation following 

' *
* * 0 0( ( ,  ) ) 0y g HX t t x− ≠ .                                     (14) 

Since if otherwise, then equality * 0y =  should be resulted, that is contradictory with * 1y = , it is guaranteed that the 

vector *
m

g R∈  mentioned above always exists. On one hand, since impulsive system (1) is relatively controllable, we know 

from definition 2.1 that for any initial state 0
n

x R∈  and chosen *
m

g R∈ , there is a suitable impulsive control 

*
0{ ( ),  }: { ( ),   [ ,  ],  {( ,  ),   1,  2,  , }}i iu w u t t t t t v i l⋅ = ∈ = L  

with which corresponding trajectory 
*

0( ),  [ ,  ]x t t t t∈  satisfies terminal condition 
*

*( )Hx t g= . Then we have by formula (3) 

following 

*

0

* * *
* 0 0

1

( ,  ) ( ) ( ) ( ,  ) ( )  ( ,  )

t l

i i i

it

HX t t B t u t dt HX t t D t v g HX t t x

=

+ = −∑∫ . 

Therefore, an equality is obtained as 

*

0

' * ' * ' *
* * * * 0 0

1

( ,  ) ( ) ( ) ( ,  ) ( ) ( ( ,  ) )

t l

j j j

jt

y HX t t B t u t dt y HX t t D t v y g HX t t x

=

+ = −∑∫ , 

but this is a contradiction, since left side of the equality above has to be 0 by (13), while right side not to be 0 by (14). Thus our 

claim has been proved. 

Step 2. We claim that if for any vector 
m

y R∈  with 1y = , (12) holds, then there exists a certain family of set spT  

satisfying (11). 

We know from (12) that for arbitrarily given vector 0
m

y R∈  with 0 1y =  

' * *
0 0( ,  ) ( ) 0,  [ ,  ]y HX t t B t t t t≠ ∈                                    (15) 

or 

' * *
0 0( ,  ) ( ) 0,  [ ,  ]y HX t t D t t t t≠ ∈                                   (16) 

holds, therefore, first of all, suppose that (15) is true. In the case of (15), there is at least one index 1k K∈  which 

1

' * *
0 0( ,  ) ( ) 0,  [ ,  ]ky HX t t b t t t t≠ ∈  

holds for, where 
1
( )kb t  is 1k -th column of matrix ( )B t . It is clear that 

1*
0

' *
0

[ , ]

sup ( ,  ) ( ) 0k
t t t

y HX t t b t
∈

> , 

because matrix function 
*

0( ),  [ ,  ]B t t t t∈  is left and piecewise continuous. Hence for a suitable 
1

1 *
0[ ,  ]k t tτ ∈  

1 1 1

' * 1 1
0 ( ,  ) ( ) 0k k ky HX t bτ τ >  

holds. Besides we have 
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1 1 1

* 1 1( ( ,  ) ( )) 1k k krank HX t bτ τ = . 

Now, introducing following notations 

1 1 1 1
1

1 1 1

: { },  ( ) : { },  ;

: ,  ( ) : ,  ,

B k

D

K k T k k K

P T p p P

τ

ϕ ϕ

= = ∈

= = ∈
 

where ϕ  denotes the empty set, we construct sets as 

1 1 * 1 1 1 * 1
0 0,  ( ) [ ,  ],  ;  ,  ( ) [ ,  ],  B DK K T k t t k K P P T p t t p P⊆ ⊆ ∈ ⊆ ⊆ ∈  

satisfying the relation 

* 1 1

* 1 1

( ( ,  ) ( ),  ( ),  ;

 ( ,  ) ( ),  ( ),  ) 1

k B

p D

rank HX t t b t t T k k K

HX t t d t t T p p P

∈ ∈

∈ ∈ =
                              (17) 

Second, according to same reasoning as the case (15), under the condition (16), by correcting notations obtained above as 

1 1 1 1 1 1 1
1: ,  ( ) : ,  ;  : { } ,  ( ) : { },  ,B D pK T k k K P p P T p p Pϕ ϕ τ= = ∈ = ⊆ = ∈  

we also obtain the same rank result just as (17). 

We now suppose that we have already had a family of set 

{ ( ),  ,  ( ),  }
S S S S

B DT k k K T p p P∈ ∈  

satisfying conditions as 

* *
0 0

*

*

( ) [ ,  ],  ;  ( ) [ ,  ],  

                        ( ) ( )

                 ( ( ,  ) ( ),  ( ),  ;

                     ( ,  ) ( ),  ,  )

S S

S S S S
B D

S S
B D

k K p P

S S
k B

S S
p D

T k t t k K K T p t t p P P

T k T p s

rank HX t t b t t T k k K

HX t t d t t T p P

∈ ∈

⊆ ∈ ⊆ ⊆ ∈ ⊆

+ =

∈ ∈

∈ ∈ =

∑ ∑

s

                        (18) 

Two cases are possible. In the first case as s m= , by defining as 

( ) : ( ),  ;  : ,  ( ) : ( ),  S S S
B B sp sp D spT k T k k K P P T p T p p P= ∈ = = ∈  

we know that (18) exactly coincides with (11). So we consider the second case as s m< . Then, it is clear that a vector 
m

sy R∈  with 1sy =  exists which 

1 *

1 *

( ,  ) ( ) 0,  ( ),  

( ,  ) ( ) 0,  ( ),  

s s
s k B

s s
s p D

y HX t t b t t T k k K

y HX t t b t t T p p P

= ∈ ∈

= ∈ ∈
                              (19) 

hold for. Rewriting (12) for sy y= , we have following: 

' * *
0( ,  ) ( ) 0,  [ ,  ]sy HX t t B t t t t≠ ∈                                  (20) 

or 

' * *
0( ,  ) ( ) 0,  [ ,  ]sy HX t t D t t t t≠ ∈                                  (21) 

In the case (20) there exists a certain 1sk K+ ∈  which 

1

' * *
0( ,  ) ( ) 0,  [ ,  ]

ss ky HX t t b t t t t
+

≠ ∈  
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holds for. Then we have 

1*
0

' *

[ , ]

sup ( ,  ) ( ) 0
ss k

t t t

y HX t t b t
+

∈
>  

because of left and piecewise continuity of function 

1

' * *
0( ,  ) ( ),  [ ,  ]

ss ky HX t t b t t t t
+

∈ . 

This allows us to take a certain element 
1

1 *
0[ ,  ]

s

s
k t tτ

+

+ ∈  satisfying inequality 

1 1 1

' * 1 1( ,  ) ( ) 0,
s s s

s s
s k k ky HX t bτ τ

+ + +

+ + >                                  (22) 

according to conditions below: 

1) if 1
s

sk K+ ∈ , then 
1

1 *
0 1[ ,  ] \ ( )

s

s s
k st t T kτ

+

+
+∈  

2) if 1
s

sk K+ ∉ , then 
1

1 *
0[ ,  ]

s

s
k t tτ

+

+ ∈ . 

Next, we construct sets 
1 1 1 1 1 1
,   ,   ;   ,   ( ),   

s s s s s s
B DK T k K P T p p P

+ + + + + +∈ ∈  as follows, 

i). if 1
s

sk K+ ∈ , then 

{ }
11 1

1 1
1

1 1 1

( ),  
: ,  ( ) :

( ) ,  ,  

: ,  ( ) : ( ),  

s
B ss s s

B s s s
B k s

s s s s s
D D

T k k k
K K T k

T k k k k K

P P T p T p p P

τ
++ +

+ +
+

+ + +

 ≠= = 
∪ = ∈

= = ∈

                    (23) 

ii). if 1
s

sk K+ ∉ , then 

{ } { }
1

11 1
1 1 1

1

1 1 1

( ),  
: ,  ( ) :

,  ,  

: ,  ( ) : ( ),  

s

s
B ss s s

s B s s
k s

s s s s s
D D

T k k k
K K k T k

k k k K

P P T p T p p P

τ
+

++ +
+ + +

+

+ + +

 ≠= ∪ = 
= ∈

= = ∈

                   (24) 

We now need to check the validity of following rank equality 

* 1 1

* 1 1

 ( ( ,  ) ( ),  ( ),  ;

( ,  ) ( ),  ( ),  ) 1

s s
k B

s s
p D

rank HX t t b t t T k k K

HX t t d t t T p p P s

+ +

+ +

∈ ∈

∈ ∈ = +
                           (25) 

Let’s say no, then columns of the matrix in left side of (25) are linearly dependent. Hence, in the case (23) there are real 

numbers 

1

1 1
1 1

1 1

,  ( ),  ,  ,  ,  ( );

                     ,  ( ),  

s

t s s t s
k B s k B s

t s s
p D

t T k k K k k t T k

t T p p P

α α

β
+

+ +
+ +

+ +

∈ ∈ ≠ ∈

∈ ∈
 

satisfying following equality 

1 1 1 1 1
1 1 1 1

1

1

* 1 1 * * *

( ) ( )

( ,  ) ( ) ( ( ,  ) ( ) ( ,  ) ( )) ( ,  ) ( )
s s s s s

s s s s s
B B s D

s

s s t t t
k k k k k k k p p

k K t T k t T k p P t T
k k

HX t b HX t t b t HX t t b t HX t t d tτ τ α α β
+ + + + +

+ + + +
+

+

+ +

∈ ∈ ∈ ∈ ∈
≠

= + +∑ ∑ ∑ ∑ ∑ , 

and in the case (24) there are real numbers 

1 1,  ( ),  ;  ,  ( ),  t s s t s s
k B p Dt T k k K t T p p Pα β + +∈ ∈ ∈ ∈  

such as equality 
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1 1 1
1 1

* 1 1 * *

( ) ( )

( ,  ) ( ) ( ,  ) ( ) ( ,  ) ( )
s s s

s s s s
B D

s s t t
k k k k k p p

k K t T k p P t T p

HX t b HX t t b t HX t t d tτ τ α β
+ + +

+ +

+ +

∈ ∈ ∈ ∈

= +∑ ∑ ∑ ∑  

holds. Thus we have 

1 1 1 1 1
1 1 1 1

1

1

1 1 1

' * 1 1 ' * ' * ' *

( ) ( ) ( )

' * 1

 ( ,  ) ( ) ( ,  ) ( ) ( ,  ) ( ) ( ,  ) ( ),

( ,  ) (

s s s s s
s s s s s

B B s D

s

s s s

s s t t t
s k k k k s k k s k p s p

k K t T k t T k p P t T p
k k

s
s k k k

y X t b y HX t t b t y HX t t b t y HX t t d t

y HX t b

τ τ α α β

τ τ

+ + + + +
+ + + +

+
+

+ + +

+ +

∈ ∈ ∈ ∈ ∈
≠

+

 
 

= + + 
 
 
 

∑ ∑ ∑ ∑ ∑

1 1

1 ' * ' *

( ) ( )

) ( ,  ) ( ) ( ,  ) ( )
s s s s

B D

s t t
k s k p s p

k K t T k p P t T p

y HX t t b t y HX t t d tα β
+ +

+

∈ ∈ ∈ ∈

= +∑ ∑ ∑ ∑

 

but both of right sides of two equalities take the value 0, because of (19). Therefore, we arrive at the result that for all possible cases 

1 1 1

' * 1 1( ,  ) ( ) 0
s s s

s s
s k k ky HX t bτ τ

+ + +

+ + =
 

which is in contradiction to (22). That is, it has been proved that (20) implies (25). 

In similar manner we may construct sets 

1 1 1 1 1 1
,   ( ),   ;   ,   ( ),   

s s s s s s
B DK T k k K P T p p P

+ + + + + +∈ ∈  

such that (21) implies (25). 

Continuously repeating the procedure mentioned above, just after m steps, we exactly have the family of set 

{ ( ),  ;  ( ),  }sp B sp D spT T k k K T p p P= ∈ ∈  

satisfying (11) as follows: 

: ,  ( ) : ( ),  ;

: ,  ( ) : ( ),  .

m m m
sp B B

m m m
sp D D

K K T k T k k K

P P T p T p p P

= = ∈

= = ∈
 

Sufficiency. Suppose that there exists a certain family of set 

{ ( ),  ;  ( ),  }sp B sp D spT T k k K T p p P= ∈ ∈  

such that the relations (11) hold. 

To start with, we need to emphasize that without loss of generality, we may any element ( )Bt T k∈  for all spk K∈  in the 

(11) to be a continuous point of the vector function 
* *

0( ,  ) ( ),   [ ,  ]kHX t t b t t t t∈  because of left and piecewise continuity of 

the vector function itself. 

Now, for arbitrary initial state 0
n

x R∈  and vector 
m

g R∈ , let’s examine a construction of impulsive control { ( ),  }u w⋅  

with which the corresponding trajectory 
*

0( ),  [ ,  ]x t t t t∈  satisfies terminal state condition 
*

( )HX t g= . For that purpose, we 

first make components of vector function 
*

0( ),  [ ,  ]u t t t t∈  as follows: 

( )

( ) ( )

*
0

0

,     [ ( ),  ( ) ( ( ))),  ( ) ( )
( ) : ,

     0,     [ ( ),  ( ) ( ( )))

                                [ ,  ],   ;

                     ( ) 0,   [ ,  

B

k
Bk

k

k T k

sp

k

u when t k k k k T k
u t

when t U k k k

t t t k K

u t t t t

τ

τ

τ τ ε τ τ
τ τ ε τ

∈

 ∈ + ∈=  ∉ +


∈ ∈

≡ ∈ *],   \ spk K K∈

                       (26) 

where ( )ku t  is k –th component of the vector 
( )( ) ,   kr

ku t R uτ∈ -real number valued parameter and ( ( ))kε τ - a sufficiently 

small positive real number. Second, taking in mind the order for elements of the set ( ),  
sp

D sp
p P
U T p p P
∈

∈  as 1 2 it t t< < <L , 

we define following: 
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: ,   ( ),   

: 0,   ( )\ ( ),   

: 0,   ( ),   \

sp

sp

p p
t t D sp

p
t D D sp

s P

p
t D sp

s P

v c t T p p P

v t U T s T p p P

v t U T s p P P

∈

∈

= ∈ ∈

= ∈ ∈

= ∈ ∈

                           (27) 

where 
p
tv  is p -th component of the vector ,   

q p
t tv P c∈ -real number valued parameter. It is obvious that r  vector function 

*
0( ),   [ ,  ]u t t t t∈  generated by the formula (26) has piecewise continuity property, when under sufficiently small positive 

numbers ( ( )),   ( ) ( ),   B spk k T k k Kε τ τ ∈ ∈  concrete values of parameters 
( )

,   ( ) ( ),   
k

B spku k T k k K
τ τ ∈ ∈  are taken. In 

addition, we have the impulsive action 

{( , ), ( )}

sp

t D

s P

w t v t T sU
∈

= ∈  

which generated by the formula (27) under concrete values of parameters ,  ( ),  
sp

p
t D

s P
c t U T s p P

∈
∈ ∈ . Doubtlessly, the pair 

{ ( ),  }u w⋅  consisting of the r  vector function 
*

0( ),  [ ,  ]u t t t t∈  and the impulsive action w  which is constructed in this manner 

is exactly an impulsive control. Furthermore, it is desirable that with the impulsive control { ( ),  }u w⋅ , corresponding trajectory 

*
0( ),  [ ,  ]x t t t t∈  satisfies the terminal condition 

*
( )HX t g= . So according to formulas (26) and (27), we have following: 

* *

0 0

*

0

* * * *

( ) ( )

* *

( )

*

( ,  ) ( ) ( ) ( ,  ) ( )  ( ,  ) ( ) ( )  ( ,  ) ( )

 ( ,  ) ( ) ( )  ( ,  ) ( )

 ( ,

D D
s P s Psp sp

D
s Psp

t t

p
t k k p t

t U T s k K t U T s p Pt t

t

p
k k p t

k K p P t U T st

HX t t B t u t dt HX t t D t v HX t t b t u t dt HX t t d t v

HX t t b t u t dt HX t t d t v

HX t

∈ ∈

∈

∈ ∈ ∈ ∈

∈ ∈ ∈

+ = +

= +

=

∑ ∑ ∑ ∑∫ ∫

∑ ∑ ∑∫

* *

0 0

*

0

*

\

* *

( ) \ ( )

* *

 ) ( ) ( ) ( ,  ) ( ) ( )

 ( ,  ) ( )  ( ,  ) ( )

 ( ,  ) ( ) ( )  ( ,  ) ( )

sp sp

sp D sp D
s P s Psp sp

sp
s P

t t

k k k k

k K k K Kt t

p p
p t p t

p P t U T s p P P t U T s

t

p
k k p t

k K t Ut

t b t u t dt HX t t b t u t dt

HX t t d t v HX t t d t v

HX t t b t u t dt HX t t d t v

∈ ∈

∈

∈ ∈

∈ ∈ ∈ ∈

∈ ∈

+

+ +

= +

∑ ∑∫ ∫

∑ ∑ ∑ ∑

∑ ∫

*

0

( )

*

* *

( ) ( )\ ( )

( ) ( ( ))

( )*

( ) ( ) ( )

 ( ,  ) ( ) ( )

( ,  ) ( ) ( ,  ) ( )

 ( ,  ) ( )  (

sp D
sp

sp

sp D D D
s Psp

sp B

p P T s

t

k k

k K t

p p
p t p t

p P t T p t U T s T p

k k

k
k k

k K k T k k

HX t t b t u t dt

HX t t d t v HX t t d t v

HX t t b t dt u HX t

τ ε τ
τ

τ τ

∈

∈

∈

∈ ∈ ∈

+

∈ ∈

=

 
 

+ + 
 
 

 
 = +
 
 

∑ ∑

∑ ∫

∑ ∑ ∑

∑ ∑ ∫
*

( )

,  ) ( ) .

sp D

p
p t

p P t T p

t d t v

∈ ∈
∑ ∑

 

Eventually we may write terminal constraint as 

( ) ( ( ))

( )* * *
0 0

( ) ( ) ( )( )

( ,  ) ( ) ( ,  ) ( )   ( ,  ) .

sp B sp D

k k

k p
k p tk

k K p T k p P t T pk

HX t t b t dt u HX t t d t v g HX t t x

τ ε τ
τ

τ τ

+

∈ ∈ ∈ ∈

 
  + = −
 
 

∑ ∑ ∑ ∑∫       (28) 

Moreover, as we mentioned before, since vector function 
* *

0( ,  ) ( ),  [ ,  ]kHX t t b t t t t∈  is continuous in the point 

( ) ( ),  B spk T k k Kτ ∈ ∈ , we have following by using of Taylor’s formula 
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( ) ( ( ))

* *

( )

( ( )) 0

( ,  ) ( ) ( ( )) ( ,  ( )) ( ( )) ( ( )) ( ( )),

                     lim ( ( ( ))) 0,  ( ) ( ),  .

k k

k k

k

B sp
k

HX t t b t dt k HX t k b k k k

k k T k k K

τ ε τ

τ

ε τ

ε τ τ τ ε τ β τ

β ε τ τ

+

↓

= +

= ∈ ∈

∫
                 (29) 

With regard to (29), we obtain the other representation of (28) as 

( )*

( )*

*
0 0

( ( ( )) ( ,  ) ( ) ( ( )) ,  ( ) ( ),  ;

( ,  ) ( ),  ( ),  )( ,  ( ) ( ),  ;  

,  ( ),  ) ( ,  ) ,

k B sp

k
p D sp B spk

p
t D sp

k HX t t b t k k T k k K

HX t t d t t T p p P u k T k k K

v t T p p P g HX t t x

τ

ε τ β τ τ

τ

+ ∈ ∈

∈ ∈ ∈ ∈

∈ ∈ = −

                  (30) 

where to simplify the notation and for our convenience, in the left side of the equality above we denote the m m×  matrix with 

columns 

( )*

*

( ( )) ( ,  ) ( ) ( ( )) ,  ( ) ( ),  ;

( ,  ) ( ),  ( )

k k k B sp

p D sp

k HX t b k k T k k K

HX t t d t t T p p P

ε τ τ τ β τ τ+ ∈ ∈

∈ ∈
 

as the expression with first parenthesis and the m  vector with components 

( )
,  ( ) ( ),  ;  ,  ( ),  

k p
B sp t D spku k T k k K v t T p p P

τ τ ∈ ∈ ∈ ∈  

as the expression with second parenthesis. Based on the discussed results above and the assumption (11) for sufficiency of our 

theorem, we arrive at the fact that there is positive ε  such that for any pair 

( ( )),  ( ) ( ),  B spk k T k k Kε τ τ ∈ ∈  

satisfying conditions 

0 ( ( )) , ( ) ( ),  B spk k T k k Kε τ ε τ< < ∈ ∈  

the coefficient matrix in left side of (30) is non-singular. Furthermore, this implies, in particular, that under such pair 

( ( )), ( ) ( ),  B spk k T k k Kε τ τ ∈ ∈ , the equation (30) has the unique solution as 

( )
( )

*

* 1 *
0 0

( ,  ( ) ( ),  ;  ,  ( ),  )

( ( ( )) ( ,  ) ( ) ( ( )) ,  ( ) ( ),  ;

( ,  ) ( ),  ( ) ) ( ( ,  ) ).

k p
B sp t D spk

k B sp

p D sp

u k T k k K v t T p p P

k HX t t b t k k T k k K

HX t t d t t T p p P g HX t t x

τ τ

ε τ β τ τ
−

∈ ∈ ∈ ∈ =

= + ∈ ∈

∈ ∈ −

                     (31) 

Thus, it has been proved that with impulsive control 

{ ( ),  }u w⋅  defined by expressions (26), (27) with the values 

of parameters as the solution (31), the corresponding 

trajectory satisfies the terminal condition 
*

( )HX t g= . 

Moreover, this also means that the system (1) is relatively 

controllable. The proof is finished. 

Next, for linear time-varying impulsive system (1) we 

easily have the following alternative criterion to check 

relative controllability, which soon follows as a sequence of 

the theorem 3.1 above. 

Theorem 3.2. The linear time-varying impulsive system (1) 

is relatively controllable if and only if for any vector 
m

y R∈  

with 1y =
 

holds. 

' * *
0( ,  ) ( ) 0,  [ ,  ]y HX t t B t t t t≠ ∈  or 

' * *
0( ,  ) ( ) 0,  [ ,  ]y HX t t D t t t t≠ ∈                   (32) 

Proof. Necessity. In the step 1 for the proof of necessity of 

the theorem 3.1, it has already been verified that if the system 

(1) is relatively controllable, then for any vector 
m

y R∈  

with 1y = , (32) holds. 

Sufficiency. We need to show that if for any vector 

m
y R∈  with 1y = , (32) holds, then the system (1) is 

relatively controllable. In the first place we can remember 

that in the step 2 for the proof of necessity of the theorem 3.1, 

one has already obtained the sequence such that if for any 

vector 
m

y R∈  with 1y = , (32) holds, then there exists a 
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certain family of set 

{ ( ),  ;  ( ),  }sp B sp D spT T k k K T p p P= ∈ ∈  

satisfying (11). Hence, from this fact and sufficient condition 

of the theorem 3.1 we arrive at relative controllability of 

linear time-varying impulsive system (1). This completes our 

proof. 

Theorem 3.3. Given a matrix m nH R ×∈  with 

 rank H m= , then the following two statements are 

equivalent: 

( )a  the impulsive system (1) is relatively controllable; 

( )b  the impulsive system (1) is relatively null 

controllable. 

Proof. ( ) ( )a b⇒ . This implication is obvious from both 

of definitions of relative and relative null controllabilities. 

( ) ( )b a⇒ . Assume that the system (1) is relatively null 

controllable. We now claim that for any 
m

y R∈  with 

1y = , the relation (12) holds. In fact, if otherwise, then for 

a certain vector *
m

y R∈  with * 1y = , (13) should hold. 

In this case, it is easy to verify that there exists the vector 
*
0

n
x R∈ such that 

' * *
* 0 0( ,  ) 0y HX t t x ≠           (33) 

because of  rank H m=  and non-singularity of the matrix 
*

0( ,  )X t t . 

We also know from the definition for concept of relative 

null controllability that there exists at least one impulsive 

control 

*
0{ ( ),  [ ,  ],  {{ ,  },  1,  2,   ,  }}i iu t t t t t v i l∈ = L  

such that the relation 

*

0

* * * *
0 0

1

( ,  ) ( ,  ) ( ) ( ) ( ,  ) ( ) 0

t l

i i i i

it

HX t t x HX t t B t u t dt HX t t D t v

=

+ + =∑∫  

holds. This implies that the equation 

*

0

' * ' * ' * *
* * * 0 0

1

( ,  ) ( ) ( ) ( ,  ) ( ) ( ,  )

t l

i i i

it

y HX t t B t u t dt y HX t t D t v y HX t t x

=

+ = −∑∫  

holds, but this relation yields a contradiction because of (13) 

and (33). 

Thus, our claim such that for any 
m

y R∈  with 1y =  

(12) is true, has been proved. Consequently, from theorem 

3.2, we get relative controllability of impulsive system (1). 

This completes our proof. 

Remark 3.1. Eventually, by the theorems 3.1, 3.2, 3.3, it is 

verified that the following four propositions are equivalent 

one another: 

Proposition 1. The linear time-varying impulsive system (1) 

is relatively controllable; 

Proposition 2. The linear time-varying impulsive system (1) 

is relatively null controllable; 

Proposition 3. There exists a certain family of set 

{ ( ),  ;  ( ),  }B sp D spT k k K T p p P∈ ∈  

satisfying the relation 

* *
0 0

*

*

( ) [ ,  ],  ;  ( ) [ ,  ],  

                   ( ) ( )

           ( ( , ) ( ),  ( ), ;

        ( , ) ( ),  ( ), )  .

sp sp

B sp D sp

B D

k K p P

k B sp

p D sp

T k t t k K K T p t t p P P

T k T p m

rank HX t t b t t T k k K

HX t t d t t T p p P rank H

∈ ∈

⊆ ∈ ⊆ ⊆ ∈ ⊆

+ =

∈ ∈

∈ ∈ =

∑ ∑
                    (34) 

Proposition 4. For any vector 
m

y R∈ with 1y =  

' * *
0( ,  ) ( ) 0,  [ ,  ]y HX t t B t t t t≠ ∈  or 

' * *
0( ,  ) ( ) 0,  [ ,  ]y HX t t D t t t t≠ ∈                     (35) 

holds. 

In particular, we easily get the following corollary obtained from the above propositions when H I= . 

Corollary 3.4. In the linear time-varying impulsive system (1) the following four statements are equivalent: 

( )a  The system (1) is completely controllable; 

( )b  The system (1) is null controllable; 
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( )c  There exists a certain family of set 

* *
0 0{ ( ) [ ,  ],  ;  ( ) [ ,  ],  }B sp D spT k t t k K K T p t t p P P⊆ ∈ ⊆ ⊆ ∈ ⊆  

such that 

*

*

( ) ( )

 ( ( ,  ) ( ),  ( ), ;

( ,  ) ( ),  ( ), )

sp sp

B D

k K p P

k B sp

p D sp

T k T p n

rank X t t b t t T k k K

X t t d t t T p p P n

∈ ∈

+ =

∈ ∈

∈ ∈ =

∑ ∑

                              (36) 

holds. 

( )d  For any vector 
n

y R∈  with 1y =  

' * *
0( ,  ) ( ) 0,  [ ,  ]y X t t B t t t t≠ ∈  or 

' * *
0( ,  ) ( ) 0,  [ ,  ]y X t t D t t t t≠ ∈                     (37) 

holds. 

Remark 3.2. As already mentioned in the work of George R. K. et al. [2] (2000), generally speaking, for impulsive systems 

complete and null controllabilities are not equivalent, but fortunately, we have clarified that for the linear time-varying 

impulsive system (1) these two properties are just equivalent as in the corollary 3.4. 

Remark 3.3. As compared with Lemma 2.4, we easily know that Corollary 3.4 implies that Lemma 2.4 is true. 

4. Relative Controllability of Linear Time Invariant Impulsive System 

In this section we are going to consider time-invariant impulsive system (1) when ( ) ,   ( ) ,   ( )A t A B t B D t D= = = where 

,   ,   A B D  are ,   ,   n n n r n q× × × constant matrices respectively. For the time-invariant impulsive system we have further 

concise results. 

Theorem 4.1. The linear time-invariant impulsive system (1) with ( ) ,   ( ) ,   ( )A t A B t B D t D= = =  is relatively controllable, 

if and only if 

1 1
 ( ,  ,  ,  ;  ,  ,  ,  )  

n n
rank HB HAB HA B HD HAD HA D rank H

− − =L L                    (38) 

Proof. Necessity. To prove the necessity by contradiction, we assume that 

1 1
 ( ,  ,  ,  ;  ,  ,  ,  )  

n n
rank HB HAB HA B HD HAD HA D m rank H

− − < =L L                  (39) 

This implies that there exists at least one vector 
m

y R∈ with 1y =  such that 

1 1( ,  ,  ,  ;  ,  ,  ,  ) 0n ny HB HAB HA B HD HAD HA D− −′
=L L                       (40) 

We introduce following notations for some functions 

*
0

*
0

( ,  ) : ( *,  ) ,   [ ,  ],  

( ,  ) : ( *,  ) ,   [ ,  ],  

k k

p p

t y y HX t t b t t t k K

t y y HX t t d t t t p P

ξ

η

′= ∈ ∈

′= ∈ ∈
                          (41) 

Let 

1

0

( ) :

n
n i

n i

i

aλ λ λ
−

−
=

Λ = +∑  

be the characteristic polynomial of A. By Cayley-Hamilton theorem we know that 
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1

0

0

n
n i

n i

i

A a A

−

−
=

+ =∑ , 

which we have following from: 

1

0

1

0

( *, ) ( *, ) 0,

( *, ) ( *, ) 0,  

n
n i

k n i k

i

n
n i

p n i p

i

y HX t t A b a y HX t t A b k K

y HX t t A d a y HX t t A d p P

−

−
=
−

−
=

′ ′
+ = ∈

′ ′
+ = ∈

∑

∑
                         (42) 

On one hand, sequentially differentiated functions ( , ),   k t y k Kξ
−

∈  and ( , ),  p t y p Pη
−

∈  with respect to variable t , we 

have 

( )

( )

( , ) ( 1) ( *,  ) ,   0,  1,  2,   , ,  

( , ) ( 1) ( *,  ) ,  0,  1,  2,   , ,  

i i i
kk

i i i
pk

t y y HX t t A b i n k K

t y y HX t t A d i n p P

ξ

η

′
= − = ∈

′
= − = ∈

L

L

                      (43) 

where 
( ) ( , )i
k t yξ , 

( ) ( , )i
k t yη  denote i -th order derivatives of corresponding functions ( , )k t yξ , ( , )p t yη  respectively. In 

particular, when *t t= , we know that 

( ) *

( ) *

( , ) ( 1) ,  0,  1,  2,   , 1,  

( , ) ( 1) ,  0,  1,  2,   , 1,  

i i i
kk

i i i
pk

t y y HA b i n k K

t y y HA d i n p P

ξ

η

′
= − = − ∈

′
= − = − ∈

L

L

                        (44) 

Then, with regard to (43) in the equations (42), we also have following: 

1
( ) ( )

0

1
( ) ( )

0

( 1) ( , ) ( 1) ( , ) 0,  

( 1) ( , ) ( 1) ( , ) 0,  

n
i in i

n ik k

i

n
n i i i

p n i p

i

t y a t y k K

t y a t y p P

ξ ξ

η η

−

−
=
−

−
=

− + − = ∈

− + − = ∈

∑

∑
                          (45) 

Hence, it is clear by the expressions (44), (45) that functions ( , ),  ,k t y k Kξ ∈ ( , ),  p t y p Pη ∈  are solutions of the 

differential equation 

1
( ) ( )

0

( 1) ( ) ( 1) ( ) 0

n
n n i i

n i

i

z t a z t

−

−
=

− + − =∑                                 (46) 

correspondingly satisfying initial conditions 

( )( ) * *

( ) * ( ) *

( ) ( , ) 0,  0,  1,  2,   ,  1,  

( ) ( , ) 0,  0,  1,  2,   ,  1,  

ii
k

i i
p

z t t y i n k K

z t t y i n p P

ξ

η

= = = − ∈

= = = − ∈

L

L
                       (47) 

respectively, because of (40). Therefore, from conditions (47), and the fact such that a homogeneous differential equation with 

trivial initial condition have only trivial solution, we have 

*
0

*
0

( , ) 0,  [ ,  ],  ,

( , ) 0,  [ ,  ],  

k

p

t y t t t k K

t y t t t p P

ξ

η

≡ ∈ ∈

≡ ∈ ∈
                                (48) 

which immediately yields 
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*
0( *, ) 0, [ , ]y HX t t B t t t

′
≡ ∈  

and 

*
0( *, ) 0, [ , ]y HX t t D t t t

′
≡ ∈ . 

But this is in contradiction to the condition (32), where ( ) ,   ( ) ,   ( ) ,A t A B t B D t D= = =  for relative controllability of the 

time-invariant impulsive system. Thus it is proved that (38) holds. 

Sufficiency. Assume that (38) holds. Then equation 

1 1
( ,  ,  ,  ;   ,  ,  ,  ) 0

n n
y HB HAB HA B HD HAD HA D

− −′ =L L  

has only trivial solution. Hence, for any 
m

y R∈  with 1y =  there exists at least one non-null from among the numbers 

,  0,  1,  2,   , 1,  

,  0,  1,  2,   , 1,  .

i
k

i
p

y HA b i n k K

y HA d i n p P

′ = − ∈
′ = − ∈

L

L
                              (49) 

And we easily know that functions defined as in the (41) 

( , ),  , ( , ),  k pt y k K t y p Pξ η∈ ∈ , 

all are solutions of the differential equation (46) with initial conditions 

( )( ) * *

( ) * ( ) *

( ) ( , ) ( 1) ,  0,  1,  2,   , 1,  

( ) ( , ) ( 1) ,  0,  1,  2,   , 1,  .

ii i i
kk

i i i i
p p

z t t y y HA b i n k K

z t t y y HA d i n p P

ξ

η

′= = − = − ∈

′= = − = − ∈

L

L
 

Consequently, with the help of the conclusion above such 

that there exists at least one non-null from among the 

numbers of the (49), this immediately implies that for any 
m

y R∈  with 1y =  

' * *
0( , ) 0,   [ ,  ]y HX t t B t t t≠ ∈  

or 

' * *
0( , ) 0,   [ ,  ]y HX t t D t t t≠ ∈

 

holds. In the light of Theorem 3.2, this so too shows us 

that the linear time-invariant impulsive system is 

relatively controllable. Thus our theorem is completely 

proved. 

By virtue of Theorem 4.1 we straightforward obtain 

following corollary which gives a criterion for complete 

controllability of given linear time-invariant impulsive 

system. 

Corollary 4.2. The linear time-invariant impulsive system 

(1) with ( ) ,  ( ) ,  ( )A t A B t B D t D= = =  is completely 

controllable, if and only if 

1 1
 ( ,  ,   ,  ;   ,  ,  ,  ) .

n n
rank B AB A B D AD A D n

− − =L L                          (50) 

Remark 4.1. Comparatively considering, we can easily 

verify that Corollary 4.2 also implies that Lemmas 2.2 and 

2.5 are true. This shows us that the condition (50) is more 

general and new as compared with the condition (5) and the 

condition such that pair { ,  }A B  is controllable. 

Equipped with the necessary and sufficient condition (50) 

above for complete controllability in the corollary 4.2, we 

can now clarify relationships between null controllabilities 

and complete controllabilities of various kinds for the linear 

time-invariant impulsive system (6) as follows. 

Theorem 4.3. Given the linear time-invariant impulsive 

system (1) with ,  ( ) ,  ( ) ,  ( ) ,r q A t A B t B D t D= = = =  that is, 

given impulsive system (6), then the following four 

statements are equivalent: 

( )a  The system is null controllable; 

( )b  The system is completely controllable; 

( )c  There exists at least one common sequence of time 

instants for impulsive actions, which the system is null 

controllable; 

( )d  There exists at least one common sequence of time 

instants for impulsive actions, which the system is 

completely controllable. 

Proof. ( ) ( )a b⇔ . It is obvious by virtue of the corollary 

3.4 that in particular, given 

,  ( ) ,  ( ) ,  ( )r q A t A B t B D t D= = = = , that statements (a) and 

(b) are equivalent. 

( ) ( )b c⇔ . First, assume that the system is completely 

controllable. Then we know from Theorem 3.1 that there 

exists at least one family of set 
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{ }( ),   ;    ( ),   B sp D spT k k K T p p P∈ ∈  

such that 

( )

* *
0 0

* *

           ( ) [ ,  ],   ,  ( ) [ ,  ],   

                                ( ) ( )

 ( ,  ) ( ),   ( ),   ;   ( ,  ) ( ),   ( ),   

sp sp

B sp D sp

B D

k K p P

k B sp p D sp

T k t t k K K T p t t p P P

T k T p n

rank X t t b t t T k k K X t t d t t T p p P n

∈ ∈

⊆ ∈ ⊆ ⊆ ∈ ⊆

+ =

∈ ∈ ∈ ∈ =

∑ ∑          (51) 

holds. 

Next, by using of (51), according to the procedure as in the 

proof for sufficiency in Theorem 3.1, we verify that for any 

initial vector 0
n

x R∈ , if we concretely give suitable values 

of given parameters in (26) and (27), then with the impulsive 

control { }( ),u w⋅  consisting of both of the ordinary control 

*
0( ),  [ , ]u t t t t∈  defined by (26) and the action of impulses 

w  defined by (27) with common sequence of time instants 

1 2 lt t t< < <L  

where 

{ }1 2 ,  ,  ,  ( )

sp

l D

p P

t t t T p

∈

=L U , 

the corresponding trajectory 
*

0( ),  [ ,  ]x t t t t∈  satisfies 

terminal condition 
*

( ) 0x t = . In other words, the statement 

( )b  implies that the statement ( )c  is true. 

Conversely, assume that statement ( )c  is true. Then, it 

follows that (50) holds because of Lemma 2.3. Hence, by 

virtue of Corollary 4.2 we know that the system is 

completely controllable. 

( ) ( )c d⇔  First, assume that statement ( )c  is true. Then, 

this implies that the system is completely controllable, because 

( )b  and ( )c  are equivalent. Therefore, from theorem 3.1 we 

know that there exists at least one family of set 

{ } ( ),  ;  ( ),  B sp D spT k k K T p p P∈ ∈  

such that (51) holds. Next, according to the procedure as in 

the proof of the implication ( ) ( )b c⇒ , in similar manner, 

we easily verify that statement ( )d  is true. 

The converse implication such that statement ( )d  

implies that statement ( )c  is true, is clear by the definitions 

of notions. Thus, our proof is finished. 

5. Example 

We now consider the following two-dimensional linear 

time-invariant impulsive system with one-dimensional ordinary 

control and one-dimensional action of impulses given as below. 

1 1 2

2 1 2

1 1

2 2

*
0 0 0

1
       ( ) ( ) ( ) ( )

2

3
( ) ( ) ( ) 2 ( ),   

2

          ( ) ( ) 2

         ( ) ( ) 4 ,   

          ( ) ,   0,   1

i

i i i

i i i i

x t x t x t u t

x t x t x t u t t t

x t x t v

x t x t v t t

x t x t t

+ −

+ −

+

= + +

= + + ≠

= +

= + ≠

= = =

&

&

       (52) 

where 

1
1

1 22
,  ,   

3 2 4
1

2

A B D

 
     
 = = =   
     
 
 

. 

First of all, we clarify that the impulsive system (52) isn’t 

not only completely controllable but also null controllable. 

For this purpose, we choose the initial state and the desired 

terminal state vectors as follows: 

0

0 1
,  

0 3
fx x

   
= =   
   

. 

The characteristic equation and a fundamental matrix for 

the corresponding homogeneous system is given by 

2

1

22

1

22

    2 5 2 0;

( )

2

t
t

t
t

e e
X t

e e

λ λ− + =

 
 

=  
 

− 

 

where the eigenvalues and the eigenvectors as follows, 

respectively: 

1 1

2 2

11
,  ;

12

1
  2,    .

2

r

r

λ

λ

 
= =  − 

 
= =  

 

 

Hence, the inverse matrix of X( )t  is 

3

1

3

1
3

1

3

2

=
22

2

1

2

1

1-

tt

tt

ee

ee
tX )(  
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And the state transition matrix associated with matrix A is 

1 1
( ) ( )

2( ) 2( )2 2

1 1
( ) ( )

2( ) 2( )2 2

2 1 1 1

3 3 3 3
( ,  )

2 2 1 2

3 3 3 3

t s t s
t s t s

t s t s
t s t s

e e e e

X t s

e e e e

− −− −

− −− −

 
 + − +
 =
 
 − + + 
 

. 

Then, according to the formula (3), with the impulsive 

control 

{ ( ),  {( ,  ),  1,  2,  , }}i iu t v i l⋅ = L  

the corresponding terminal state of the trajectory has 

following type. 

1

10

(1) (1,  ) ( ) (1,  ) ,

l

i i

i

x X t Bu t dt X t Dv

=

= +∑∫  

where 

1 1
(1 ) (1 )

2(1 ) 2(1 )2 2

1 1
(1 ) (1 )

2(1 ) 2(1 )2 2

2 1 1 1

3 3 3 3
(1,  )

2 2 1 2

3 3 3 3

t t
t t

t t
t t

e e e e

X t

e e e e

− −− −

− −− −

 
 + − +
 =
 
 − + + 
 

. 

Therefore, 

1 2(1 )2(1 )

2(1 ) 2(1 )
10

2
(1)  ( )  

2 4

i

i

tt l

it t
i

e e
x u t dt v

e e

−−

− −
=

  
 = + 

   
   

∑∫ , 

that is, we have 

1

2(1 )2(1 )
1

10

1

2(1 )2(1 )
2

10

(1) ( ) 2

(1) 2 ( ) 2

i

i

l
tt

i

i

l
tt

i

i

x e u t dt e v

x e u t dt e v

−−

=

−−

=

= +

 
 = +
 
 

∑∫

∑∫

. 

Thus, we soon know that if there exists an impulsive 

control such that 1(1) 1x = , then 2 (1) 2x =  needs to hold, 

that is 2 (1) 3x ≠ . Clearly, no impulsive control { ( ),  }u w⋅  

will steer the initial vector 
'

0 (0,  0)x =  to the terminal 

vector 
'(1,  2)fx = . 

This shows that the impulsive system (52) is not 

completely controllable that coincides with the statement of 

Corollary 4.2 because 

1 2 2 4
 ( ,  ,  ,  )  1 2

2 4 4 8
rank B AB D AD rank n

 
= = < = 

 
. 

Besides, with the help of Theorem 4.3 we so too know that 

the system (52) is not null controllable. 

Next, we can prove that the system (52) is relatively 

controllable with respect to the terminal constraint 

1 2(1) 2 (1)x x g+ =              (53) 

where 

  (1, 2) 1.rank H rank= =  

In fact, we have 

 ( ,  ,  ,  )  (5, 10, 10, 20)  rank HB HAB HD HAD rank rank H= = . 

Hence, by Theorem 4.1, the impulsive system (52) is 

relatively controllable with respect to the terminal state 

constraint (53). What this example does for us here is 

guaranteed that the concept of relative controllability with 

respect to right terminal state constraint is more general than 

those of complete and null controllabilities because for the 

system (1) complete or null controllabilities imply obviously 

that the system is relatively controllable. 

6. Conclusion 

In this paper, the issue on the relative controllability with 

respect to terminal state constraint for a class of linear 

time-varying impulsive systems has been addressed. Several 

types of criteria for relative controllability of such systems 

have been established respectively. Moreover, some 

corresponding necessary and sufficient conditions for 

controllability of linear time-invariant impulsive systems 

have also been obtained more compactly. Meanwhile, some 

equivalent relationships between different kinds of 

controllability are established and our criteria are compared 

with the existing results. The results obtained will be useful 

in the analysis and practical applications of impulsive 

systems. In our opinion, for following-up or future work on 

this topic, to be expected is to extend our approach to 

problems for relative controllability with respect to general 

terminal state constraints for semilinear and nonlinear 

impulsive systems without time-delays or with them. In the 

near future we are going to solve such issues. 
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