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Abstract: This contribution concentrates on the evaluation of quantum processes in the brain that essentially contribute to 

the protection and activation of entanglement and their impact to consciousness. The corresponding calculations occur in the 

Fock space that represents discrete quantum fields, where the corresponding computations occur in the following succession. 

First, three possible weak interactions of emitted, small-sized neurotransmitters are described. These interdependencies are the 

attraction by electric dipole-dipole interaction, the attraction by the Morse potential and the repulsion characterized by s-wave 

scattering. Second, this article focus on ionotropic receptors that are embedded in a dense non-rigid grid. Anharmonic 

oscillators approximate these molecules, where their interactions cause grid vibrations. The determination of the expectation 

values of the total energy of the oscillating receptors, situated in two entangled ground states, demonstrate the existence of gap 

functions that shield the entanglement. This protected entanglement represents a bridge to the materialistic consciousness, and 

as well it refutes the dominant criticism against the quantum processes in the brain that decoherence destroys in picoseconds 

the entanglement (quantum coherence). The entangled entropy of the protected entangled states is not zero; what is a clear sign 

of entanglement. Third, consciousness activates the protected entanglement that reveals distinct positive effects, concerning the 

acquisition of information. Thus, the working space (associative cortices) that operates in a conscious state instantly gets 

compressed information on the current particular states of the cortical and subcortical components. Thereby, the emergence of 

consciousness is a synergetic process, which is created by the mutual interdependencies (causal circularity) of the components 

of the working space (synergetic agents) and the subcortical areas (synergetic “slaves”). 

Keywords: Interactions of Neurotransmitters, Vibrations of Ionotropic Receptors, Protected Entanglement, Consciousness, 

Synergetics 

 

1. Introduction 

Since many decades, particularly biologists and physicists 

fiercely debate the role of quantum processes in the brain. 

Elementary quantum processes are the release of 

neurotransmitters (exocytosis), their transmission and finally 

their reception. These basic actions take place in the brain at 

each level. The most outstanding quantum effect of the 

higher level is the entanglement that the working space 

(associative cortices) activates during its conscious state. 

Thereby, the working space immediately achieves relevant, 

compressed information from all locations, where the 

entanglement is enabled.  

Generally, the impact of quantum states substantially 

depends on the robustness of their coherence, which is one 

essential doorway to quantum effects in the brain. However, 

the opinions distinctly differ on this statement. The 

community of supporters very engaged advocate for the 

existence of quantum effects in the brain, where the group of 

repudiators vividly refuse any presence of such effects.  

Sequentially, some of the dominant proponents of the 

“quantum brain” are cited. One of the first advocates was 

Fröhlich [1]. He described the states of cell membranes in the 

“hot brain” by a kind of Bose-Einstein condensate, but his 
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approach was experimentally not confirmed [2]. The authors 

Beck and Eccles [3] characterized the vesicular emission by a 

tunneling effect. However, the experimentally verified 

probability of the exocytose (without tunneling) is not 

defined by the corresponding quantum probability, although 

by the Poisson probability (resp. binominal distribution), [4-

5]. The proponents Penrose [6] and Hameroff [7] suggest the 

creation of a shielded quantum coherence by the concept of 

the orchestrated-objected reduction (OOR). The respective 

effects of the interactions between the tubulin dimers cause 

coherent quantum vibration of these molecules. Experiments 

falsified this suggestion.  

The group of opposers especially emphasizes the effect of 

decoherence on coherent quantum states. It destroys the 

coherence in a very short time, typically in picoseconds [8]. 

Furthermore, the adversaries vividly attack the suggestion 

that quantum effects could build a bridge to consciousness.  

The first main objective of this contribution is the 

demonstration that quantum coherence in the brain can be 

established without its destruction by decoherence. For that, 

anharmonic oscillators approximate ionotropic receptors, 

where the interactions (couplings) of corresponding 

entangled oscillators shelter their entanglement (quantum 

coherence). 

The second essential aim of this work is the stating of the 

thesis that the protected entanglement represents the 

preferred method of the consciousness to collect immediately 

all relevant information from the entangled brain locations. 

This statement even reveals the convincement that 

consciousness is materialistic.  

The synergetic approach, which represents the theory of 

self-organization, describes the transition of the cortex 

between unconscious and conscious phases. The principle of 

the causal circularity of synergetics connects these two states. 

The four essential cortexes (prefrontal, parietal, temporal and 

occipital lobes) constitute autonomous synergetic agents, 

which establish the working space. These agents are 

autonomous and negotiate with themselves to make final, 

aligned decisions that, for instance regulate the subcortical 

areas. This corresponds to an adaptive distributed control. 

Thereby, the subcortical areas represent synergetic “slaves”, 

which, for instance deliver unrequested, relevant sensor data 

to the synergetic agents, when they call up these data. The 

synergetic agents interpret this information, and request 

further specific inputs, if they need additional disclosures. In 

opposition to the standard mathematical model of the cortex, 

this approach also includes the self-reflections of the working 

space without subcortical inputs. 

2. Particles, Processes and Methods 

2.1. Particles and Processes 

The considered biological particles are small sized 

neurotransmitters (e.g. Glutamate, Dopamine) and small 

ionotropic receptors, for instance, ACh receptors, with 

overall diameter, including the channels, of about 8 nm, [5]. 

Four or five subunits comprise a direct gating receptor, which 

represent a macromolecule of a size of about up to 10 nm. 

Examples are the two subtypes of cholinergic receptors or the 

two types of glutamate receptors (AMPA, NMDA), [9]. The 

ionotropic receptors compose a non-rigid grid with 

resemblance to the molecular grids that occur in solid states 

[10-11].  

The physical particles that represent small sized 

neurotransmitters and ionotropic receptors are spinless 

Bosons, which are members of different non-relativistic 

quantized fields. For two main reasons, these particles are 

characterized as Bosons and not as Fermions. First, these 

molecules are in general nonpolar, diamagnetic and the inner 

saturated electron shell shields the nuclear spin-spin 

interactions. Therefore, the molecular spin is neglected. 

Second, the Pauli exclusion principle of Fermions forbids 

their clustering. Fermions aggregate only in the cases of 

superconductivity (singlet state) and superfluidity of 	 He	�  

(triplet state), [12]  at very low temperatures, because 

interacting pairs of electrons behave as Bosons. The relevant 

effect of the superconductivity is the shielding of the electron 

pairs by an energy gap [13]. This gap prevent the Cooper-

pairs to disperse [14]. 

Classical approaches characterize the transmission of 

neurotransmitters through the synaptic cleft by an ordinary 

diffusion [15-16]. Throughout this paper, the 

neurotransmitters and receptors are disparate field quanta. 

This description opens the gateway to various quantum 

processes. Examples are the quantum diffusion [17] and the 

three aforementioned possible weak interactions between 

neurotransmitters. Further processes are the interactions of 

entangled receptors, the protection of these receptors against 

decoherence, and the essential correlation between 

entanglement and consciousness.  

The assumption that the regarded molecules are 

indistinguishable Bosons constitutes the substantial 

precondition of the Bose-Einstein statistics. Thus, the 

receptors are, for instance elements of a grand canonical 

ensemble that is in a thermal equilibrium phase [18]. One 

crucial consequence of this viewpoint is the integration of 

such ensembles in the modern approach of the finite 

temperature quantum thermodynamics [19].  

The cortex is an open system that is in a non-equilibrium 

phase, provided it is in a conscious state. This assumption 

immediately directs the investigations to synergetic 

specifications of the processes occurring in the brain [20]. 

This assumption forward leads to the conclusion that 

synergetic processes self-dependently generate the meaning 

of the available information on the base of mutual, expensive 

message exchanges between them. The subcortical areas 

acquire raw sensor information and perform a preprocessing 

of them (thalamus), before the associative cortices evaluate 

this information [21]. The synergetics supports the formation 

of order parameters (e.g. data structure like a priority map, 

salience map, and grid cell or activity patterns) by the 

synergetic agents (working space). The customary synergetic 

approach describes man made processes with abrupt phase 
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transitions, for example the laser and the Belousov-

Zhabotinsky reaction [20], where the principal functionality 

of the participating particles does not changes. Only their 

macroscopic behavior alternates. In the case of a laser, the 

uncorrelated light of a lamp transfers to a coherent light 

wave. 

In contrast, to technical processes the number of the main 

actors (synergetic agents, synergetic “slaves”) in the brain 

processes strongly fluctuates. Further, the amount and the 

functionality of cells, neurons and synapses steadily changes, 

where mainly the synapses learn and to store information. 

The aggregation of such changing activities represent 

biological synergetic processes, where the amount and the 

types of message exchanges (interactions) between all agents 

diversify. Related to these information exchanges, the local 

interpretations of the incoming messages differ. 

Nevertheless, the synergetic agents of the working space 

determine the information interpretation, with the highest 

probability. 

2.2. Methods 

The physical framework of this contribution is the non-

relativistic quantum field theory [22], which is accomplished 

in the Fock space [23] of the symmetrized product states. The 

operators acting in this space are defined in the time-

independent Schrödinger representation or in the time-

dependent Heisenberg picture [24]. However, the standard 

Fock space only comprises incoherent states, where the 

extended version of the Fock space contains coherent states. 

These states are introduced to describe weak interactions 

between neurotransmitters. Inherently, the Lennard-Jones 

potential (shorthand L-J potential), [25] delineates these 

interactions; though, this potential is analytically unsolvable 

by the corresponding radial Schrödinger equation. Therefore, 

the three dominant effects of the L-J potential are evaluated 

with suitable approximations.  

The vibrations of the grid-embedded receptors, 

approximated by coupled anharmonic oscillators, are 

calculated by a modified method that is applied in solid states 

physics (many-particle interactions). Herewith, the various 

vibrations of the Fourier components of the spatial density of 

the receptors are computed. The self-interactions of receptors 

provide the basis to combine them with entangled ground 

states to construct bosonic gap functions, which shield the 

entangled states against decoherence. This approach defines 

the protected entanglement. In this case, the techniques that 

are applied to deduce the superconductivity of electrons is 

distinctly modified to the protection of entangled Bosons.  

The evaluation of partition functions of canonical and 

grand canonical ensembles constructs the scaffolding to 

determine the corresponding density operators and the 

entangled entropy that measures the grade of the 

entanglement. We employ this entropy on the density 

operators of the ground states of the protected entanglement 

to evaluate the grade of the protected entanglement.  

The transition from the unconscious phase to the conscious 

phase represents a non-equilibrium phase transition of second 

order occurring between two open systems. This transfer 

induces a spontaneous symmetry braking that decreases the 

Shannon entropy and consequently increases the order 

(decreases the Shannon entropy) of the cortex.  

The essential methods of the synergetics that evaluate 

biological processes are characterized by the permanent 

acquisition and consolidation of information in systems that 

continuously experience structural diversifications. 

Therefore, learning will become an essential ingredient of 

this kind of application of synergetics. Furthermore, the 

process of entanglement represents a new efficient method of 

information handling. 

3. Dominant Features of the Fock Space 

of Bosons 

The Fock space is grid-based, where each of its spatial 

discrete points can contain an unlimited number of 

indistinguishable particles, which represent a quantum field. 

When the momentum and the energy of the field are relevant, 

then the switch to the k-based version of the Fock space is 

appropriate, where 	 denotes the wave number vector.  

The spatial Fock space is constructed by replacing the 

continuous version of operators by a grid-based version. For 

example, a continuous creation operator is replaced 

by	
��
�� → 	 ����√�	, where v specifies the elementary volume at 

which the lattice point is located. In this article, the “hat” 	 ̂
marks all operators, hence a clear differentiation exist 

between operators and probability amplitudes (numbers). 

The Hamiltonian ��  describes the energy of particles 

moving in an external potential field	��. The number operator �� counts the total number of particles located in this field. 

These two dominant operators act in the Fock space: 

�� = 	∑ 
��� �− ℏ!
"# 	∆� + ��&� 	
��	 ≡ ∑ (� 	
) ��
��	� ,      (1) 

�� = ∑ 
���� 
��	 =	∑ ���	� .                                        (2) 

In equation (1), the expression ∆�  denotes the discrete 

Laplace operator, and (� is the energy of a particle.  

The active release of neurotransmitters at the presynaptic 

membrane provides each molecule with the momentum 

(kinetic energy) to traverse the synaptic cleft. This traversal 

leads to a molecular flow with molecular losses (modified 

continuity equation) and to molecular scattering [17]. Since 

these effects are already outlined, one focus of this paper lies 

on the computation of the supplementary molecular effects 

that are caused by the Lennard-Jones potential.  

3.1. Many-Particle Representation of Non-interacting 

Bosons in the Symmetrized Fock Space 

The Fock space ℋ
+�  of Bosons is constructed by the 

direct orthogonal sum of all � = 0, 1, 2, ….	Hilbert spaces of 

the physical relevant, symmetrized product states denoted by 

the superscript 
+� 
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ℋ
+� =⊕123,4,",… ℋ1
+�.                          (3) 

The number of different permutations of the basis states of 

ℋ1
+� constitutes the dimension d of this space. The complete 

Fock space of the physical states is	ℋ = ℋ
+� ⊕ℋ
5� ⊕ℋ
3�. The Fock space ℋ
5� of unsymmetrized product states 

represents Fermions and the space ℋ
3� constitutes the 

vacuum.  

The symmetrized tensor product of creation operators 

establish the orthonormal basis of	ℋ
+�, where for simplicity, 

the symbol ⊗ of tensor multiplication is suppressed  

|84, 8",… 9 = 
	��:��;:
	��!��;!….
√<:!√<!!… |0, 0, … 9.                 (4) 

Here 8� = 0, 1, 2, … 
	>	?	ℕ�  denotes the number of 

particles that are localized at the lattice position i. The ket A0, 0,… 9 indicates the vacuum state. The equation (4) defines 

the many-particle state of non-interacting Bosons. The state 

vector is symmetric under the permutation of any two 

different creation operators, since they commute. The terms 

B8�!.in the dominator of formula (4) eliminate the factors 

B8�+4 that appear, when the creation operators are applied on 

the many-particle state (7). The adjoint many-particle state 

reads  

C… 8", 84| = 	 C… , 0	, 0|	
	…
	��!	 �;:
	��:	 �;!

…√<!!√<:!               (5) 

The many-particle states (4) are orthonormal, where the 

sum of the corresponding projection operators subjects the 

completeness relation  

∑ 	|84, 8",… 9D	<:,<!…2	3 C… 8", 84| = E.              (6) 

When the dimension of a finite space	ℋ1
+�is calculated, 

then it is obvious that identical particles are indistinguishable 

and therefore cannot separately counted. For example, if four 

states are available (F = 4� and 2 particles are to distributed 

to these four states (locations), then dim	ℋH
+� = I1+J541 K =
IL"K = 10. The dimension is not	F1 = 4" = 16, because six 

states are identical due to their indistinguishability, e.g. |84 = 1, 8" = 1,	0, 09 = |8" = 1, 84 = 1,	0, 09. 
The extension of the standard (incoherent) many-particle 

states of the Bosons (4) to coherent states facilitate the 

possibility to attach different weights to the grid locations. 

Thus, not only non-interacting particles can describe, but also 

interacting particles. More formally, these states accomplish 

an eigenvalue equation, whereas the state vector (4) does not 

fulfill an eigenvalue equation. 

3.2. Many-Particle Representation of Interacting Bosons 

The application of a creation or annihilation operator on 

the bosonic Fock space	
) ��:	ℋ1
+� → ℋ1+4
+�
, 
��	 :	ℋ1
+� → ℋ154
+�

 

leads to state transitions in this space. However, the many-

particle state |84, 8",… 9 introduced by equation (4) is not an 

eigenstate of a creation operator or an annihilation operator, 

since it obeys the two following relations  


��� |84, 8",… 9 = B8� + 1	|84, 8",. . , 8� + 1,… 9.     (7) 


��	  |84, 8",… 9 = B8�	|84, 8",. . , 8�54, … 9.	               (8) 

A coherent state is established in the Fock space by 

extending the original many-particle state (4) to 

PQ9 	= expS−∑ PT�U" 2⁄� W	∑ X:;:X!;!…
B<:!B<!!… 	|84, 8",… 9D<:,<!…23	 , (9) 

where the T� ´s are complex numbers [27] and are called 

coherent amplitudes. Each of these amplitudes is an 

eigenstate (coherent state) of the annihilation operator	
��	 ; the 

adjoint state CQ|  represents an eigenstate of the creation 

operator 
��� 


��	 PQ9 = T�PQ9	and	CQ|
��� = T�∗CQ|.            (10) 

The adjoint coherent state reads 

CQ| = expS−∑ PT�U" 2⁄� W	 ∑ C…8", 84| …X:∗;:X!∗;!
…B<!!B<:! .D<:,<!…23	  (11)  

However, different coherent states overlap and are not 

orthogonal, if	> ≠ [ 
\Q�]Q^_ = exp `∑ aTb,�∗ Tb,^ − cTb,�d" 2⁄ − cTb,^d" 2⁄ eb f (12) 

Only in the case of		> = [, they are normalized. 

The completion relation for coherent states is  

∏ �h JX�∗JX�
"i &� |Q9CQ| = Ejkl.                    (13) 

The adaption of the continuous T�  coefficients into the 

state PQ9, (10) offers the possibility to extend T�  by the 

transformation > → m  to a continuous coherent 

amplitude	T	
m�.  
4. Different Weak Interactions of 

Neurotransmitters in Approximate 

Potential Fields 

In this chapter, the coherent amplitudes are identified with 

two different wave functions T	
m�	 that solve the radial 

Schrödinger equations for the Morse potential (subchapter 

4.4.) and for the pseudo potential, which describes a 

scattering process (subchapter 4.5.). Subchapter 4.3. 

characterizes the potential of the electrical dipole-dipole 

interactions.  

4.1. Features of Weak Interactions of Neurotransmitters 

Revealed by the Lennard-Jones Potential 

The empirical potential that describes the three selected 

molecular interactions is the L-J potential  

�n5o
�<p�
q�	 =	(# rasts e
4" − 2asts e

uv,             (14) 

where (# > 0	[eV] denotes the well depth of the potential at 

the distance q#  at which the potential reaches its 
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minimum 	Vy5z
q#� = −(# 	 , where r 	[	Å ] 	= [. 1	nm]  is the 

distance between two particles, which is measured by the 

distance of their nuclear centers. The force between two 

molecules is attractive 	−2 asts e
u

 or repulsive 	asts e
4"

. The 

distance q#  defines the equilibrium at which the attractive 

and repulsive forces between two neutral molecules are 

equal. Therefore, the corresponding negative interaction 

energies near the well depth describe weakly bounded states 

of both molecules. At the smaller distance, q~ = q# 24 u⁄⁄  the 

potential is zero. At this distance, two molecules just touch 

themselves.  

When the distance is further decrease q	 < q~ , then they 

overlap, because each molecule strikes the other with a 

kinetic energy of 
�
" 	�T, where 	� is the Boltzmann constant 

and T denotes the temperature (a body temperature of 37 ℃ 

corresponds 310 K, [28]). Thereby, they become slightly 

deformed and the repulsive forces push both particles apart. 

At this distance, the repulsive force is greater than the 

attractive force.  

The synaptic cleft is full of water, salt and ions; therefore, 

it is improbably that neurotransmitters traverse the cleft 

without any interaction. However, the classical approach 

describes this traversal by a standard diffusion, whose 

probability distribution is defined by the Fokker-Plank 

equation [15, 29]. Hence, the three different interactions 

attraction, bounding and repulsion that are outlined in this 

chapter are disregarded by the diffusion approach.  

4.2. The Two-Body Approach for the Solution of the Radial 

Schrödinger Equation 

The two-body approach solves the radial Schrödinger 

equation for the wave function	T
��, hereby � denotes the 

relative coordinate. Further, X represents the center of mass 

coordinate and �s is the reduced mass  

� = �� − �^, � = #�	��+	#�	��
#�+#� , �s = #�	#�

#�	+	#�.            (15) 

The wave function T
��	 satisfies the one-particle 

Schrödinger equation 

�− ℏ!
"� 	∆� + �
��&T
�� = (�<p 	T
��.            (16) 

The radial version of this equation by inserting the L-J 

potential (14) is  

− ℏ!
"�

J!�
s�
Js! + r(# �asts e

4" − 2asts e
u� + �
�+4�

s! v �
q� =
(�<p 	�
q�,                                (17) 

where	�
q� = q	�
q�, with	q = ]�� − m̂ ]. 
However, this equation is analytically unsolvable. For 

example, when a power series solution is tried as it is 

customary for the hydrogen atom [24, 30], and then this 

approach fails. In this case, the standard procedure is to 

search for appropriate approximations that solve the 

Schrödinger equation (17) at different distance ranges r and 

calculate the solutions. Hereby, the distance r decreases from 

right to left, where the first corresponding approximation 

describes the attractive transient dipole-dipole interactions 

that occur for distances r	> 	q#. The subsequent calculation 

refers to the quantized band spectrum in the vicinity of q# 
q ≈ q#�, where the L-J potential is substituted by the Morse 

potential. Finally, the repelling forces are calculated, when 

two molecules are scattered at distances q < q#	,	where they 

are slightly deformed. 

4.3. Transient Electrical Dipole−Dipole Interactions 

The interaction of transient electrical dipoles depicts the 

attractive forces between two molecules that occur at greater 

distances from the bottom of the L-J potential. The 

appropriate interaction potential is  

�J5J
�<p�
	
�� = 4

Hi�� ��
�∙��
�∙��s� − 
�∙��
s� & + 
�∙��

��� �
��,    (18) 

where �3 denotes the electrical vacuum susceptibility and � 

defines the electrical dipole moment. The additional �-term 

regulates the divergence of the first expression of (21) at the 

origin. The literature usually disregard this term, e.g. [31]. 

However, the textbook [32] quotes this � -function, which 

originates from the identity  

�!
������

4
|�| = �����5���
�∙��

s� − Hi
� ��^�
��.             (19) 

The insertion of equation (22) in the formula (21) delivers 

�J5J
�<p�
	
�� = − 4

Hi��∑ ����,^24 ��  �!
������

4
|�|	,         (20) 

where this formula represents the inverse Fourier transform 

of the multipole expansion of the Coulomb potential in the 

momentum space [33]  

�J5J
�<p�
	
�� = − 4

��∑ ����,^24 �^ �����! .               (21) 

4.4. Morse Potential: Bounded Vibrating States 

In the neighborhood of	q� ≈ q#, which is the area of the 

well depth of		Vy5z
q�; this potential is replaced by the Morse 

potential [34] that defines the anharmonic oscillator  

��ks��
�<p�
	
q� = ��I1 − �5�
s5s �K".                (22) 

Where ��  characterizes the dissociation energy, whereas 


 = B¡ 2��⁄  ¢		[cm54]	 is a molecular specific parameter 

and ¢	  denotes the frequency of the anharmonic oscillator. 

For very small distances 	q → 0 , this potential is not 

applicable, since it fails. At the equilibrium distance q� = q# 

the potential is zero, whereas for q → ∞  the potential 

becomes	��ks��
�<p�
	
q� = �� . Therefore, this potential also does 

not describe the attractive forces, which occur at large 

distances as the L-J potential proposes it. 

The Morse potential is in good accordance with 

experimental data for diatomic molecules, which have only 

one degree of freedom that solely allows oscillations of the 

molecules in the binding direction (valence oscillations). 
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Thus, rotational oscillations stay disregarded in this 

contribution.  

The corresponding radial one-particle Schrödinger 

equation for vibrations (¥ = 0) reads 

− ℏ!
"�

J!�
s�
Js! + [�
q� − (�<p]	�
q� = 0,                (23) 

where  

�
q� = ��I1 − �5�
s5s �K" − �� = �� 	I	�5"�
s5s � −2�5�
s5s �K.                           (24) 

This potential has a negative minimum −��  at	q = q�; and 

it correctly converges to zero at	q = ∞. The internal energy 

corresponds to the quantized vibrational energy	(�<p = (< , 

which is the energetic solution of (23). The eigenvalues of 

the negative, vibrational bounded energies are  

(< = −�� + a8 + 4
"e ℏ¢	 − a8 + 4

"e
" 
ℏ¦	�!

H§  , 8 = 0, 1, 2, …, 

8#��.                                (25) 

The dissociation energy ��  is equal to	(<t¨©. The second 

term of equation (25) formally corresponds to the energy 

levels of the harmonic oscillator, where the frequency of the 

anharmonic oscillator is  

¢	 = ª"§ 	
� 	
.                               (26) 

The energy of transition between the two levels 8 +� and 8	
8, � = 0, 1, 2, … � is  

∆( = (<+# − (< = �«1 − ℏ¦	
H	§  
2	8 + � + 1�¬ 	ℏ¢.	

	
 (27) 

Another approach to calculate the vibrational energy of the 

bounded states of the Morse potential is the algebraic one, 

which use the spectrum of the su (1, 1) Lie algebra [35]. 

However, this method cannot calculate the radial solutions �
q�  of equation (23), which are proportional to the 

fractional associated Laguerre polynomials	­®+<®  [34] 

�
q� ≈ q­®+<® 
2¯),                           (28) 

where 		 = 2°F > 1 , F = B"�§ 
�l , ± = 	 − 28 − 1 , ¯ =

F�5�
s5s �  and 0 ≤ 28 ≤ 
	 − 1). 

Using the formula of fractional differentiation, the three 

following polynoms for	8 = 0 - 3 are  

­®®
2¯� = 	 ��i
b54�	Γ
	�, ­®+4® 
2¯� = 	 ��i
b5"�	Γ
	 −1�	[2¯ − 
	 − 2�],                             (29) 

­®+"® 
2¯� = ��i
b5�� 	 	´
b5"�	"! [
2¯�" − 2
	 − 3�	2¯ +

	 − 3�
	 − 4�].  

These solutions remind to the solutions of the hydrogen 

atom that are the non-fractional, associated Laguerre 

polynomials	­<5�54"�54 
2¶<q�, where	¶< = 4
<	�·¸¹º, [24, 30].  

Notoriously, the Morse potential is only correct for 

diatoms, but not for the description of vibrational and 

rotational spectra of two polyatomic molecules (multiple 

degrees of freedom), where the corresponding calculations of 

different types of molecular vibrations and rotations are 

exhaustive. An elementary example of a polyatomic 

neurotransmitter is Glutamate 	CL	H¼	NOH . Between such 

molecules, or even bigger molecules, different bonds can 

confer binding specificities [9]. Thus, different bonds can 

occur in parallel, e.g. hydrogen bonds, hydrophobic 

interactions, ionic bonds, peptide bonds and last not least the 

dipole-dipole interactions.  

In case of an ionotropic receptor, the anharmonic oscillator 

again approximates this molecule. Obviously, this is once more 

a simplified model for such kind of receptors. For example, the 

general structure of receptors that are transmitter-gated ion 

channels (e.g., ACh, GABA, Glycine, and Glutamate) already 

reveals relevant molecular features. These receptors possess 

membrane-spanning proteins consisting of four or five subunits, 

which form a central pore. The channel subunits are 

polypeptides that build helices and intrude entirely or partially in 

the membrane [4]. Thus, this approximation again disregards a 

great amount of details concerning the chemical and biological 

processes, e.g. [5]. Nevertheless, there is the assumption that this 

approach appropriately represents the relevant quantum features 

of the interactions between neurotransmitters and between 

receptors. Without the approximation of the neurotransmitters 

and the receptors by anharmonic oscillators, it is not possible to 

perform analytical quantum field computations. 

4.5. S-Wave Scattering 

The main objective of this subchapter is the presentation of 

the s-wave solution of the radial Schrödinger equation. This 

aim includes the calculation of the corresponding interaction 

potential of the s-wave scattering that defines a pseudo-

potential. This potential replaces the usual hard sphere 

potential and represents the singularity of T
m� ≈ 	 
�
q� q⁄ � 
at the origin q = 0	by a delta function	�
q�. This was the 

original intention of Fermi [36]. 

The two specifications ¥ = 0  and 	� = 0  concerning the 

radial equation characterize the s-wave scattering. The 

singularity at the origin of the standard solution �
q� =��b∙s q⁄ 	of the simplified radial equation is described by a 

delta function  

a	" + J!
Js!e �

�¿∙º
s = −4°�
q�	��b∙s = −4°�
q�,	    (30) 

where �
q� was already introduced by the identity referred in 

equation (19). A characteristic feature of the s-wave 

scattering is the scattering length	
�, which is calculated by 

the formula  


� = limÂ→3	
1 		cot�3⁄ �,                   (31) 

where �3  marks the phase shift for ¥ = 0  and the 

corresponding cross-section ÅÆÇÈÉÉ	 converges to a 

constant	ÅÆÇÈÉÉ → 4°
�" . The particular solution of equation 

(30) that includes the scattering length 
�	is 
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��
q� = Ê� ÆËÌ Â	
ÈÍ5Î�Î ,                         (32) 

where Ê� 	is the normalization constant Ê� = − 4
b ÇÏÆ
bÈÍ�, [26]. 

Inserting the solution (32) in the equation (30), it becomes 

ab!ℏ!"#º + ℏ!
"#º

J!
Js!e jÐ	ÆËÌ Â	
ÈÍ5Î�

Î =	− Hiℏ!jÐ ÆËÌ
Â	ÈÍ�
"� 	�
q� =

Hiℏ!
"#º 	ÉÈÌ


bÈÍ�
b 	�
q�.                     (33) 

Hereby, this formula was multiplied with the 

factor	ℏ" 2�s⁄  to define the last term of equation (33) as the 

pseudo-potential for s-wave scattering  

��j�pp
�<p�	
q� = Hiℏ!
"#º 	ÉÈÌ


bÈÍ�
b 	�
q�.               (34) 

The approximation 
ÉÈÌ
bÈÍ�

b ≈ aÆ is valid in the case of low 

energy scattering 	aÆ ≪ 1 , so the final formula for the 

pseudo-potential becomes 

��j�pp
�<p�	
q� = Hiℏ!ÈÍ
"#º 	�
q�.                      (35) 

The s-wave scattering amplitude Ób,�	 in the Born 

approximation [37] reads 

ÓbÐ
�s� = − "�
ℏ! hF� Ô	�5��º∙Õ	��j�pp
�<p�	
Ô� sin 	
aÆ − Ô� (36) 

= −4°	aÆsin
	aÆ�, 
where ×Ø = Ø

s is the central unit vector of the differential solid 

angle dΩ	into the particle is scattered.  

The approach of shallow bound states (Low equation) 

operates with the Lippmann-Schwinger equation [38] and 

provides the still missing approximation of the scattering 

length aÆ [24] 

aÆ = ℏ B2�sÚ⁄ .                                (37) 

When, the shallow bound state B is near beneath the 

continuum level, then B equates with the maximal Energy 

that is given by the Morse potential (25) 

Ú = (<t¨© = a8#�� + 4
"e ℏ¢	 − �a8#�� + 4

"e�
" 
ℏ¦	�!

H§  ≈ �k, (38) 

where �k = (<t¨© −	(3	denotes the bond energy. 

5. Oscillations of Ionotropic Receptors 

Generated by Particle-Particle 

Interactions 

The grid of ionotropic receptors is embedded in the 

postsynaptic membrane, where again anharmonic oscillators 

approximate them. This means, that the interaction energy 

between these oscillators (receptors) is calculated by the 

insertion of the Morse potential. Hereby, the objective is the 

deduction of an equation for the expectation values of the 

Fourier components of the spatial receptor density. The 

density, for instance of ACh receptors is about 10H per square micrometer	[5]. This corresponds a mean distance of .1 nm 

between two adjacent receptors. In consequence, the mean 

values of the Fourier components of the oscillator density 

perform oscillations, with different frequencies. To evaluate 

these frequencies, the method of Ehrenreich-Cohen is applied 

on the many-Boson representation, whereas these authors 

originally developed their method for many-electron 

problems [39]. 

In this chapter, the Heisenberg representation is well 

suited, where ±ÜÝ	
� 
Þ�	 is the creation operator of an 

anharmonic oscillator. Thus, for instance the creation field 

operator of a receptor, normalized in a box of volume V, 

becomes 

TÜ�
m, Þ� = 4
√ß∑ ±Üà	� 
Þ��5�á.��á .               (39) 

The Hamiltonian is bipartite:	�� = ��3 + ��
�<p�  
�� = hTÜ�
m, Þ� a− ℏ!

"#	 ∆ + �
m�eTÜ 	
m, Þ�	F�m + (40) 

	4
"∬TÜ�
m, Þ� TÜ�
Ô, Þ�	��ks��
�<p�

	
Pm −ÔU�	TÜ 	
Ô, Þ�TÜ 	
m, Þ�	F�m	F�Ô  

where 	��ks��
�<p�
	
Pm − ÔU� = (ãkp
q� and m is the mass. 

Hence, expressed in creation and annihilation operators the 

Fourier transform of the Hamiltonian is 

�� = ∑ ℏÝ ¢Ý
Þ�	±ÜÝ	
� 
Þ�	±ÜÝ	 
Þ� +          (41) 

	1
2 ä å8Þ
Ý:,Ý!,Ý�,Ýæ

Ý4, Ý", Ý�,ÝH�	±ÜÝ:
� 
Þ�	±ÜÝ!	

� 
Þ�	±ÜÝ�	
	 
Þ�	±ÜÝæ	 
Þ� 

The integral expression Int reads  

å8Þ
à4,à",,à�,àH� =                       (42) 

§ 
ß!∬�5�à:∙�5�à!∙Õ	 I�5"�
s5s � −
2�5�
s5s �K	��à�∙Õ+�àæ∙�F�m	F�Ô. 

The outcome of the double Fourier integral (42) is  

å8Þ
à4,à",,à�,à� = �
à4 +	à" − à� −	àH�	ç� 	, (43) 

with	ç� = § 
	"	i!	 a	�"�s  H�


�!+H�!�!	 −	��s  	 "�

�!+�!�!	e	,  

and è = 4
" 
à" +	àH − à4 −	à��.  

At first, the direct Fourier transform of 	�5"�s , 	
 > 0  is 

calculated to demonstrate the explicit evaluation of 

expression (43)  

ℱ
	�5"�s� 	= h �5"�s�5��∙
�5Õ�	F�m	F�ÔD
5D =         (44) 

4°	ê �5"�sD
3

sin	
èq�
èq q"F	q = 4° � 4



è" + 4
"�"�. 
The evaluation of the inverse Fourier transform delivers 

the formula that is inserted into equation (42) to compute the 

expression å8Þ
à4, à",, à�, àH�  
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4°	ℱ54 a H�

�!+H�!�!e = Hi	

ß	 h a 	H�

�!+H�!�!e ���sF�èD

5D  (45) 

= 	
4°�"
� ê sin	
èq�

èq � 4


è" + 4
"�"� è"Fè =

D
3

− > 	
4°�"	2q	� ê � 4


è" + 4
"�"� 	è	���sFè

D
5D

 

= 	
Hi�!
ß 	i" 	�5"�s. 

The dominator 
è" + 4
"�" appearing in equation (45) has 

two imaginary poles of second order that lies at è+ = >2
 

and 	è5 = −>2
 . The residue of the integrand at è+  is res 

( è+� = 	 s
¼	� 	�5"�s . The result (45) is obtained, with the 

contour of integration of a semicircle in the upper plane, 

which includes the pole	è+.  

Subsequently, the equation of motion of the Fourier 

transform è
Þ�	 of the spatial 

density	ë�
m, Þ� = 	TÜ�	
m, Þ�		TÜ 	
m, Þ� is calculated, where the 

expectation value  

\Q]ë��
Þ�]Q_ = 4
ß∑ ±Üà+�	� 
Þ�à ±Üà	 
Þ�               (46) 

represents the mean density of the receptors in the w-space. 

The details of the corresponding elaborate calculations are 

skipped, and in lieu, the equation of motion of the mean 

value is directly quoted [11] 

>ℏ J
Jp \Q]±Üà+�	� ±Üà	 ]Q_ = I(à − (à+�KCQ|±à	 |Q9 +      (47) 

2ç�I8ìà+�		 − 8ìà		 K ∑ \Q]±à´+�	� ±Üà´	 ]Q_à´ , 

where 8ìà+�		 = \Q]±Üà+�	� ±Üà	+�	 ]Q_ = \Q]��à+�		 ]Q_ =
4

�
îàïð	ñò� ¿·ó⁄ 54,                            (48) 

and 

8ìá		 = \Q]±Üà	� ±Üà	 ]Q_ = \Q]��à		 ]Q_ = 4
�
îàñò� ¿·ó⁄ 54.  (49) 

Hereby, the two formula (48) and (49) express the 

commitment that the receptors are members of a grand 

canonical ensemble, and therefore their number fluctuates. 

Thus, for example half of the AMPA receptors are replaced 

every 15 minutes [5]. The chemical potential	¡ regulates the 

varying number of particles.  

To solve equation (47) this equation is reformulated  

\Q]±Üà	+�	� 
Þ�	±�à		 
Þ�]Q_ ="	�ð	I<ìàïð		 5	<ìô		 K
�	l õ

õö	+	÷àïð	5	÷à
∑ \Q]±Üà´	+�	� 
Þ�	±�à´		 
Þ�]Q_à´ .         (50) 

The summation over w, on both sides delivers the equation  

\Q]ë��
Þ�]Q_ = 2	ç� «∑ <ìàïð		 5	<ìà		
�	l õ

õö	+	÷àïð	5	÷àà ¬ \Q]ë��
Þ�]Q_.	  (51) 

The exponential oscillatory ansatz for the solution of 

equation (50) is  

øQù±Üá	+è	
� 
Þ�	±�á		 
Þ�ùQú = øQù±Üá	+è	

� 
0�	±Üá		 
0�ùQú ��I¦èp	5	ûpK, (52) 

where ü  denotes a damping factor. Hence, equation (51) 

becomes the relation  

1 = 2	ç� ∑ <ìàïð		 5	<ìô		
5l¦ð5�lû	+	÷àïð	5	÷àà = Ó
¢� , ¢�á;�,         (53) 

where two different frequencies occur 

¢� and ¢�á; = 4
ℏ a(à;+� − (à;	e.                 (54) 

To get the graphical (numerical) solution of (53), the 

function ÓI¢� , ¢�á;K should be plotted as an ordinate and 

the frequencies ¢�  respectively ¢�á; as an abscissa. The 

projections of the intersections of	ÓI¢� , ¢�á;K, with the 1-

line on the abscissa deliver especially the sequence of 

frequencies¢�á: , ¢�á! , …. They remind to the sequence of 

energetic transitions that is observable for anharmonic 

oscillators (27). 

The oscillations of such a “paracrystalline” receptor grid 

(similar to the vesicular grid) probably generate phonons, 

which vice versa interact with their generating receptors. The 

deflection operator of phonons is 	è�à
Þ� ∝ �̂à
Þ� + �̂5Ý� 
Þ� , 

where �̂Ý
Þ� and �̂5Ý� 
Þ� represent phonons. Only, when the 

number of phonons is constant, then the expectation value of 

the phonon deflection vanishes	〈è�Ý
Þ�〉 = 0. In a state of a 

grand canonical ensemble, where the number of phonons 

fluctuates, the mean value does not disappears 〈è�Ý
Þ�〉 ≠ 0. 
Hence, it cannot be excluded that phonons interact with 

receptors as in rigid grids of solids [10], whereby they might 

destroy the unprotected entanglement.  

6. Quantum Information, Entanglement 

and Decoherence 

Qubits describe the quantum information of receptors. 

Originally, they get popular as the working memory of the 

quantum computer, e.g. [40]. Nowadays, this concept also 

entered into the quantum biology.  

The tensor product of creation operators of one particle 

constructs the spanning vectors of the finite Hilbert 

space 	ℋ1
+� . Each operator creates one particle on the n 

different energy levels  

]8b: = 1, 8b! = 1,… , 8b; = 1_ = 
�b:� 	
�b!� …
�b;� 	|0, 0,… , 09, (55) 

where this basis state represents a pure state. 

The two dimensional ℋ4
+� space represents a 2-states 

system, with the basis vectors |	8b:_  and 	|	8b!_ . The 

superposition of two basis vectors constructs a pure state in 

this one-particle space ( ë�" = ë� , Tr 	ë�" = Tr		ë) ∶see	subchapter	8.1�. 
|	T9 = Ê4|	8b:_ + Ê"|	8b!_ = Ê4	|	09 + Ê"|	19,        (56) 

where Ê4 = q4���:  and Ê" = q"���!  are normalized complex 

numbers  
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PÊ4U" + PÊ"U" = 1.                                    (57) 

A system with only two states is often denoted by 	|	09 
and	|	19. The set of all states of the form (56) subjected to the 

normalization condition (57) constitutes a 1 − qubit that 

defines the concept of quantum information. For example, an 

ionotropic oscillator is formally concretized in the context of 

a 1−qubit. The two particular states open (occupied) or 

closed (unoccupied) of a receptor are assigned to two 

different energy levels of the anharmonic oscillator as they 

are calculated by the Morse potential (25). The higher energy 

level (<+4 corresponds to the state closed and the lower level (< is assigned to the state open. The superposition of the two 

corresponding energetic basis vectors (two states system) 

defines a state that corresponds to a 1− qubit, which is 

equivalent to that one defined by equation (56). When (< and 

(<+4  are determined, then dim 	ℋ4
+� = 2 , where the 

anharmonic oscillator can occupy two different energy levels. 

When all different energy levels of an anharmonic oscillator 

are allowed, and then dim	ℋ4
+� = ∞. 

The direct product of N 1 − qubits composes an 

untangled N − qubits. For example, the state of an 

untangled 2−qubit is 

|	T�<p9	 	= |	T		9 ⊗ |	T� 	9 = 
Ê3|	09	 + Ê4|	19	� ⊗
F3|	09� + F4|	19��,                 (58) 

where the coefficients Ê�^  factorize 	Ê�^ = Ê� 	F^ . The two 

following equations separately comply with the 

normalization request  

∑ AÊ�
"4�,23	 = ∑ �F^�"4̂23	 = 1.                 (59) 

The expectation value of an operator	
�, for instance in the 

state |	T		9, (58) reads 

\T	]
�]T	_ = PÊ3U"		\0]
�|0_	 + PÊ4U"	�\1]
�|1_� +Ê3∗Ê4			\0]
�|1_� + Ê4∗Ê3			�\1]
�|0_	.          (60) 

This formula contains two “non-diagonal” factors Ê3∗Ê4	and	Ê4∗	Ê3. These two terms are essential for the coherent 

superposition. However, due to interactions with the local 

environment the expectation values of these two terms 

vanish, since their relative phases can take all possible values 

(noise). The coherence gets lost and decoherence arises, since 

the interference terms disappear.  

The Hilbert space of the entangled state is 	ℋ�"	�
+� =
ℋ4	
+� 	⊗ℋ4�
+� . The tensor product of two non-interacting 

systems constructs the space of the composite system. The 

basis vectors of ℋ4	
+� are |	09	 and	|	19	; the basis states of 

ℋ4�
+�  are |	09�  and 	|	19� . The state vector |	T�<p9	 ∈	ℋ�"	�
+� 	represents an entangled 2−qubit, which is composed 

by two 1 − qubits that describe distinguishable particles 

(different creation operators in systems A and B). 

|	T�<p 		_	 = Ê33|	09		|	09� + Ê34|	09		|	19� + Ê43|	19		|	09� +Ê44|	19		|	19�,                                (61) 

= 
Ê33	
�3�	±Ü3� + Ê34	
�3�	±4� + Ê43	
�4�	±Ü3� + Ê44	
�4�	±Ü4��|0, 09. 
The coefficients Ê�^ 	are complex, do not factorize and are 

subjected to the normalization condition 

∑ �Ê�^�"4�,^23	 = 1.                                  (62) 

To explain the effect of entanglement more detailed, the 

special case of the state (61) is well suited: 	Ê33 = Ê34 =1 √2;⁄ 	Ê43 = Ê44 = 0. It is one of the four possible Bell states 

for Bosons that represents an entangled pure state for two 

particles, however not for one particle [41-42].  

The four k-based entangled 2 − qubits Bell states for 

indistinguishable Bosons are 

|	Φ�<p
±�ú	 =
4
√" 
|	09		|	09� ± |	19		|	19�� = 4

√" I
�b�� 	
�5b�� ±

�b:� 	
�5b:� K|0, 09,                                          (63) 

|	T�<p
±�ú	 =
4
√" 
|	09		|	19� ± |	19		|	09�� = 4

√" I
�b�� 	
�5b:� ±

�b:� 	
�5b�� K|0, 09.                                           (64) 

These four states 	 construct the basis of the entangled 

2−qubits Hilbert space of Bosons	ℋ�"	�
+� .	 
For instance, the state	|	Φ�<p
+�ú is well qualified to describe 

the effect of entanglement in some details [43-44]. There 

exist two contingences to “measure” this state. When the first 

access takes place at system A, then this influence impacts 

that the 1−qubit of this system gets, for instance to the state 

|	09	 = 
�b�� |09	.	Every subsequent access to the system B 

causes a 1−qubit, which is equivalent to the state 	|	09� =	
�5b�� |09	. The whole system AB “collapses” instantaneously, 

and independently of the distance between both systems, to 

the product state	|	09		|	09� = 
�b�� 
�5b�� |0, 09. Any subsequent 

access to system B steadily transfers it to the state	|	09� 	.  
7. Density Operators, Entangled Entropy 

and Decoherence 

Entangled and mixed states do not correspond to pure 

states, whereas density operators describe such composite 

systems. Reduced (partial) density operators extract from the 

total density operator the particular parts, e.g. of system A. 

These particular operators are very useful to quantify the 

entanglement entropy [24].  

7.1. Density Operators and Entangled Entropy of the Bell 

States 

Here, the corresponding calculation concentrates on the 

particular density operator of the Bell state	|	Φ�<p
+�ú	, defined 

in (63), since each respective calculation of the remaining 

three Bell-states represents an ordinary repetition of the 

particular computation, and therefore, it is redundant.  
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The density operator of the Bell state 	|	Φ�<p
+�ú	 , with 
normalized basis states reads 

 

ë�	�	 = |	Φ�<p
+�ú	øΦ�<p
+� ]		 =
4
" I|	09		|	09�C0	|�C0	|	 + |	09		|	09�C1	|�C1	|	 +                                 (65) 

|	19		|	19�C0	|�C0	|	 + |	19		|	19�C1	|�C1|	K. 
The trace Tr of this density operator is 

Tr	ë�	�	 = Tr �|	Φ�<p
+�ú	øΦ�<p
+� ]		� = øΦ�<p
+� ]Φ�<p
+�ú =	  (66) 

4
" 	
		C0|09			�C0|09� 	+ 		C1|09		�C1|09� +

		C0|19			�C0|19� 	+ 		C1|19			�C1|19�e = 1. 

The reduced density operator ë�		  reads  

ë�		 = Tr�  ë�	�	 = 4
" I|	09	C0	|	 		�C0|09� 	+		�C1|19�|	19	C1	|	K                          (67) 

= 1
2 I|	09	C0	|	 + |	19	C1	|	K, 

where Tr�  denotes the trace with respect to the basis states of 

the system B. Formula (67) demonstrates that the reduced 

density operator of an entangled state represents a mixed 

system, since	ë�	" = 1 2⁄ ë�		 ≠ ë�		 .  

The entanglement entropy of ë�		  becomes 

�		 = −Tr	
ë�		 ln ë�		 � = − 4
" 	a C0|09			 ln 4

" C0|09			 +
C1|19			 ln 4

" C1|19			 e                       (68) 

= − 4
" 	aln 4

" + ln 4
"e = ln	2. 

This outcome demonstrates that the state |	Φ�<p
+�ú	 is 

maximally entangled due to the uniform probability 

distribution. More generally, bipartite states of a composed 

system are maximally entangled, when their entanglement 

entropy is maximal.  

7.2. Density Operators of Canonical and Grand Canonical 

Ensembles 

The Hamiltonian �� = ∑ ℏb ¢b 	
�b	� 	
�b	 = ∑ (bb ��b	 	 
substantially describes the partition function �j�<	 of a 

canonical ensemble of N Bosons	 
�j�< = Tr	〈�5���〉 = ∑ 	C8J, … 8", 84|		�5��� 	|84, 8",… , 8J9 =jk#®<:,<!…,<õ23                         (69) 

∑ 		jk#®<:,<!…23 C8J , … 8", 84|		�5�∑ ÷¿<¿¿ 	|84, 8",… , 8J9 = ∑ 	∏ �5�÷¿<¿b 	 =jk#®<:,<!…23 	∏ ∑ �5�÷¿<¿jk#®<¿	23b . 

The parameter �  represents the well-known formula	� =1 	�⁄ T , where the superscript comb indicates that the 

summation is performed over all combinations of the particle 

numbers 	8b , which accomplish the condition 	∑ 8bb = � , 

where N is finite. 

There exist one exception for canonical ensembles, 

where	� = ∞. These are canonical ensembles of harmonic 

oscillators and the anharmonic oscillators (both are Bosons). 

For the harmonic oscillator, with the frequency ¢3 , the 

partition function becomes 

�j�<
l�s� = �qI�5���K = 	∑ 	�5�÷;D<	23 =
�5�ℏ��! ∑ 	�5�ℏ¦�<D<	23 = �ñ�ℏ��!

45�ñ�ℏ��.                     (70) 

The partition function of the anharmonic oscillator, with 

the frequency ¢ (26) reads 

�j�<
�<l� = ∑ 	�5�÷; = �5�a5§ +ℏ¦	
�� ñℏ�	�	:��  e∑ 	�5� ℏ�	æ� 
H§ 5ℏ¦	�	<	��
ℏ�	�!æ�  	<!D<	23D<	23 ,                          (71) 

where the formula (25) for the energy (< is applied, and the 

following condition is expected	8#�� = ∞.  

The partition function of a grand canonical ensemble of 

Bosons in a non-coherent representation reads  

��j
<j� = Tr	〈�5�
��5�	1��〉 =
∑ 	C… 8", 84|		�5�
��5�	1��	|84, 8",… 9 =D<:,<!…23      (72) 

∑ 	D<:,<!…23 C… 8", 84|	�5�∑ 	
÷¿5��<¿¿ 	|84, 8",… 9 =

∏ ∑ 	�5�
÷¿5	��<¿ =D<¿23b  ∏ 4
a45�ñ�
î¿ñò�e	b , 

where ¡  is the chemical potential. Further, the constraint 
(b − 	¡� > 0 must be granted, so that	�5�
÷¿5�� < 1. 

The density operator of a canonical ensemble is 

ë�j�<
<j� = 4
 !¨; �5�∑ ÷¿	<¿!¸t"¿ 	|84, 8",… , 8J9C8J, … 8", 84| =

4
 !¨; �5��� ,                               (73) 
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where the completeness relation refers to the N-particles 

representation of the Fock space.  

The density operator of non-coherent many-particle states 

of a grand canonical ensemble is due to the identity relation 

(6), given by  

ë��j
<j� = 4
 #!
;!� �5�
�

�5�	1��	|84, 8",… 9C…8", 84|	 = 	4
 #!
;!� �5�
�

�5�	1��. (74) 

The imaginary time 	Þ = −>	$ , $  ∋  [ −ℏβ , ℏβ]  was 

introduced to define the thermodynamic Green´s functions 

(propagators), for instance for a grand canonical ensemble 

[19]. The method of path integration [45] extensively uses 

such propagators to describe, for instance particle scatterings 

by Feynman diagrams [22]. However, such details divert this 

contribution from its main goals; thus, this topic is not of 

further interest. 

7.3. Decoherence and Entanglement 

To characterize the effect of decoherence [46] more 

concisely, the respective considerations start with an 

uncorrelated, composed system, for example in the 

space 	ℋ
1+��'÷
+� = ℋ1'
+� 	⊗ ℋ�÷
+� . Here, S represents the 

system; E characterizes the environment, whereas N and M 

respectively define the number of the participating particles. 

Further, all molecules of the system S and of the environment 

E are Bosons, and are elements of the composed Fock space. 

Consequently, the impinging of the environmental particles 

of E on S (typically scattering, [7]) cause the perturbations of 

the system S. This influences afterwards effect the rapidly 

change of the phases of the states of the system S.  

When the system S does not interact with the environment 

E, then the composed system �(  evolves unitarily. The 

superposed state vector of the bipartite system at time t is 

	|	Tjkl
Þ�		9'÷ = (�
Þ�	|	Tjkl
0�		9'÷ =	∑ Ê̂ 		|	T^
Þ�		_'	|	Q^
Þ�_÷ 	^ ,              (75) 

where the set of the states 	|	T^
Þ�		_' 	 denotes a complete 

orthonormal basis. These states can be eigenfunctions of a 

Hermitian operator 	)Ü'	 , but not necessarily. The 

environmental states are	|	Q^
Þ�_÷. 

When the environmental interactions are turned on, then 

the state vector (75) changes to a decoherent state vector 

|	ΨJ�j 		
Þ�_'÷ = ∑ ��+� 	Ê̂ 		|	T^
Þ�		_' 	|	Q^
Þ�_÷^ ,    (76) 

where the ,^  denote additional ( 	Ê̂ = 	q̂ �����  randomly 

fluctuating phases. In consequence, the expectation value of 

the operator )Ü'	  becomes 

〈)Ü'	 	〉 =∑ 	c	Ê̂ d"^ 〈	\Q^
Þ�]	÷\T^
Þ�]	' 	)Ü'	 		|	T^
Þ�		_' 	|	Q^
Þ�_÷〉, (77) 

since the expectation values of the different interference 

terms of the superposition (76) average to zero, due to the 

vanishing averages of the phases ,^ + -^. 
The probability to observe the particular 

state 	|	T^
Þ�		_' 	|	Q^
Þ�_÷  is 	c	Ê̂ d"  as the two dominant 

initiators Bohr [47] and Born [37] of the Copenhagen 

interpretation proposed. The set of all states 

`	|	T�
Þ�		9'	|	Q^
Þ�_÷f 	" collapses” (reduces) to the one 

observed state. Usually, this result is described in the context 

of a measurement, where a corresponding apparatus, which is 

often called pointer [48-49], replaces the environment. Thus, 

any influence of a measuring device acts as an environmental 

perturbation.  

A refined insight into the process of quantum decoherence 

is obtained, when this phenomenon is qualified by a 

decoherent density operator, which becomes  

ë�J�j
Þ� = |	ΨJ�j 		
Þ�_'÷\ΨJ�j		
Þ�]'÷                         (78) 

= ∑ 	Ê� 	Ê̂∗	|	T� 		
Þ�_' 	|	Q�
Þ�9÷ 	⨂ 	 \Q^
Þ�]	÷ 	\T^
Þ�]	' 	,		�,^   

with redefined	Ê� = 	q���
+�+���  and 	Ê̂ = 	q̂ ��
+�+��� . 
To get the reduced density operator the states of the 

environment are traced out 

ë�'
Þ� = Tr÷I	ë�J�j
Þ�K =	 ∑ 	Ê� 	Ê̂∗	|	T� 		
Þ�_' 	\T^
Þ�]	' 	\Q�
Þ�]Q^
Þ�_÷ 			�,^                                              (79) 

≈ä 	Ê� 	Ê̂∗	|	T� 		
Þ�_' 	\T^
Þ�]	' 	��^ =		�,^ ä 	PÊ�U"	|	T� 		
Þ�_' 	CT�
Þ�|	' 	.		�  

To perform this calculation, the orthogonality condition of 

decoherence 	\	Q�
Þ�]Q^
Þ�_÷ → ��^ , for 	Þ → ∞  is applied 

[50]. This condition is crucial for the elimination of the off-

diagonal elements.  

Even, if the density operator is diagonal, then only one 

particular state	|	T� 		
Þ�_' 	CT�
Þ�|' 		is observed. What happens 

with the remaining diagonal terms? One answer provides the 

many-worlds interpretation [51], where all other possible 

states continue to exist in the world and split into different 

paths (branches). However, this interpretation will not be 

further deepened, because the connection of entanglement 

and decoherence lies in the focus of this subchapter. 

It is obvious that the same decoherence effects are 

observable for entangled states, where the Bell 

state 	|	Φ�<p
+�ú	, 
63�  may serve as a specimen. When the 

environmental influence decoheres this state  

|	ΦJ�j
+� ú	 =
4
√" 
��+:|	09		|	09� + ��+!|	19		|	19��,  (80) 

then the decohered density operator becomes 

ë�J�j
Þ� =	 |	ΦJ�j
+� ú	øΦJ�j
+� ]	 =                       (81) 
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1
2 |	09		|	09�	⊗ C0|	�C0|		

+ 1
2 ��
+:5+!�|	09		|	09�	⊗ C1|	�C0|		 +			

4
" 	��
+!5+:�|	19		|	19�⨂ 	C0|	�C0|		+4

" 	 |	19		|	19�⨂ 	C1|	�C1|		 =	
4
" |	09		|	09� 	⨂ 	 C0|	�C0|		 +	 4" 	 |	19		|	19�⨂ 	C1|	�C1|		, 

where the interfering terms converge to zero. 

The robustness (persistence) of entanglement under 

decoherence is increased, when another, maximally 

entangled state is introduced. This is, for example the GHZ 

state (Greenberger-Horne-Zeilinger) that represents an 

M−qubit, with 0 > 2�, [52]  

|	1��9 =	 4
√" 
|	09⨂�	 + |	19⨂�	�.           (82) 

This state reduces to the Bell state	|	Φ�<p
+�ú for	0 = 2	. 
The direct consequence of the above cited example of 

disentanglement is clear; entanglement is very fragile under 

decoherence (destroying effects). The only possibility to 

stabilize the entanglement of a system is to shield it. The 

question that instantly arises is; how an entangled system can 

be shielded. 

This means that coupled ionotropic receptors (anharmonic 

oscillators) should be in the state of stable quantum 

coherence that is caused by protected entangled receptors. 

Moreover, all entangled molecules should be in the same low 

energy state (no phase decoherence, but phase coherence) as 

e.g. in the case of superfluidity of He	H  atoms (Bosons). The 

ideal case of the phase coherence of entangled receptors is 

achieved, when all receptors are in the same basis state, and 

gap functions protect this entangled state. 

8. Gap Functions and Protected 

Entanglement 

The interactions of entangled anharmonic oscillators are 

investigated in correspondence to the superconductivity [11, 

14], where the Morse potential is again utilized. Hereby, the 

set of interacting, entangled oscillators is regarded as a hot 

(body temperature) grand canonical ensemble of Bosons, 

where the energy of the interacting entangled oscillators is 

lower than the energy of free, entangled oscillators. This 

energy gap shelters the interacting entangled oscillators 

against the influences that come from the free, entangled 

oscillators.  

8.1. Gap Functions 

Energy gaps between the free and interacting states ensure 

that the interacting entangled oscillators are a in unique 

ground states that are protected as the Cooper-pairs. Thus, the 

coupled, entangled anharmonic oscillators create a quantum 

coherence as in the case of superconductivity.  

The total Hamiltonian ��	is the initial point to describe the 

coherence of the basic states of the entangled anharmonic 

oscillators  

�� = hF�m	TÜ�
�� a− ℏ!
"#∇" − ¡eTÜ
3� +             (83) 

4
"∬F�m	F�m´ TÜ�
��	TÜ�
�´�	��ks��
|� − �´|�	TÜ
�´�	TÜ
��. 
The one-particle potential �
m� appearing in equation (40) 

is replaced by the chemical potential 	¡  that regulates the 

equilibrium of a system (e.g. grid of receptors), when the 

particle number N changes for instance in case of the 

depletion of some receptors or due to the variation of the 

temperature T. In consequence, the set of anharmonic 

oscillators (ionotropic receptors) is modelled as a grand 

canonical system, where the particle number fluctuates.  

Formally, ¡  specifies a Lagrange multiplicator. One 

has	¡ < (Ý�, where (Ý� denotes the lowest, negative bound 

state energy. Since, the mean number of Bosons with energy (Ý	  

〈��Ý〉 = 8Ý = 4
��
îÝ	 	ñ	ò�		54                      (84) 

is positive and not divergent, therefore the completion of the 

condition 
(Ý	 − 	¡� > 0  is again required. The chemical 

potential controls a “hot” bosonic, grand canonical ensemble 

at the brain temperature of about 310.15 K (37℃ ). The 

parameter � = 1 	��4  gets the value � = 5.15	[ 4�ß]  at the 

brain temperature, where		� = 6.25	105L	[��].  
When, the Fourier transform is applied on equation (83), 

then the Hamiltonian becomes  

�� = ∑ (Ý́	±ÜÝ	
� 	±ÜÝ	 	Ý + 4

"∑ ç�	±ÜÝ+�	�Ý,Ý´,� ±ÜÝ´5�	� ±ÜÝ´	 ±ÜÝ	 , (85) 

where the energy of the non interacting particles is 

represented by  

(Ý́	 = ℏ!á!
"# − 	¡                                  (86) 

and ç� denotes the Fourier transform of the Morse potential 

(24) 

ç� = h��ks��
|� − �´|��5�∙
�5�´�	F�m 	F�m´ =    (87) 

§ 
	"	i!	 a	�"�s  H�


�!+H�!�!	−	��s  	 "�

�!+�!�!	e < 0. 

Subsequently, it will demonstrated that there exist a 

shielding effect of the entangled ground states by so-called 

gap functions, which depend from the sign of the interaction 

energy. This potential is attractive, thus the interaction term 

is reformulated  

− 4
"∑ 		]ç�]	±ÜÝ+�	�Ý,Ý´,� ±ÜÝ´5�	� ±ÜÝ´	 ±ÜÝ	                       (88) 

to mark the negative sign for it. 

The generalization of the Bell states |	Φ�<p
±�ú,	(63) defines 
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the ground states |Q	
±�_	 of ��  (85) by factorizing the 

exponential expansion of |Q	
±�_	and truncating the power 

expansion after the second term  

|Q
±�	_ = ∏ �	 4√" ÊÝ� + a 4
√" ÊÝ� 	±Ü��� 	±Ü5Ý�

� ± ÊÝ:±ÜÝ:
� 	±Ü5Ý:

� e�Ý�,Ý: |Q39                                     (89) 

= ∏ |QÝ�,Ý:
±� úÝ�,Ý: . 

Since, the operators for different à�-values in this formula commutate, the exponential function can be split in a product of 

exponential functions. Hereby, the two particular ground states are introduced 

|QÝ�,Ý:
±� ú = � 4
√" 	ÊÝ� + a 4

√" ÊÝ� 	±ÜÝ�
� 	±Ü5Ý�

� ± ÊÝ:±ÜÝ:
� 	±Ü5Ý:

� e� |Q3,Ý�,Ý:

±� ú	,                                     (90) 

where both coefficients Ê�� and Ê�:  are real and |Q3,��,�:
±� ú 
specifies the corresponding vacuum states. The form of the 

individual ground states (90) is justified by two arguments. 

First, indistinguishable particles with entangled momenta are 

considered. Second, the pair states I±ÜÝ�
� 	±Ü5Ý�

� K  and 

I±ÜÝ:
� 	±Ü5Ý:

� K  show a formal (not physical) conformity with 

Cooper-pairs [13], which represent Bosons. Hence, similar 

methods as they are used for the evaluation of the 

superconductivity are applied to calculate the total energies 

and the gap functions for Bosons. Further, there exist the 

expectation that in a living system (brain) the effect of 

entanglement should generates features of a coherent 

“condensate” that shields the entanglement. 

The specific states subject to the normalization condition 

are 

øQÝ�,Ý:

±� ]QÝ�,Ý:


±� ú = 	 ÊÝ�" + ÊÝ:" = 	1,            (91) 

where, these ground states are not orthogonal 

øQÝ�,Ý:

5� ]QÝ�,Ý:


+� ú = 	 ÊÝ�" − ÊÝ:" ≠ 	0.              (92) 

In the next step, the expectation value of the total energy is 

calculated, whereas, at first the mean value of the kinetic 

energy is pointed out 

\Q
±�](b�<]Q
±�_ = \Q
±�] ∑ (Ý́	±ÜÝ	
� 	±ÜÝ	 	Ý ]Q
±�_ 	=

∑ (Ý�´Ý�
jÝ�!
" 	± 	∑ (Ý:´ ÊÝ:"Ý: .            (93) 

Before the expectation value of the interaction energy is 

evaluated, the sequence of the operators is reordered at the 

second term ±ÜÝ+�	� ±ÜÝ´5�	� ±ÜÝ´	 ±ÜÝ	 	 of equation (85). In 

consequence, this product of operators is replaced by 

±ÜÝ´	� 	±Ü5Ý´	� ±ÜÝ	 ±Ü5Ý		 .                       (94) 

This order of operators is achieved, when the following 

interchanges in the original sequence of operators (85) is 

conducted: 	à´ → −à  and 	è = à´ − à . These interchanges 

refer to the whole sum of equation (88); therefore, the value 

of the sum stays unchanged.  

The Hartree approximation	è = 0, [53]  

\Q
±�]±Üá	
� ±Üá	 	]Q
±�_\Q
±�]±Üá´	� ±Ü�´	 	]Q
±�_ =

\Q
±�]��á	 ]Q
±�_\Q
±�]��á´	 ]Q
±�_ ≠ 0      (95) 

is avoided, because these regular terms do not deliver 

contributions that comprise the pair states mentioned above.  

Thus, the following expectation value of the interaction 

energy are evaluated  

\Q
±�](�<p]Q
±�_ =
− 4

" \Q
±�] ∑ 	|çÝ´5Ý|	±ÜÝ´	� 	±Ü5Ý´	� ±ÜÝ	 	±Ü5Ý	Ý,Ý´ ]Q
±�_.	  (96) 

The evaluation of the following operator’s expression is 

partitioned  

\Q
±�]±ÜÝ´	� 	±Ü5Ý´	� ±ÜÝ	 	±Ü5Ý	 ]Q
±�_ =
øQÝ�,Ý:


±� QÝ�´,Ý:´

±� ]±ÜÝ´	� 	±Ü5Ý´	� ±ÜÝ	 	±Ü5Ý	 ]QÝ�,Ý:


±� QÝ�´,Ý:´

±� ú  (97) 

into two parts. The first part reads  

±ÜÝ	 	±Ü5Ý	 |QÝ�,Ý:
±� QÝ�´,Ý:´

±� ú = � 1√2 ÊÝ� ± 	2	ÊÝ: 	� |QÝ�´,Ý:´
±� ú 

The adjoint counterpart becomes 

øQÝ�,Ý:

±� QÝ�́,Ý:́


±� |	 ±ÜÝ´	� 	±Ü5Ý´	� =	 øQÝ�,Ý:

±� |	 a 4

√" ÊÝ�´ 	 ± 	2	ÊÝ:´e. (98) 

Both parts are composed to achieve the two final forms of 

equation (97)  

a 4
√" ÊÝ� ± 	2	ÊÝ: 	e a 4

√" ÊÝ�´ 	 ± 	2	ÊÝ:´e øQÝ�,Ý:

±� ùQÝ�´,Ý:´


±� ú = (99) 

4
" 	ÊÝ� a 4

√" ÊÝ� ± 2	ÊÝ: 	e ÊÝ�´ a 4
√" ÊÝ�´ 	 ± 	 2	ÊÝ:´e, 

where 

øQÝ�,Ý:

±� ]QÝ�´,Ý:´


±� ú = 4
" 	ÊÝ�ÊÝ�´ 	               (100) 

Now, the minimum of the expectation value of the total 

energy will be sequentially computed. For this reason, the 

respective energetic expressions are refined to the form  

\Q
±�](pkp]Q
±�_ = 	�∑ (Ý�´Ý�
jÝ�!
" 	± 	∑ (Ý:´ ÊÝ:"Ý: � − (101) 

1
2	ä ∆Ý�,Ý:


±�
	Ý�,Ý:,
ÊÝ 	� 1√2 ÊÝ� ± 	2	ÊÝ: 	� 
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Next, the two gap functions are interposed into equation 

(101)  

∆Ý�,Ý:

±� = ∑ 2	�Ý�,Ý�´,Ý:,,Ý:´Ý�´,Ý:´ 	4" ÊÝ�´ a 4

√" ÊÝ�´ 	 ± 	2	ÊÝ:´e. (102) 

These functions represent two order parameters [20], 

which characterize the different energy levels between the 

interacting receptors and the free receptors. In addition, the 

following shortcut is introduced 

	2	�Ý�,Ý�´,Ý:,,Ý:´ = 	 ùçÝ�ñ	 Ý�́ù 	+ 	 ùçÝ:ñ	 Ý:́ù.   (103) 

The derivative of equation (101), with respect to 	cÝ: is in 

the case of |Q
+�	_ 

	I2	(Ý:´ − (Ý�´ K	ÊÝ: + ∆Ý�,Ý:

+� �−	ÊÝ� + jÝ!

jÝ�
+ 4

√" 	ÊÝ:� = 0, (104) 

whereas for |Q
5�	_ the derivative becomes 

	I2	(Ý:´ + (Ý�´ K	ÊÝ: +	∆Ý�,Ý:

5� �−ÊÝ� + jÝ:!jÝ�

− 4
√" 	ÊÝ:� = 0. (105) 

Thereby, the normalization condition (91) is applied to 

perform the following differentiation  

J
JjÝ: IÊÝ� 	ÊÝ:K = �ÊÝ� − jÝ:!jÝ��.               (106) 

The fractional solutions of equation (104) becomes  

�	jÝ�jÝ:�

+� = 4

	∆Ý�,Ý:
ï� a	�Ý̃,Ý:,

+� ± 	(7Ý�,Ý:


+� 	e ≡ 4
	∆Ý�,Ý:
ï� a	�Ý̃�,Ý:,


+� +	(7Ý�,Ý:

+� 	e,                                     (107) 

together with the abbreviation 

�Ý̃�,Ý:

+� = «�	(Ý:´ −	÷Ý�´" � + 4

"√"∆Ý�,Ý:

+� ¬,                                                             (108) 

and the definition of the excitation energy  

(7Ý�,Ý:

+� = ªa�Ý̃�,Ý:,


+� e" +	I∆Ý�,Ý:

+� K".                                                                  (109) 

Note that the minus sign at the expression	±	(7Ý�,Ý:

±�

 is omitted in equations (107), since this solution should be positive for 

energetic reasons. 

Without the interactions of the receptors is 	∆Ý�,Ý:

+� = 0 . The excitation energy (7Ý�,Ý:


+�
 becomes then �	(Ý:´ −	÷Ý�´" �  and 

continuously grows up.  

The multiplicative solution of equation (104) gets  

 

IÊÝ�	ÊÝ:K
+� =	 	∆Ý�,Ý:
ï� �ajÝ:
ï�e
!5	ajÝ�
ï�e

!�	
54	±	4�	
	H	�8Ý�,Ý:
ï� ≡ 5∆Ý�,Ý:
ï� �ajÝ:
ï�e

!5	ajÝ�
ï�e
!�	

	"	�8Ý�,Ý:
ï� ,                                   (110) 

Here, the solution, with (−1 − 1 = −2), is stipulated, since otherwise it vanishes. 

To evaluate this solution, the difference	IÊÝ:

+�K" −	IÊÝ�


+�K"has to be calculated. For this reason, the solution (107) is squared 

and the normalization restriction (91) is applied, thus the two quadratic expressions result 

IÊÝ�

+�K" = 4

" «1 +
�8Ý�,Ý:	
ï�
÷7Ý�Ýô:
ï� ¬ , IÊÝ:


+�K
"
= 4

" «1 −
�8Ý�,Ý:	
ï�
÷7Ý�,Ý:
ï� ¬	.	                                             (111) 

Hence, the formula (110) obtains the final form 

IÊÝ�	ÊÝ:K
+� = 	∆Ý�,Ý:
ï� 	
"	÷7Ý�,Ý:
ï� .                                                                       (112) 

The fractional solutions of equation (105) becomes  

	�	jÝ�jÝ:�

5� = 4

	∆Ý�,Ý:
ñ� a	�Ý̃�,Ý:,

5� ± 	(7Ý�,Ý:


5� 	e ≡ 4
	∆Ý�,Ý:
ñ� I	�Ý̃�,Ý:,


5� +	(7Ý�,Ý:

5� 	K,                                     (113) 

with the two abbreviations 
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�Ý̃�,Ý:
5� = r�(Ý:´ + ÷Ý�´
" � − 4

"√"∆Ý�,Ý:

5� v,                                                             (114) 

(7Ý�,Ý:

5� = ªa�Ý̃�,Ý:,


5� e" +	I∆Ý�,Ý:

5� K".                                                               (115) 

The freely selectable sign of the expression ±	(7á�,á:

5�

in equation (113) is set down to the plus sign.  

The multiplicative solution of equation (105) becomes 

IÊÝ�	ÊÝ:K
5� =	5	∆Ý�,Ý:
ñ� �ajÝ:
ñ�e
!5	ajÝ�
ñ�e

!�	
"	�8Ý�Ý:,
ñ� .                                                             (116) 

The formulas of these quadratic coefficients do not change the internal signs 

IÊÝ�

5�K" = 4

" «1 +
�8Ý�,Ý:	
ñ�
÷7Ý�,Ý:
ñ� ¬ , IÊÝ:


5�K
"
= 4

" «1 −
�8Ý�,Ý:	
ñ�
÷7Ý�,Ý:
ñ� ¬ ,		                                              (117) 

hence the multiplicative solution again delivers a positive result, provided 	∆Ý�,Ý:

5� > 0, 

IÊÝ�	ÊÝ:K
5� =	 	∆Ý�,Ý:
ñ� .
"	÷7Ý�,Ý:
ñ� .	                                                                        (118) 

The calculation of the kinetic energy of equation (101), with respect to |Q
+�	_ delivers the result 

�÷Ý�´" IÊÝ�

+�K" + (Ý:´ IÊÝ:


+�K"� = 4
" �÷Ý�

´
" + (Ý:´ � 	+ 4

" �	÷Ý�
´
" 	− 	(Ý:´ � �8Ý�,Ý:
ï�

÷7Ý�,Ý:
±�                                  (119) 

= 	4
" �÷Ý�

´
" + (Ý:´ � −	 a	�8Ý�,Ý:
ï� e!

"		÷�Ý�,Ý:
ï� + 4
H	√" 	 	∆Ý�,Ý:


+� 	�8Ý�,Ý:
ï�
		÷�Ý�,Ý:
ï� . 

The corresponding potential energy reads  

− 4
" 	 	∆Ý�,Ý:


+� a 4
√" IÊÝ�


+�K" + 2	IÊÝ�	ÊÝ:K
+�e = − 4
" 	 	∆Ý�,Ý:


+� « 4
"	√"«1 + �8Ý�,Ý:
ï�

÷7Ý,Ý:
ï� ¬                                  (120) 

 

+ 	∆Ý�,Ý:
ï�
	÷7Ý�,Ý:
ï� ¬ = − 4

H	√" 	 	∆Ý�,Ý:

+� − 4

H	√" 	 	∆Ý�,Ý:

+� �8Ý�,Ý:
ï�

÷7Ý�,Ý:
ï� 	− 4
"
	a	∆Ý�,Ý:
ï� e!
		÷�Ý�,Ý:
ï� . 

For comprehensibility, the summation over à3 and à4 is not indicated in the equations (119) resp. (120). When, the two 

equations (119) and (120) are put together, and then particular total energy is obtained 

(pkp,Ý�,Ý:

+� = 	4

" �÷Ý�
´
" + (Ý:´ � − 4

H	√" 	 	∆Ý�,Ý:

+� − 4

"		÷�Ý�,Ý:
ï� aI	�Ý̃�,Ý:

+� K" +	I	∆Ý�,Ý:


+� K"e                                (121) 

=	12 «
(Ý�´2 + (Ý:´ ¬ − 1

4	√2		∆Ý�,Ý:

+� − 1

2 	(�Ý�,Ý:

+� . 

The interactions between entangled receptors decrease the 

expectation value of the appropriate total energy under the 

free energy 
4
" �÷Ý�

´
" + (Ý:´ �, where the total energy (121) of the 

ground state	|QÝ�,Ý:
+� ú has the lowest energy. The interacting 

entangled particles are sheltered against environmental 

attacks (decoherence), since further down; it will be 

demonstrate that 	∆Ý�,Ý:

+�

 is positive, and 	(�Ý�,Ý:

+�

(109) is 

anyway positive.  

The calculation of the particular kinetic energy 

corresponding to the ground state	|Qá�,á:
5� ú is  

�÷Ý�´" IÊÝ�

5�K" − (Ý:´ IÊÝ:


5�K"� = 4
" �÷Ý�

´
" − (Ý:´ � 	+

4
" �	÷Ý�

´
" 	+ 	(Ý:´ � �8Ý�,Ý:
ñ�

÷7Ý�,Ý:
ñ�                                   (122) 

= 	4
" �÷Ý�

´
" − (Ý:´ � + 4

" 	a	�
8Ý�,Ý:
ñ� e!
		÷�Ý�,Ý:
ñ� + 4

H	√" 	 	∆Ý�,Ý:

5� 	�8Ý�,Ý:
ñ�

		÷�Ý�,Ý:
ñ� .  
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The evaluation of the corresponding particular potential 

energy provides the result  

− 4
" 	 	∆Ý�,Ý:


5� a 4
√" IÊÝ�


5�K" − 2	IÊÝ�	ÊÝ:K
5�e =  (123) 

− 4
H	√" 	 	∆Ý�,Ý:


5� − 4
H	√" 	Ý �8ô�,ô:
ñ�

÷7ô�,ô:
ñ� 	+ 4
"
	a	∆Ý�,Ý:
ñ� e!
		÷�Ý�,Ý
ñ� . 

To get the respective particular total energy the two 

equations (122) and (123) are again gathered  

(pkp,Ý�,Ý:

5� =

	4
" �÷Ý�

´
" − (Ý:´ � − 4

H	√" 	 	∆Ý�,Ý:

5� + 4

"		÷�Ý�,Ý:
ñ� aI	�Ý̃�,Ý:

5� K" +

	I	∆Ý�,Ý:

5� K"e                                       (124) 

=	 4" �÷Ý�
´
" − (Ý:´ � − 4

H	√" 	 	∆Ý�,Ý:

5� + 4

" 	(�Ý�,Ý:

5�

. 

In this case, even the total energy belonging to |QÝ�,Ý:
5� ú	 
increases ,  since 	(7Ý�,Ý:


5� > 4
"	√" 	 	∆Ý�,Ý:


5�
. Below, it will be 

indicated that the sign of this gap function 		∆Ý�,Ý:

5�

 is also 

positive and its value is comparable to that one of	∆á�,á:

+�

. 

Therefore, the gap function 	∆Ý�´Ý:´

5�

 provides a less protection 

of the entangled ground states against decoherence as the gap 

function 	∆Ý�´Ý:´

+�

delivers. This reduction of the sheltering 

by		∆Ý�´Ý:

5�

 will be approved in the next subchapter, where the 

entangled entropies that correspond to both gap functions are 

calculated. In addition, contemporary conditions of the 

environmental influences can affect the amount of the 

protection,  

To determine		∆Ý�,Ý:

+�

, the equation (102) for this this gap 

function is rewritten 

∆Ý�,Ý:

+� = ∑ 	�Ý�,Ý�´,Ý:,,Ý:´Ý�´,Ý:´ 	ÊÝ�´ a 4

√" ÊÝ�´ 	 + 2	ÊÝ:´e = (125) 

ä �3 	9 1
2	√291 +

�Ý̃�´	Ý:´

+�

(7Ý�´	Ý:´	

+� :+	∆Ý�´Ý:´


+�

(7Ý�´Ý:´

+� : .Ý�´,Ý:́

 

Hereby, it is assumed that for a small region the potential 

is constant 

	�Ý�,Ý�´,Ý:,,Ý:´ = �3 , for 	;(Ý:´´ − ÷Ý�´´
" < < ℏ¢	 , where ¢	 

denotes the mean frequency of the oscillator (receptor) 

vibration. Further, the gap function is set to a constant 

∆Ý,Ý:

+� = ∆	
+�.                          (126) 

Thus, the rewritten formula (125) becomes a self-

consistent (iterative) equation for ∆	
+�  
	"√"	∆	
ï�	

ß� =	∑ 	«1 + �8Ý�´	Ý:´
ï� +	"	√"	∆	
ï�
÷7Ý�´	Ý:´	
ï� ¬Ý�´,Ý:́ .   (127) 

To solve this equation, the sum is replaced by an integral. 

Thus, the integration variable gets ℇ´ = (Ý:´ − ÷Ý�´
"  and 

�
ℇ´� = ℧

"i���
ℇ´�  represents the usual replacement of a 

sum by an integral, where �
ℇ´�  indicates the density of 

states, and ℧	denotes the volume. Supplementary, the state 

density is approximately constant 	�
ℇ´� ≈ 	�
0� . The 

integration bounds runs from zero until a mean positive 

vibrational binding energy	ℏ¢	 . Thus, the integral form of 

equation (127) becomes 

	"√"	∆	
ï�
ß�	1
3� = h `1 + ℇ´+	∆	
ï� "√"⁄

÷7	
ï�
ℇ´� + "	√"	∆	
ï�
÷7	
ï�
ℇ´� f Fℏ¦	3	 ℇ´ =	   (128) 

ℏ¢	 + ª
ℏ¢	�" + ∆	
ï�ℏ¦	
√" + ?

¼∆	
+�" − ª?
¼+

2√2	∆	
+� «arsinh a ℏ¦	
∆	
ï� + 4

"√"e − arsinh a 4
"√"e¬, 

where the excitation energy reads 

(7	
+�
ℇ´� = ªℇ´" + 	ℇ´	∆	
+� √2	⁄ + ?
¼ 	∆	
+�" .   (129) 

This equation is solved by a basic iteration that starts 

with	∆3
+�= 0, where the calculation terminates at the second 

order term. Hence, the two iterations are 

	"√"	
ß�	1
3�∆4
+�= h 2	Fℏ¦	3	 ℇ´ = 	2	ℏ¢	                 (130) 

	"√"	
ß�	1
3� 	∆"
+�= h `1 + ℇ´+ℏ¦		 √"	⁄ 	

÷7	
ï�
ℇ´� + H	√"	ℏ¦	
÷7	
ï�
ℇ´�f Fℏ¦	3	 ℇ´ = ℏ¦		

√"	 @, (131) 

together with  

(7	
+�
ℇ´� = ªℇ´" + √2	ℏ¢	ℇ´ + ?
" 
ℏ¢	�" ,      (132) 

and  

C	= 4
√" «√2 + B11 + 2√2	 	− 3 + 8«arsinh	 a"+√"	H e −

	arsinh	 a 4
"√"	e¬	¬                    (133) 

≈ 2.6	 > 0. 

The result of this simplified approximation indicates that 

the expression ℏ¢	  dominates the value of 	∆4
+� , where all 

constant factors are irrelevant. When the mean frequency is 

one milliseconds, then 	ℏ¢	 = 
6.58	1054ueV	sec� ×
a2°	 43ñ���j e ≈ 41.32	1054?	eV. This very small, positive gap 

value dominantly downsizes, when a frequency of one 

picosecond (
43ñ:!
��j �	is selected, then	ℏ¢	 ≈ 41.32	105"¼	eV. 

In case of	|Q
5�	_, the corresponding formula reads  

	"√"	
ß�	1
3� = 4

	∆	
ñ� h `1 + B´5	∆	
ñ� "√"⁄
÷7	
ñ�
B´� − "	√"	∆	
ñ�

÷7	
ñ�
B´� f Fℏ¦	3 B´.  (134) 

The modified integration variable is now	B´ = ÷ô�´
" + (á:´ ; 
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further, the constancy of ∆á�´á:´(5� = ∆	
5� is again expected, and 

the potential is estimated to be constant in a small region 

	�Ý�,Ý�´,Ý:,,Ý:´ = �3, for	;÷Ý�´" + (Ý:´ < < ℏ¢	.            (135) 

The modified excitation energy gets 

(7	(5�
B´) = ª	B´" − 	B´	∆	(5� √2	⁄ + ?
¼ 	∆	
5�".           (136) 

The two pursuant iteration steps are 

	"√"	
ß�	1
3�∆4
5�= h 2	FB´ℏ¦	3	 	= 	2	ℏ¢	 	"√"	

ß�	1
3� 	∆"
5�      (137) 

= h `1 + 	B´5ℏ¦		 √"	⁄ 	
÷7	
ñ�
	B´) − H	√"	ℏ¦	÷7	(ñ)(	B´)f Fℏ¦	3	 B´ = ℏ¦		√"	 @´, 

where C´ ≈ .25 > 0, hence the sign of 	∆"
5� is again positive.  

The entanglement of the two ground states that are 

guarded by the two gap functions 	∆	
±�  is called protected 

entanglement. 

8.2. Non-vanishing Entanglement Entropies of the Ground 

States 

This subchapter demonstrates that the sheltering 

interactions described in the previous subchapter do not 

destroy the entanglement between receptors, but only 

diminish the entanglement entropies of the two ground states. 

In consequence, the protected entanglement represents a 

source that generates quantum coherence. The ground states 

stay entangled, and therefore continue to be coherent. This 

property of quantum coherence guarantees, for instance the 

immediately synchronization of the oscillations between 

different neural networks. 

The density operators of the ground states are 

ë�	�
±	� = |	QÝ�,Ý:

±� ú	øQÝ�,Ý:

±� ]	,               (138) 

where the traces of these two operators become 

Tr	ë�	�
±	� = Tr �|	QÝ�,Ý:

±� ú	øQÝ�,Ý:


±� ]		� = øQÝ�,Ý:
±� ]QÝ�,Ý:


±� ú = 	 IÊÝ�

±�K" + IÊÝ:


±�K" = 	1.                           (139) 

The reduced density operators of ë�	�
±	� of subsystem A reads 

ë�	
±	� = Tr� ë�	�
±	� = ajÝ�
±�e
!

" + ajÝ�
±�e
!

" |	±ÜÝ�
� _	\±ÜÝ�

� 	] ± IÊÝ:

±�K"|	±ÜÝ:

� _	\±ÜÝ:
� ].	 	                                   (140) 

Both density operators have a unit trace 

Tr	ë�	
±	� =	IÊÝ�

±�K" + IÊÝ:


±�K" = 	1.                                                              (141) 

The entanglement entropies of the two ground states |Q3,Ý�,Ý:

±� ú are  

�	
±�	 = −TrIë�	
±	� ln ë�	
±	�K = −9IÊÝ�

±�K"ln ajÝ�
±�e

!

" 	± 	 IÊÝ:

±�K" lnIÊÝ:


±�K":                                    (142) 

= IÊÝ�

±�K"ln2	 − aIÊÝ�


±�K"ln	IÊÝ�

±�K" ± IÊÝ:


±�K" lnIÊÝ:

±�K"e. 

In the impermissible case, that IÊÝ�

±�K" = IÊÝ:


±�K" = 1, 
these entropies apparently get the maximal value of ln 2 as 

for the corresponding Bell states (68). However, the equality 

of the two coefficients must be excluded, since it contradicts 

the normalization condition that only the sum of both 

coefficients is 1; both numbers are unequal and less than 1. A 

case analysis demonstrates this inequality.  

When 	∆Ý�´Ý:´(±� = 0 , then 	�8Ý�,Ý:	
±�
÷7Ý�,Ý:
±� = 1 , therefore, the results 

are 	IÊÝ�

±�K" = 4

"«1 +
�8Ý�,Ý:	
±�
÷7Ý�,Ý:
±� ¬ = 1 , and 	IÊÝ:


±�K" =
4
" «1 −

�8Ý�,Ý:	
±�
÷7Ý�,Ý:
±� ¬ = 0. Thus, in the case of no interactions the 

entangled entropy is maximal	�	
±�	 = ln	2, according to the 

rule : 	limes	�→+3	m	lnx = 0 . However, in this case the 

entanglement of the receptors stays unprotected. 

In case	∆Ý�´Ý:´(±� ≠ 0, then	�8Ý�,Ý:	
±�
÷7Ý,C:
±� < 1 and both coefficients 

are less than 1. In consequence, the entanglement entropies 

are no more maximal, but only decremented and do not 

vanish, where �	
+�	 is even greater as	�	
5�	. 
In summary, the entanglement entropies �	
±�	have despite 

the interactions non-zero values, what represents a clear sign 

of entanglement.  

9. Consciousness Activates Entanglement 

The phase transitions between unconscious and conscious 

perception and vice versa represent a powerful experimental 

method to analyze dominant features (signatures) of both 

phases. Proper experiments that carefully observe the effects 

of these transitions with probands substantiate the modern 
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assertion that consciousness is materialistic [5, 21]. 

Unconscious activities of the areas of the subcortex collect 

and prepare relevant preconscious (precognitive) information 

that any time can become conscious, when the working space 

pays attention to it [54-55]. 

The entanglement in the cortex provides a bridge to the 

understanding of consciousness. However, this hypothesis 

also premises that each accomplished entangled state is 

renewable at any time. This effect corresponds an 

experimental setup, where entangled states are constantly 

recreated, and the information of these states is at once 

transferred in adjacent or remote regions [56]. 

9.1. Effects of Entanglement in the Brain 

Conscious assignments consistently activate the 

entanglement of the ionotropic receptors at different regions. 

Impacts of supplementary action potentials initiate the 

entanglement processes and stipulate, for instance the 

exocytosis. When ionotropic receptors bound two 

neurotransmitters, then each receptor immediately cares a 

well-defined information. Thus, in a conscious state the 

cortex areas distinctly get very quick all entangled 

information in a compressed form.  

In quantum physics, the entanglement is considered as a 

process of teleportation. However, in the context of this 

article, the phenomenon of entanglement represents an effort 

of information processing. Further, there exist a second 

speculative aspect of entanglement. In living systems like the 

brain, decoherent processes do not destroy the protected 

entanglement. Thus, the biological (natural) kind of 

entanglement causes the immediate firing of neurons, whose 

receptors are in the activated entangled state.  

Entanglement supports the completion of a tight timing 

between different cortical areas (synchronous operations). 

Two representative examples for the necessity of a strong 

synchronization are the synaptic plasticity and the exocytosis. 

The synaptic plasticity is characteristic for learning and 

memorizing activities, where the long-term potentiation (LTP) 

and the long-term depression (LTD) play a dominant role. 

Which one of these two effects occurs depends from the 

timing between these two processes. The increase or decrease 

of synaptic strengths change the neural selectivity, where 

enduring weight modifications as a kind of reinforcement 

correspond to a learning process that stipulates the enduring 

settlement of the synaptic weights. 

The initiation of the vesicular emissions of molecules is 

not a result of a mental intension [3], but an impact of 

conscious activations of the synchronizing action potentials. 

The appropriate probability distribution of the transmitter 

release is the Poisson distribution that approximates the 

binomial distribution, with a sufficient accuracy.  

9.2. Synergetic (Self-organized) Model of Consciousness 

In chapter 8, the grand canonical ensemble of receptors 

was in the state of thermal equilibrium, since this ensemble 

was considered as a closed system. Thus, the phase transition 

to the protected entanglement was calculated with a similar 

method that is applied in superconductivity [11, 14]. 

Furthermore, this equilibrium phase transition is of second-

order.  

The objective of synergetics [20, 57] is the description of 

the self-organization of open systems that includes the 

selection of stable solutions of the occurring processes. The 

human brain is an outstanding example of an open system. 

Each cell and each aggregation of cells receives continuously 

energy or molecules (matter) from its environment (e.g. heat, 

blood, chemicals from the secretory hypothalamus). All cells 

process the incoming energy/matter flux (regulation of blood 

oxygen, blood volume, blood pressure, glucose concentration, 

acidity; homeostasis) and emit the rest of the energetic influx 

to the environment.  

Open systems are in a dynamical equilibrium, when their 

internal variables stay constant, provided the exchange with 

the environment is steady. However, the stationary non-

equilibrium states of open systems are more relevant, since 

these states represent a higher degree of order as in the 

dynamical equilibrium states. The Shannon entropy S 

decreases in stationary non-equilibrium states (higher order), 

what is the occurrence of self-organization. The transition 

between the dynamical equilibrium and the stationary non-

equilibrium causes the transfer of the brain states from 

unconsciousness to consciousness. Such a transition leads to 

a broken (reduced) symmetry, where this aspect complies 

with a higher order. 

In the mathematical view, the different neural clusters and 

their interconnections in the brain represent nonlinear 

dynamical systems. The solutions of such dynamical systems 

represent, for example stable and strange attractors, repellers, 

local and global bifurcations, central manifolds, hyperbolic 

sets and chaos, e.g. [58]. These effects are referred, since 

they can likewise occur in the brain.  

The consideration of the impact of fluctuations (noise) is 

important, because they, for instance can shift a stable 

solution into an unstable solution and two stable solution. On 

the other hand, noise can even push away a steady solution to 

an unstable solution, and the change of a control parameter 

causes structural instability. Therefore, fluctuations transform, 

for example the mode of operation of bifurcations of 

dynamical systems that are in an equilibrium to 

corresponding effects that occur in non-equilibrium states. 

The higher cortical levels, for instance the prefrontal lobe 

and the posterior parietal lobe can be as well in an 

unconscious state (dynamic equilibrium phase) or in a 

conscious state (non-equilibrium phase). The subcortical 

levels can also be entangled; however, they remain each time 

in unconscious states and cannot transit to conscious states. 

Consciousness activates the entanglement, where it 

directly controls the output of excitatory receptors (exited, 

e.g. by acetylcholine, noradrenaline or serotonin 

neurotransmitters) or inhibitory receptors (inhibited, e.g. by 

GABA and glycine neurotransmitters). In consequence, the 

synapses are strengthen (LTT) or weakened (LTD). These 

effects evoke the increase of neural excitations (action 
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potentials) or the decreased propagation of signals, without 

excitatory support (degradation of the spread of action 

potentials).  

The overall information that the working space collects 

should be immediately disposable, situation dependent, 

compressed and exhaustive. This represents a necessary 

condition. The sufficient condition demands that this 

information must be complete to be able to perform 

consistent and appropriate decisions. 

The thresholds to perform a transition from unconscious 

states to conscious states are preset by appropriate values of 

the action potentials. Beneath this thresholds, the subcortex 

and the cortex remain in the unconscious states, thus, both 

systems stay in a dynamical equilibrium. When the bottom-

up excitation via different subcortical areas is too weak, then 

only a subliminal perception occur. 

The synergetics characterizes the self-organization by the 

circular causality (creation of meaning). The order 

parameters (data structures, e.g. salience and priority maps in 

visual cortical areas and parietal lobe, [4]) control the 

subcortical areas and the lower levels (brain stem and 

cerebellum). The cortices of the working space are 

autonomous synergetic agents [57] that treat the subcortical 

areas as synergetic “slaves”, which conversely activate the 

synergetic agents. The exclusive focus of these agents to a 

single, salient order parameter (e.g. activity pattern) 

represents an act of thinking. When, the synergetic principle 

are applied on the communicating, synergetic agents 

(associative cortices), then one of these agents determines the 

single order parameter that controls (inhibits) the remaining 

order parameters. This process provides the unique 

interpretation of the common information. Thus, a single 

thought inhibits all other thoughts.  

The autonomy of the synergetic agents also emphasizes 

their self-sufficiency. Thus, synergetic agents that are in a 

conscious state can define their own goals, without 

considering any external inputs. Consequently, conscious 

synergetic agents are able to think on a meta-cognitive level 

and thereby they develop the self-consciousness. Such an 

autonomy establishes the free will.  

In the mathematical view, the prevailing order parameter 

represents a stable solution (attractor), because even 

escalating fluctuating forces cannot push away this stationary 

solution. This is the highest order of the cortex. Two thoughts 

can switch alternatively from one to the other (corresponds 

binocular rivalry). Each individual thought that is only stable 

for a short time represents an intermittently stable solution 

(transient stability) that is pushed away by critical 

fluctuations to other solutions of this type. This outcome of 

intermittently stationary solutions describes a reduced order. 

Unstable solutions are stable solutions that are rapidly 

damped out. This corresponds to thoughts that shortly flare 

up and then disappear. Such a process represents a minor 

kind of disorder. 

The chaos represents the highest degree of disorder. The 

mathematical theory of chaos defines three typical routes to 

the chaos. These are the intermittency (saddle note 

bifurcation), quasi-periodic oscillations (Hopf bifurcation) 

and period doubling (fork bifurcation), [62]. Let us, for 

example concentrate on the intermittency. It describes the 

transition from a regular periodic behavior to a chaotic 

behavior. This means that a stable, periodic solution shows 

an increment of irregular bursts, with growing amplitudes. 

For example, when a thought is temporal unstable, then this 

idea cannot be retained, because it steadily disappears, and a 

series of new ideas emerge. In case of the two other 

previously mentioned ways to chaos, similar effects take 

place. 

10. Conclusions 

Neurotransmitters and ionotropic receptors are Bosons that 

operate in the Fock space. Anharmonic oscillators 

approximate the bounded states of neurotransmitters and the 

interactions of these receptors. Thereby, the 

interdependencies of the receptors is particularly significant, 

since they generate oscillations, where gap functions protect 

the vibrating receptors that are in entangled ground states. 

These states are essential for the protected entanglement, 

since decoherence does not destruct their quantum coherence. 

The calculation of the guarding gap functions exhibits some 

resemblance to the evaluation of the process of super-

conductivity, since Cooper-pairs represent Bosons.  

The fundamental thesis of this contribution is the 

commitment that consciousness activates entanglement in the 

brain. This entails the assumption that in living systems, in 

opposition to technical systems, the entanglement is robust and 

frequently renewable. The working space encompasses the 

associative cortices, which dispose the entanglement 

activations. The essential benefit of the entanglement is the 

phenomenon that the relevant information, which is located at 

different areas, is immediately disposable, contemporary and 

compressed. Thus, entanglement represents an essential path to 

understand consciousness. Originally, the entanglement was an 

effect of quantum physics, but in the light of this contribution, 

it converts to a tool of information handling. 

The transition from unconscious states to conscious states 

in an open system constitutes a non-equilibrium phase 

transition of second order (spontaneous symmetry braking). 

This occurs in the framework of biological-oriented 

synergetics that represents the basic theory of self-

organization. Synergetic agents define the working space, 

where synergetic “slaves” constitute the subcortical areas. In 

a conscious state, these agents autonomously control the 

“slaves”. To perform these regulations, the agents construct 

order parameters (e.g. macroscopic observable patterns). 

Conversely, the spontaneous bottom-up sensor information 

that “slaves” acquire, represent a sufficient condition for the 

agents of the working space. Both levels directly depend on 

each other (circular causality); what is an essential virtue of 

self-organization.  

In case that the entanglement as the most spectacular 

quantum effect plays a dominant role in the brain, then this 

occurrence clearly demonstrates the significance of quantum 
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physics in the brain (living nature).  
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