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Abstract: Recently, financial institutions were required to provide the financial derivatives instrument level credit valuation 

adjustment (CVA) by the new accounting standard. CVA trading desks are facing difficulties to calculate a netting-set level 

CVA with wrong-way risk (WWR) since the dynamics of the exposures and probability of default (PD) are separated and 

calculated by different counterparty credit risk (CCR) computing systems. Another difficult work is that the netting-set level 

CVA mixed the pricing models for all trades under a netting-set. It is significant to develop a new CVA model that is based on 

the credit adjustment to the existing pricing model under one risk-neutral framework. This paper presents the work on CVA 

with WWR under the credit deterioration dynamics in both normal and stressed economic conditions. In terms of the double-

correlation structure that is constructed based on the Gaussian latent variable models we propose an analytical expression of 

CVA for the fundamental financial derivatives such as futures or forwards contracts. The double-correlation structure captures 

the market- and asset-credit correlations. The proposed CVA pricing framework is based on the credit deterioration dynamics 

rather than default dynamics. The credit deterioration index (CDI) is defined as the limit of the credit deterioration variable and 

calculated using the rating agency credit rating transition data. The proposed CVA with WWR model is a function of the 

correlations, CDI, counterparty probability of default, loss given default, interest rate and volatility of the traded derivatives. 

The market- and asset-credit correlation parameters are calibrated to either the normal or stressed market. Under the stressed 

market, the scenario design, shock variable selection and shock magnitude are discussed. The numerical results show that the 

CVA is an increasing function of the market-credit correlation and a decreasing function of the credit rating. The stressed CVA 

is about four times higher than the normal CVA. 

Keywords: Wrong-Way Risk, Credit Deterioration Dynamics, Market-Credit Correlation, Stressed CVA,  

Gaussian Latent Variable Models 

 

1. Introduction 

Counterparty credit risk (CCR) has received a lot of 

attention from financial institutions since the 2007-2009 

Global Financial Crisis (GFC). The credit valuation 

adjustment (CVA) is the market value of the CCR. The CVA 

models impact not only capital charge but also pricing of the 

transactions with counterparties faced by financial 

institutions. On the other hand, CVA values are required to be 

reported to the regulators for fair value accounting purpose. It 

is necessary to develop an accurate and fast computing 

approach to calculate CVA. As Basel III addressed, the major 

credit losses during the GFC were from the counterparty 

credit downgrade or deterioration rather than the actual 

default. [1] Basel III also addressed CCR under financial and 

economic stress. Both financial stress and rating downgrade 

are major concerns by Basel III. The major reforms 

introduced by Basel Committee on Banking Supervision 

(BCBS) are (a) "Going forward, banks must determine their 

capital requirement for counterparty credit risk using 

stressed inputs". (b) "Banks will be subject to a capital 

charge for potential mark-to-market losses (ie credit 

valuation adjustment - CVA - risk) associated with a 

deterioration in the credit worthiness of a counterparty" 

(Reference [1], paragraph 14). 

Incorporation of all regulatory concerns in a CVA 
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calculation is the most important challenge in the pricing and 

hedging areas for trading desks. CVA captures the changes of 

the credit and market risk factors as well as their correlations. 

CVA desks are charged with pricing explicitly for the credit 

risk in all derivative transactions for financial institutions. 

CVA pricing for the derivatives instruments is complex due 

to the asymmetric counterparty credit exposure and 

incorporation of the counterparty probability of default (PD). 

It is even more sophisticated to consider the credit 

downgrade and wrong-way risk (WWR) simultaneously. 

Past work has studied CVA with WWR. Redon presented a 

wrong-way exposure for the normally distributed mark-to-

market (MTM) trade values. [2] Brigo and Pallavicini 

considered the correlation between default and interest rates 

in the CDS pricing model. [3] Brigo, Chourdakis and Bakkar 

analyzed WWR impact on CVA for crude oil swaps. [4] 

Pykhtin and Rosen allocated the counterparty-level CVA to 

individual trades and obtained an analytical expression for 

the expected exposure contributions under an assumption of 

the normally distributed trade values [5]. Cespedes, Herrero, 

Rosen and Saunders and Rosen and Saunders developed a 

simulation algorithm to capture CVA-general WWR and 

CVA-specific WWR. [6, 7] Hull and White postulated a 

hazard function that is exponentially related to counterparty 

exposures. [8] Ghamami and Goldberg proposed a stochastic 

intensity model to capture the WWR. [9] Lipton and Sepp 

studied the impact of counterparty asset dynamics on CVA. 

[10] Pang, Chen and Li derived a correlated exposure for the 

CVA calculation with WWR. [11] Chung and Gregory 

calibrated the CVA with WWR model to the quanto credit 

default swap market. [12] Pan, Pan and Khandrika derived an 

analytical expression for CVA with WWR using the Gaussian 

copula model and calculated CVA for commodity futures and 

equity forwards. [13, 14] It is hard to list all of the studies on 

CVA with WWR models. The more comprehensive studies 

on CVA with WWR can be found in the Gregory's books. 

[15, 16] 

In this paper, we establish a framework to calculate CVA 

by introducing a conditional loss function based on the Basel 

III definition. The trade prices for forwards or futures are 

assumed to be lognormally distributed, which is widely 

adopted in industry. [17] Then we develop a conditional 

expected exposure and a conditional PD to calculate CVA 

with WWR for a given counterparty. The conditional 

expected exposure is conditional on the default time. Under 

the risk-neutral probability measure, the expectation is taken 

under a joint distribution of the market risk factor and the 

default time. On the other hand, the conditional PD is 

conditional on the credit deterioration variable. Since the 

proposed model is based on the credit deterioration dynamics 

instead of default dynamics, the default time is mapped to the 

credit deterioration variable. The WWR is specified by the 

one-factor Gaussian latent variable model that specifies the 

market-credit correlation. The conditional PD is derived 

based on another one-factor Gaussian latent variable model 

that specifies the asset-credit correlation. With certain 

sophisticated derivations we obtain an analytical expression 

for CVA with WWR. 

There are several new concepts we first propose in order to 

derive an analytical expression for CVA with WWR. The 

credit deterioration variable is a key concept under the credit 

deterioration dynamics. To compute the integral in the CVA 

formula, the credit deterioration index (CDI) is introduced as 

the upper limit of the integrand variable, i.e. the credit 

deterioration variable. The CDI is determined by the credit 

rating transition matrices published by the rating agencies. 

The double-correlation structure of the model is an 

innovation, which captures market- and asset-credit 

correlations. In the proposed model, the credit deterioration 

variable dominates the CVA calculation while the 

counterparty PD is one of the model inputs. Including the 

credit rating information in a CVA formula is important not 

only for the computation but also for the Comprehensive 

Capital Assessment Review (CCAR) CVA reporting since FR 

Y-14 report requires the CVA data classified by the credit 

rating. [18] 

Two practical approaches are proposed to calibrate the 

market- and asset-credit correlation parameters to the 

benchmark values respectively. The proposed model is 

applied to calculate CVA with WWR under either normal or 

stressed markets. To calculate the stressed CVA we discuss 

the process on the scenario design, the variable selection and 

the shocks to obtain the variables under the stressed market. 

The stressed CVA is calculated via the shocks on the model 

parameters under the stressed market environment. We also 

calculate the CVA loss that is the difference between the 

stressed CVA and normal one. The CVA loss is a part of the 

MtM loss of a counterparty for the risk capital calculation. It 

is also required by FRB to report the difference between the 

stressed and unstressed aggregated CVA in FR Y-14 report. 

[18] The numerical results show that the higher the market-

credit correlation, the greater the CVA loss. The numerical 

results also reveal that the normal CVA, stressed CVA and 

CVA loss are all increasing functions of the market-credit 

correlation and decreasing functions of the risk rating. 

The rest of the paper is organized as follows. Section 2 

establishes a framework for CVA pricing model under credit 

deterioration dynamics. Section 3 derives the CVA formula 

under the risk- neutral framework for forwards or futures 

contracts. Section 4 is dedicated to the numerical examples. 

Section 5 represents the conclusions. The appendices provide 

the details of the derivations. 

2. CVA Under Credit Deterioration 

Dynamics 

Recall the definition of CVA by Basel III: [1] CVA is the 

risk that associated with a deterioration in the credit 

worthiness of a counterparty. Basel III also addresses the 

CVA risk as the one that was a greater source of losses than 

that arising from outright defaults (reference [1], paragraph 

14-(b)). The loss function should reflect the definition of 

Basel III, that is the loss due to the deterioration in the credit 
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worthiness of a counterparty. In fact, the financial institutions 

will experience the losses from the underlying securities 

prices down once the securities issuers' credit ratings are 

downgraded. Similarly, once a counterparty's credit rating is 

downgraded the financial institutions will have more credit 

risk that increases the cost of the replacement prior to the 

counterparty default. In this case, the CVA value is increased 

to reflect such a credit event. We define such kinds of losses 

as the conditional losses that are conditional on the credit 

deterioration events such as credit rating downgrades. The 

conditional loss function for a credit deterioration at time τ  

can be expressed as 

{ | }1 ( , ) |t T Y y GDL L E t X tτ τ< == =                  (1) 

where T  is the maturity of the derivatives transaction, GDL  

is the loss given default that is equal to one minus recovery 

rate, (.)E  is the credit exposure to a financial institution for a 

given counterparty, 0 t T< < , X  represents the market risk 

factor, Y  represents the credit event, and {.}1  is the indicator 

function that takes value one if the argument is true and zero 
otherwise. For CCR we take the positive value of the mark-

to-market (MtM) value of a derivative transaction as the 

credit exposure of a counterparty. Denoting the positive MtM 

value of a transaction as ( , )V t X+  we have 

( , ) ( , )E t X V t X+= . For simplicity, we also consider the loss 

given default as constant. Like other pricing models, CVA 
pricing is also under the risk-neutral probability measure. 

Taking expectation of the discounted loss function (1) under 

the risk-neutral probability measure Q  (it is the market 

convention to employ the money market account as the 

numeraire and denoted by Q ) and integrating from the 

current time at 0t =  to the maturity time T , we have 

0
( , | ) ( | )

T
Q

GDCVA L EE t X t dPD t Y yτ= = =∫        (2) 

where 

0, 0,( , | ) [ ( , ) | ] [ ( , ) | ]Q Q Q
t tEE t X t E D E t X t E D V t X tτ τ τ+= = = = =  (3) 

whereas 0,tD  is the discount factor. Under the credit 

deterioration dynamics we need to map the default time τ  to 

the credit deterioration variable Y , which keeps consistent 

with the expression of the conditional PD. The mapping is 

unique. [19] The mapping changes the joint distribution of 

( , )Xτ  to that of ( , )Y X . The interval of the integral in (2) 

has been changed from [0, ]T  to ( , )sy−∞ , where sy  is CDI 

as a model input parameter and will be discussed later. To 

keep consistent with the pricing models for the same 

products we take ( , )V T X+  as the payoff function of the 

traded product. Thus under the credit deterioration dynamics, 

the expected exposure (3) can be written as 

0,( , | ) [ ( , ) | ]Q Q
TEE T X Y y E D V T X Y y+= = =         (4) 

which is a function of y . And CVA in (2) can be rewritten as 

( , | ) ( | )
sy

Q
GDCVA L EE T X Y y dPD T Y y

−∞
= = =∫       (5) 

Equation (5) is obtained under the credit deterioration 

dynamics. Once the payoff function ( , )V T X+  and 

conditional PD ( | )PD t Y y=  are determined the integral in 

(5) is easily computed by either numerical computing 

technique such as the trapezoid method or an analytical 

formula if the trade price has a simple payoff function with a 

simple conditional PD. The most advantage using the credit 

deterioration dynamics is to avoid thousands of simulation 

paths since the default paths have been replaced by a 

distribution of the credit deterioration random variable. 

Therefore, equation (5) provides a fast way to compute CVA 

for each trade, even combining the WWR. With WWR the 

market risk factor X  is associated with the credit 

deterioration variable Y . We will discuss the CVA with 

WWR model in the next section. 

3. CVA with WWR 

We consider a forwards or futures contract, whose price 

process follows the following lognormal dynamics (reference  

[17], equation (6.1) on page 198) 

( , ) ( , ) Q
t tdV t X V t X dWσ=                        (6) 

where tσ  is the instantaneous volatility of the forwards or 

futures price and Q
tW  is the Wiener process under the risk 

neutral probability measure Q . The solution of (6) can be 

obtained using Itô's Lemma 

2

0 0

1

2
0( , )

T T
Q

u u udu dW

V T X V e
σ σ− +

= ∫ ∫
 

where 0 (0, (0))V V X= . For CVA pricing, the WWR has 

more significant impact on CVA than that from the volatility. 

Under the risk neutral probability measure, a constant 

implied volatility is assumed. In this case the forwards price 

is simplified as 

21

2
0( , )

T Z T

V T X V e
σ σ− +

=                        (7) 

where 0
Q Q

TW W Z T− = , Z  is the standard normal random 

variable and represents the market risk factor. The WWR is 

specified by the following one-factor Gaussian latent variable 

model [20] 

21Z Yρ ω ρ= + −                             (8) 

where ρ  is the correlation parameter between Z  and Y , Y  

and ω  are standard normal random variables and independent 

of each other. ρ  represents the market-credit correlation. The 

random variable Y  represents the systematic risk factor for the 
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credit deterioration in an economy or financial system. The 

random variable ω  represents the idiosyncratic market risk 

factor. Both Y  and ω  impact on the market risk factor in a 

different way. When ρ  is close to one the market risk factor is 

mostly caused by Y . Since Y  is the systematic risk factor, all 
counterparties in the system will experience a similar credit 
deterioration. An example is that, during the GFC period, a 
massive CDS contracts were unwound and all counterparties 

experienced a credit deterioration. If ρ  is small the 

idiosyncratic market risk factor impacts only a single 
counterparty and the others will have no impact. Assuming the 

constant discount factor 0,
rT

TD e−=  where r  is the risk-free 

interest rate and considering (7) an (8), we have the conditional 
expected exposure 

( )
2 21

( 1 )
2

0, 0, 0( | ) ( , ) |
T T y

Q Q Q
T TEE T Y y E D V T X Y y D V E e

σ σ ρ ω ρ− + + −+     = = = =     

                              (9) 

where (.) max(.,0)+ = . As discussed in the last section, 

under the credit deterioration dynamics, the default time 

variable τ  has been mapped to the normal random variable 

Y  since Y  has been defined as the credit deterioration 

variable. The mapping changes the default dynamics to the 

credit deterioration dynamics. The joint probability 

distribution of ( , )Z τ  has been mapped to a joint probability 

distribution of ( , )Yω . Considering the independent variables 

ω  and y , we can complete the expectation in (9) 

2 21
( 1 )

2
0, 0( | ) ( ) ( )

T T y
Q

TEE T Y y D V e y d
σ σ ρ ω ρ

φ φ ω ω
∞ − + + −

−∞

 
 = =
 
 

∫                                      (10) 

where (.)φ  is the standard normal probability density 

function. For a standard normal random variable χ  its 

probability density function is 

2 /21
( )

2
e

χφ χ
π

−=  

Denoting 

21
( ) ( )

T
g e

ωσ ρω φ ω−=  

and considering the result in Appendix I, ( )g ω  can be 

expressed as 

2 21
(1 )

2( ) ( )
T

g u u e
σ ρ

φ
−

=  

where 

21u Tω σ ρ= − −                           (11) 

Substituting ( )g u  into the integral of ( | )QEE T Y y=  in 

(10) and replacing the integrand variable ω  by u  yield 

2 2 2 2/2 /2
0 0, 0 0,( | ) ( ) ( ) ( )Q y T T y T T

T TEE T Y y V D e y u du V D e yρσ ρ σ ρσ ρ σφ φ φ
∞− −

−∞
= = =∫                             (12) 

Substituting (12) into (5) we obtain the expression of CVA 

with WWR 

2 2 /2
0 0, ( ) ( | )

sy
y T T

GD TCVA L V D e y dPD T Y yρσ ρ σ φ−

−∞
= =∫  

(13) 

The conditional PD could be complicated in general. 

However, for a large homogeneous portfolio a well-known 

conditional PD has been developed by Vasicek and widely 

used in industry. [20, 21] To obtain such a conditional PD we 

assume that the counterparty asset follows another Gaussian 

latent variable model 

21t tA Yβ ε β= + −                           (14) 

where Y  is the systematic risk factor defined by (8), tε  is the 

individual specific factor for a given counterparty and β  is 

the correlation between the counterparty asset and systematic 

risk factor. The variables Y  and tε  are standard normal 

random variables and independent of each other. Though a 

normal random variable could go to infinity, in the real world 

there exists a limit of the variable. We denote the limit as 

CDI that is given in the next section. The impact of the 

counterparty asset on CVA has been studied by Lipton and 

Sepp. [10] Conditional on the systematic risk factor Y , a 

well-known conditional PD is given by [21] 

2
( | )

1

tC y
PD t Y y

β

β

 − = = Φ
 − 

                   (15) 

where (.)Φ  is standard normal cumulative density function 

and tC  is the threshold of the counterparty asset price. The 

counterparty will default once t tA C< . The parameter tC  is 

determined by the individual counterparty PD 

1( )t tC PD−= Φ                            (16) 

where 1(.)−Φ  is the inverse of the standard normal 

cumulative density function, PD  is the unconditional 

probability of default for a given counterparty, which is given 
as a model input. Since (16) is obtained under an assumption 

of a large homogeneous portfolio we assume that the 
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parameter tC  is constant as if all counterparties in the 

portfolio have same credit qualities like a single counterparty. 

For an inhomogeneous portfolio, tC  is no longer a constant. 

Generally speaking, the conditional PD of (15) is not 
applicable in this case. However, if (15) is held for each 
individual counterparty, the portfolio CVA can be obtained by 

integrating the individual CVA with respect to tC . In this 

paper, a homogeneous portfolio is assumed and tC  is 

considered as constant (i.e. tC C= ). The differentiation of 

the conditional PD with respect to y  yields 

2 2
( | )

1 1

C y
dPD t Y y dy

β βφ
β β

  −  = = −
  − −  

     (17) 

We propose a practical approach to estimate β  using the 

negative value of the correlation between the counterparty's 

stock price and the economic growth, based on an 

assumption that the credit deterioration variable and the 

economic growth both are normally distributed but with 

opposite economic meaning. This idea will be further 

illustrated using a numerical example in the next section. 

Substituting (17) into (13) yields 

2 20 0, /2

2 2
( )

1 1

sy
GD T y T T

L V D C y
CVA e y dy

ρσ ρ σβ βφ φ
β β

−

−∞

 − = −
 − − 

∫  (18) 

where sy  is CDI that reflects the counterparties' credit 

downgrade in an economy or financial system. It is 
determined by the rating transition matrices given by the 
rating agency. For example, the CDI from an original rating 

AAA  downgraded to BB  is 3.15  (Table 3 below). In (18) 

the multi-time step scenarios have been extended to the 
single-time step scenarios, which implies that the variable Y  

does not depend on time t . This assumption is similar to the 

Single Scenario Ordering method proposed by Rosen and 
Saunders. [7] Under the multi-time step scenarios Rosen and 
Saunders and Brigo, [7] Chourdakis and Bakkar [4] gave the 
CVA expression in a discrete time. 

Denoting 

2
( ) ( )

1

y T C y
h y e yρσ βφ φ

β

 − =
 − 

                (19) 

and considering the results in Appendix II, the above 

equation can be expressed as 

2 21

2( ) ( ) ( )
T

h v v A e
ρ σ

φ φ=                        (20) 

where 

1
21

y
v A

β
= −

−
                             (21) 

A C Tβρσ= −                              (22) 

2
1

2
1

1

C
A T

β ρσ β
β

= + −
−

                  (23) 

The variable y  has been replaced by a new variable v . 

Substituting (20) into (18) yields 

0 0, 0 0,( ) ( ) ( ) ( )
sv

GD T GD T sCVA L V D A v dy L V D A vβ φ φ β φ
−∞

= − = − Φ∫                                      (24) 

where 

1
21

s
s

y
v A

β
= −

−
                             (25) 

Since the asset price will decrease when the credit 

deterioration variable increases, the correlation between the 

counterparty asset price and credit deterioration variable 

should be negative. We can rewrite (24) using an absolute 

value of β  for convenience 

0 0,| | ( ) ( )GD T sCVA L V D A vβ φ= Φ                 (26) 

Now we obtain an analytical expression for CVA with 

WWR. Equation (26) has the following characteristics. 

1. 0ρ = : It is the case without market-credit correlation. 

In this case, A C= , 1
21

C
A

β

β
=

−
 and 

21

s
s

y C
v

β

β

−
=

−
 

according to (22), (23) and (25). At 0ρ = , equation 

(26) is reduced to 

0 0,| | ( ) ( )GD T sCVA L V D C vβ φ= Φ                 (27) 

2. 1ρ = : It is the case with maximum market-credit 

correlation. In this case, A C Tβσ= − , 

2
1

2
1

1

C
A T

β σ β
β

= + −
−

 and 2

2
1

1

s
s

y C
v T

β σ β
β

−
= − −

−
 

according to (22), (23) and (25). CVA is calculated by 

(26). We can compare the two CVA values at 0ρ =  

and 1ρ =  while the other parameters are fixed. Due 

to a bell shape of the normal probability density 

function, we have ( ) ( )C T Cφ βσ φ− > . Similarly, 

the normal cumulative density function is an 

increasing function of the argument. Thus, we 

conclude that the CVA at 1ρ =  is greater than that at 

0ρ = , which indicates that the CVA is an increasing 

function of ρ . 
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3. Inhomogeneous Portfolio: As we stated, the CVA 

formula in (26) is derived under the assumption of a 

large homogeneous portfolio. For an inhomogeneous 

portfolio with a large number of counterparties, the 

parameter C  is no longer constant and can be 

considered as a random number. The portfolio level 

CVA is obtained by integrating the individual CVA 

with respect to the variable C  

������� = |
|��
����,�� �(�)�(��(�))��
��
�∞

 

where mC  is the maximum value of the counterparty asset 

price thresholds. We already showed at the first bullet that at 
0ρ =  

2
( )

1

s
s

y C
v C

β

β

−
=

−
 

In this case, the portfolio CVA can be expressed as 

������� = |
|��
����,�� �(�)� ��� − 
� 1 − 
"#��
��
�∞

 

Employing the expression of the bivariate normal 

distribution the portfolio CVA can be expressed as [22] 

������� = |
|��
����,��"(�� , �$; 
) 
where 2 (.)Φ  is the bivariate normal cumulative density 

function. The portfolio CVA can be considered as the credit 
adjusted valuation formula at a portfolio level. In general 

case, when the parameter ρ  is not equal to zero, it is hard to 

obtain an analytical expression. The numerical integration 
methods could be employed to calculate the CVA at a 
portfolio level. 

4. Numerical Examples 

Due to the lack of detailed counterparty information, we 

consider one of the Exchange listed top 500 companies as a 

counterparty. The S&P 500 Futures is a stock market index 

futures contract traded on the Exchange. It is based on the 

S&P 500 stock market index. Its current market price is 

considered as the current futures contract value for a 

counterparty. For example, the settlement price of the S&P 

500 Futures is $4,127.70 on April 22, 2021 

(https://m.investing.com). We also consider the volatility 

index VIX as a proxy of the implied volatility of the futures. 

Its market value is 18.71 on April 22, 2021 

(finance.yahoo.com/quote/%5EVIX). The Libor rate is still 

commonly used by financial institutions to calculate the 

discount factors. For example, the one year Libor rate is 

0.29% on April 20, 2021 (https://www.global-rates.com). 

Those market data are available in the public data sources. 

The market data given in above paragraph can be 

employed for CVA calculation. However, the credit data, 

which includes the counterparty PD, CDI, loss given default 

and correlations, are not available in market. We will use 

historical data to estimate the parameters that related to the 

counterparty credit qualities. First the historical global 

corporate default rates are employed to estimate the 

counterparty PD. [23] The following table gives the current 

(at study time) and historical default rates based on S&P 

Global Ratings report (reference [23], Table 1, pages 2-3, not 

in this paper) 

Table 1. Corporate Default Rate (DR) Historical Data. 

Time  DR (%) IG-DR (%) SG-DR (%) 

2009 4.19 0.33 9.95 

2019 1.30 0.06 2.54 

2020 2.74 0.00 5.50 

source: ref. 23, Table 1. DR: global corporate default rate; 

IG/SG-DR: investment/speculative grade default rate. 

The table shows during the Global Financial Crisis (GFC) 

in 2009, the corporate default rate is almost double what it 

was in 2020. Due to the impact of the Coronavirus Crisis the 

default rate in 2020 is about twice the amount it was in 2019. 

In order to avoid the effect of the Coronavirus Crisis, we 

consider the default rate in 2019 as the one under the normal 

market, which is 1.30% according to Table 1. It is obvious 

that the major contribution of the defaults is from the 

speculative grade default rates. It seems that the crises have 

less impact on the investment grade fault rates. We will 

discuss which stressed market will be considered for the 

stressed CVA calculation below. Once we have default rate 

that is considered as the individual PD, we can calculate the 

parameter C by (16). Taking default rate in 2019, we have 
1(1.30%)C −= Φ . 

Next, we discuss how to estimate CDI based on the S&P 

Global Ratings report. [23] The report studied the long-term 

historical data from 1981 to 2020 and analyzed the credit 

rating transition matrices. The rating transitions reflect the 

historical average that was computed over the multiple static 

pools. We take one- and three-year Global Corporate Average 

Transition Rates from AAA or AA rating grade to {AAA, 

AA, A, BBB, BB, B, CCC/C, D} (reference [23], Table 21, 

page 51-not in this paper) as example to show how to 

calculate CDI. We only consider the transitions with the 

available ratings and remove the non-rating (NR) category. 

For this purpose, we need to rescale the transition matrices 

without NR category. The rescaled transition matrices are 

shown in Table 2. After rescaling, the sum of all transition 

rates in each column should be 100%. The index CDI 

represents the credit deterioration or credit rating downgrade, 

which can be calculated using the rating transition matrix. 

Denoting the CDI as Y  and transition rate from state i to 

state j as ijq , the relationship between ijq  and the cumulative 

density function of Y  is 

, , 1( ) ( )ij i j i jq Y Y −= Φ − Φ  

assuming ,0( ) 0iYΦ =  and i=1, 2 (corresponding to AAA and 



 Economics 2021; 10(3): 94-104 100 
 

AA), j=1,..., 8 (corresponding to AAA,..., D). The CDI sY  is 

solved using the iterative approach. The re-scaled transition 
matrices for one-year and three-year global corporate average 
rating transition rates are shown in Table 2. For other rating 
grades, a similar approach can be adopted. The computed 
CDIs are shown in Table 3. 

Table 2. Re-scaled Transition Matrices (%). 

Rating  One-year Three-year  

to/from  AAA AA AAA AA 

AAA 89.85 0.50 72.02 1.27 

AA 9.35 90.77 24.42 75.38 

A 0.55 8.09 2.56 20.38 

BBB 0.05 0.49 0.35 2.19 

BB 0.11 0.05 0.29 0.37 

B 0.03 0.06 0.09 0.24 

CCC/C 0.05 0.02 0.12 0.03 

D 0.00 0.02 0.14 0.13 

source: reference [23], Table 21 (not in this paper). 

Table 3. Index Ys for AAA and AA Obligors. 

Rating  One-year Three-year  

to/from  AAA AA AAA AA 

AAA 1.27 -2.58 0.58 -2.24 

AA 2.41 1.36 1.81 0.73 

A 2.81 2.49 2.33 1.89 

BBB 2.88 2.96 2.49 2.42 

BB 3.15 3.08 2.69 2.65 

B 3.28 3.34 2.79 2.93 

CCC/C >3.28 3.53 2.98 3.00 

D >3.28 >3.53 >2.98 >3.00 

The positive values in Table 3 represent the CDIs for 
downgrading while the negative values represent the CDIs 
for upgrading. For example, a counterparty from an original 
AAA rating grade to BB rating grade has CDI equal to 3.15 

(the second column, Table 3). Thus, we have 3.15sy = . 

The Loss Given Default for a counterparty with a BB 

rating is 53% as reported by Moody's research article 

(Moody's Investors Service, "Probability of Default Ratings 

and Loss Given Default Assessments for Non-Financial 

Speculative-Grade Corporate Obligors in the United States 

and Canada", August 2006, the table on page 7. Available at 

https://care-mendoza.nd.ed/asset/152347/loss-given-default-

rating-methodology.pdf). 

Now we discuss the approaches for estimation of the 

correlation parameters ρ  and β . We will discuss how to 

calibrate the market-credit correlation parameter ρ to either 

normal or stressed market later. First, we propose an 

approach to estimate the asset-credit correlation parameter β 

based on the following two assumptions: (1) the counterparty 

asset is valued by its stock price on the market, (2) the credit 

deterioration variable and economic growth are both 

normally distributed but with opposite directions. Since we 

consider the counterparty on the list of the Exchanges, the 

counterparty's asset price can be estimated by S&P 500 Index 

(available at 

https://finance.yahoo.com/quote/%5EGSPC/history?p=%5E

GSPC). The economic growth is measured by GDP per capita 

in USD (available at https://www.macrotrends.net 

/countries/USA/united-states/gdp-per-capita). The GDP per 

capita is given annually while the S&P 500 Index is given 

monthly. The latter needs to be calculated by average in year. 

There are 60 data points in total from 1960 to 2019. Then the 

Pearson correlation coefficient can be used to find the 

correlation between the GDP per capita and S&P 500 Index, 

which is 93.99%. According to the second assumption, we 

have 93.99%β = − . 

The calculation of CVA under a normal market is 

straightforward. The published CVA values are mostly in 

normal market environments. We can calibrate the market-

credit correlation directly to those values, which will be 

illustrated by the examples below. The calculation of CVA 

under a stressed market is not straightforward. First, we need 

to define the stress scenarios in a stressed market. Then we 

need to find which parameters and how much are shocked 

under the stress scenarios. Then the stressed CVA can be 

calculated using the parameters selected under the stress 

scenarios. The above discussions are summarized as follows. 

(1) Step 1. Stress Scenario Design 

There are two approaches to design a stress scenario. The 

first approach is to employ a hypothetical stress scenario 

such as the CCAR supervisory adverse scenario or 

supervisory severely adverse scenario. The second approach 

is to employ an actual stressed market scenario, which is the 

historical worst economic or financial conditions in the most 

recent years. We adopt the second approach for the stress 

scenario design and select the GFC as the stressed market 

scenario. 

(2) Step 2. Parameter Selection for Shock 

The fundamental requirement for the selected parameters 

for shock is that they must be market observable under the 

designed stressed market. As shown in (26), the proposed 

CVA model includes eight key parameters: (1) CDI sy , (2) 

implied volatility σ , (3) threshold C , (4) maturity T , (5) 

market-credit correlation ρ , (6) asset-credit correlation β , 

(7) loss given default and (8) interest rate. The parameter T  

is constant and given by a contract. The parameters ρ  and 

β  have no market data under the designed stressed market 

scenario. Since sy  is determined by the rating agency 

transition matrices and it was not updated during the GFC, 

the parameter sy  also cannot be selected for shock. On the 

other hand, we consider the loss given default and interest 

rate as constant and no change during the GFC. However, the 

market data shows that VIX experienced a maximum value 

during the GFC in November 20, 2008 (available at 

https://www.macrotrends.net/2603/vix-volatility-index-

historical-chart), which is 0.8086. Another parameter to be 

shocked is the counterparty's PD that determines the 

parameter C . 

(3) Step 3. Determination of the Shock Magnitude 

We already considered the GFC as the designed stressed 

market scenario. Based on the market data, the implied 

volatility is 0.1871 in the normal market and 0.8086 in the 

stressed market, which indicates a shock magnitude 0.6215 

from the normal to stressed market. Table 1 shows the default 
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rate is 1.30% in the normal market (2019) and 4.19% in the 

stressed market (2009). It is shocked by 2.89% from the 

normal to stressed market. 

Except for the individual PD and implied volatility, the 

other parameters are same for the calculation of either normal 

or stressed CVA. The parameters used for the numerical 

computation by (26) are summarized as follows: 

a. Credit deterioration index: 3.15sy =  

b. Maturity of the contract: 1T =  (year) 

c. Implied volatility: 18.71%nσ =  (normal), 

80.86%sσ =  (stressed) 

d. Current S&P 500 Futures: 0 4,127.70V =  (USD) 

e. Interest rate: 0.29%r =  

f. Asset-credit correlation: 93.99%β = −  

g. Counterparty default rate: 1.30%nPD =  (normal), 

4.19%sPD =  (stressed) 

h. Loss given default: 53%GDL =  

Both the normal and stressed CVAs are calculated by (26) 
using the data provided above. The numerical results are 

shown in Table 4 for nCVA  under the normal market 

(Normal), sCVA  under the stressed market (Stressed), CVA 

loss L s nCVA CVA CVA= −  (Loss), and CVA ratio 

/R s nCVA CVA CVA=  (Ratio) against the parameter ρ. 

Table 4. CVA/V0 Against the Market-Credit Correlation (in %). 

CVA/ρ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Normal 1.66 1.73 1.80 1.87 1.94 2.01 2.09 2.17 2.25 2.33 2.42 

Stressed 4.44 5.05 5.71 6.42 7.18 7.98 8.81 9.68 10.57 11.48 12.39 

Loss 2.78 3.33 3.92 4.56 5.24 5.96 6.72 7.51 8.32 9.14 9.97 

Ratio 2.68 2.93 3.18 3.44 3.70 3.96 4.22 4.46 4.70 4.92 5.12 

note: CVA Ratio is in absolute values. 

Once obtained the CVA values we can calibrate the 

market-credit correlation parameter ρ  to either the normal or 

stressed benchmark value. We first discuss how to calibrate 

such a parameter to a benchmark value in the normal market 

using the following example. 
The example is based on the model from Brigo, 

Chourdakis and Bakkar. [4] The authors calculated CVA with 
WWR for the crude oil forward swaps. The Table 5 (no in 
this paper) in their paper shows a relative CVA of 1.90% (i.e. 
CVA/Notional=130.39/6852.35) with an intensity volatility 

of 0.295 and average correlation of 68.9%. We calibrate ρ  to 

0/ 1.90%nCVA V =  in Table 4, which is between 

0/ 1.87%nCVA V =  and 0/ 1.94%nCVA V = . Using the 

interpolation approach, we obtain 0.343ρ = . The crude oil 

forward swaps have higher CVA than that for the currency or 

equity forwards. Therefore, the correlation parameter could 

be lower than that for the crude oil forward swaps. 

Next we discuss how to calibrate the market-credit 

correlation parameter to the stressed market. First we map 

our calculated CVA into a credit default swap (CDS) CVA. 

The CDS CVA is proportional to the CDS spread in the 

following way (Reference [15], page 172, Equation (7.2)) 

CDS

premium

CVA
S

V
=  

where premiumV  is the present value of the premium leg and 
CDSS  is the CDS spread. During the GFC that is the stressed 

market, a 5-year CDS spread of Lehman Brothers was 

jumped to 610 basis points on 09/10/2008 Wednesday 

(source: Reuters, "Lehman credit spreads soar to record after 

loss", Financial Services & Real Estate, September 10, 2008, 

by Walden Siew. Available at 

https://www.reuters.com/article/us-lehman-cds-rbc-

idUSN1040517120080910). If we consider 0V  in (26) as the 

equivalent value of premiumV  we can set the 0/sCVA V  in 

Table 4 to equal to 6.10%. Using the interpolation approach 

we obtain the implied market-credit correlation parameter 

0.255ρ = . In this way, we calibrated the market-credit 

correlation parameter to the CDS spread jump under the 

actual stressed market. 

We also calculated the CVA loss and CVA ratio as shown 

in the last two rows of Table 4. The CVA loss measures the 

absolute loss in a stressed market. The CVA ratio measures 
the relative loss in a stressed market. The CVA loss and 

jump-to-default loss are the MTM losses of the CCR for bank 

stress testing and risk capital calculation under a stressed 

financial or economic environment. Our numerical results 

show that the CVA loss depends on the WWR. For example, 

the CVA loss is quite small at 0ρ = , which is 2.78% of 

0/CVA V  according to Table 4. The CVA loss is quickly 

increased to 9.97% of 0/CVA V  as it reaches to the maximum 

ρ . However, the increasing speed is slow as the market-

credit correlation increases. The CVA ratio gives a relative 
value of the stressed CVA relative to the normal CVA. Table 

4 shows that the CVA ratio increases from 2.68 to 5.12 as the 

correlation is from 0 to 1. The average CVA ratio is about 4, 

which indicates that the stressed CVA is about four times of 

the normal one. 

5. Conclusions 

Basel III has emphasized the credit losses caused by the 

counterparty credit deterioration. According to the definition 

of CVA by Basel III, we defined a conditional loss function 

for a counterparty due to a credit deterioration event. Taking 

expectation for the loss function and changing the default 
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dynamics to the credit deterioration dynamics, we obtained 

an analytical expression for CVA with WWR. The 

fundamental framework of the proposed model is based on 

the credit deterioration dynamics for CVA with WWR. The 

model parameters have been estimated based on either the 

market data or the historical data. The calibration 

methodologies have been developed to determine the non-

market observable parameters. The proposed model is easy 

not only for CVA computation but also for parameter 

calibration under both normal and stressed markets. 

Basel III also addresses the stress inputs for CCR models. 

The non-market observable parameters in CCR models are 

hard to be stressed due to lack of the available data under 

stressed markets. The corresponding MTM losses caused by 

those parameters are difficult to be measured. The calibration 

approaches under the normal market may not work 

appropriately under the stressed market. The model parameters 

need to be re-calibrated in this case. We proposed a two-step 

approach to calibrate the non-market observable parameters to 

the stressed market. The first step is to calculate stressed CVA 

with the parameter shocks in a designed stressed market. The 

second step is to calibrate the non-market observable 

parameters to the stressed CVA values. 

To calculate CVA with WWR, a joint distribution of either 

the market-default or market-credit random variables is 

needed. We adopted the credit deterioration dynamics and 

introduced a credit deterioration variable to link the market 

and credit risk factors. The model captures the sophisticated 

correlation structures between the market movements and 

credit changes through a double-correlation structure. 

Another new concept employed in this paper is CDI, the 

credit deterioration index. It specifies the counterparties' 

credit quality in an economy rather than an individual 

counterparty's. 

The proposed model has the following characteristics: (1) 

It considers the counterparty's credit quality and default 

separately; (2) It captures two different correlation structures, 

i.e. the exposure-credit correlation and asset-credit 

correlation; (3) The model framework can be used for futures 

and forwards with various underlying products. The 

characteristics (1) and (2) give a flexibility of the model to 

cover the counterparties with different entities. In this case 

(the counterparty is not same as the legal entity), the 

systematic credit deterioration variable is shared by both 

counterparties and legal entities. The credit dependency of 

the asset price can be employed to describe the credit quality 

of the underlying reference. The model could also cover a 

specific WWR if we consider that the exposure is correlated 

with an individual rating downgrade. The detailed discussion 

on the specific WWR and general WWR can be found in our 

previous paper. [14] 

The proposed model can be easily extended to more 

complex products such as CDS and IRS etc. It is convenient 

and transparent to calculate CVA with WWR using an 

analytical or a semi-analytical expression. The proposed 

model can be a reference for both regulators and 

practitioners. Further work could be conducted by 

considering the impact of the stochastic recovery, volatility 

and interest rates as well as the inhomogeneous portfolios in 

the CVA calculation. Currently we focus on the vanilla 

products. The future work will be extended to the more 

complex products.  
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Appendix 

Appendix I. Proof of g(ω) in Equation (10) 

For the standard normal distribution, the probability density function has an exponential form. The power of two exponential 

functions is equal to the sum of the two powers. Thus, the power of the function ( )g ω  in Equation (10) can be expressed as 

( )
( )

2 2 2 2

2
2 2 2

2 2 2

1 1
1 2 1

2 2

1
1 (1 )
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1 1
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where 21u Tω σ ρ= − − . Thus, ( )g ω  can be expressed by 
2 21
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2( ) ( )

T

g u u e
σ ρ

φ
−

= . 

Appendix II. Proof of ( )h y  in Equation (19) 

By means of the definition of the standard normal probability density function, the function ( )h y  in Equation (19) can be 
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expressed as 
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The power of the expression above can be expressed as 
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The last term can be further simplified as 
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Replacing 2
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 in the expression above yields 
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the function ( )h y  can be expressed as the function of v  
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