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Abstract: Intelligent manufacturing relies heavily on industrial vision, and visual algorithms are rapidly being applied in the 

industry. However, industrial controllers are primarily used for logic control with deterministic execution cycles, and the 

uncertainty of vision code execution time strongly correlated with input affects their stability. To adjust the scanning cycle of the 

system in time to ensure system stability, an algorithm that can predict the time required for the vision code to process the target 

image is needed. In this paper, we analyze the weakness of traditional convolutional neural network models (CNN) and propose a 

multi-level and multi-scale CNN model (MLMS-CNN) for vision code execution time prediction. Instead of typical convolutional 

layers, we design an architecture to collect multi-scale features from the input feature maps. Moreover, a hierarchical structure is 

designed to reduce the loss of intermediate feature utilization by fusing features from different abstraction levels. We extract image 

features from images and runtime features from vision code blocks, then compare MLMS-CNN to six standard regression models, 

all of which are trained with the extracted features as input and the actual execution results of the visual code as output. The 

experimental results show that our model achieves better performance and stability. 

Keywords: Deep Learning, Performance Prediction, Vision Code 

 

1. Introduction 

Vision algorithms are rapidly being used in intelligent 

manufacturing processes, such as defect detection of printed 

circuit boards [1], automatic flaw detection on the surface of 

steel parts [2], and intelligent sorting robots on logistics 

production lines [3]. Traditional industrial controllers, 

primarily performing logic control, have a predefined 

execution cycle. However, the introduction of vision 

algorithms not only increases the computational burden but 

also introduces unpredictability in the execution time. The 

maximum and bottom bounds of the execution time for some 

image recognition algorithms may vary significantly 

depending on the image content. The controller needs a 

method to predict the execution time of the target vision 

algorithm for the target image to adjust its scan period 

appropriately and ensure stability. 

In terms of code execution time prediction, many research 

institutions at home and abroad have carried out extensive 

research and proposed a series of performance modeling 

methods. These methods can be categorized into three 

models: analytical models, replay models, and statistical 

models. Analytical models use formalized mathematical 

formulations to describe the program performance [4, 5, 34], 

which needs an in-depth understanding of the 

implementation of programs and the hardware characteristics 

of the platform and relies on the guidance of domain experts. 

The modeling procedure is time-consuming and laborious. 

Replay models automatically reconstruct a new program to 

reproduce the behavior of the original program and predict its 

performance by analyzing the historical program execution 

behavior records, avoiding reliance on manual analysis [6, 7, 

20, 35]. The generated program fragment can restore the 

process of program execution and interaction with hardware, 

so this method has a good prediction effect on the 

performance of the original program. This method needs a lot 

of time and space to generate and process traces and can only 
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express one execution path of the original program. 

Statistical models predict program performance by 

establishing the mapping relationship between the program 

features and its performance indicators [8, 9, 22, 23]. With 

sufficient training data, program performance can be 

predicted with relative accuracy, but its prediction effect 

depends on the quality of the dataset as well as the 

consistency of the software and hardware environment in 

training and predicting procedure. 

However, the existing performance prediction methods are 

mainly intended for general computing programs, and there 

is no approach for the vision algorithm with execution time 

strongly correlated with the content of the input image. This 

requires a feature extraction method for the input image to 

obtain image features related to algorithm execution time. In 

traditional image feature extraction, the Histogram of 

Oriented Gradients (HOG) [10] constructs features by 

calculating and counting the gradient direction histograms of 

local regions of the image, and is widely used in image 

recognition; Local Binary Patterns (LBP) [11] is used to 

describe the local texture features of images, which have the 

characteristics of rotation invariance and grayscale invariance; 

Haar features [12] can reflect the grayscale changes of 

images and are applied to face representation. However, 

traditional feature extraction methods are not suitable for all 

application scenarios. The emergence of deep learning has 

made it possible to extract image features for specific 

problems, and many mature models have emerged in this 

regard, such as VggNet [13], resnet [14], and DenseNet [15] 

and their variants are widely used in image feature extraction. 

To this end, we propose a deep learning-based strategy to 

predicting performance of vision code blocks. The 

contributions of our study are as follows: 

1) This paper proposes the multi-level multi-scale 

convolutional neural network (MLMS-CNN) for the 

runtime prediction of vision code blocks. 

2) This paper proposes a dual feature extraction scheme 

based on image features and code runtime features, 

which obtains code runtime features through 

instrumentation technology [23] and extracts the image 

feature by Inceptionv3 migration training [33]. 

3) The result of independent replicate experiments shows 

that MLMS-CNN achieves excellent performance and 

stability. 

The rest of this paper is organized as follows. Section 2 

introduces the related work in performance modeling and 

convolutional neural networks. Section 3 discusses the two 

optimizations of CNN the framework of MLMS-CNN. 

Section 4 presents the experiment on model performance and 

stability. Section 5 concludes this paper. 

2. Related Work 

2.1. Performance Modeling 

As mentioned before, the performance prediction methods 

can be classified into the following three categories: analytical 

modeling methods, replay-based modeling methods, and 

statistical modeling methods. 

2.1.1. Analytical Modeling Method 

The analytical modeling methods intend to formalize the 

execution procedure and execution platform. Altenbernd et al. 

[16] proposed a method modeling from the source code level 

and predicts the execution time on the target platform through 

the linear combination of the execution time of a single 

instruction of the program. Van den Steen et al. [17] modeled 

the performance of superscalar processor programs. Taking 

the microarchitecture-independent features of the program as 

input, only once analysis of the program, its performance on 

multiple target platforms can be well predicted. Jongerius et al. 

[18] model the performance of multi-core processor programs 

with vector instruction set extensions, including inter-core 

shared cache contention, memory bandwidth contention, and 

instruction level parallelism, with the better predictive 

performance achieved on the Intel Xeon and ARM 

Cortex-A15 platforms. Those approaches require a deep 

understanding of the underlying, and it is highly customized. 

2.1.2. Replay-Based Modeling Method 

The replay-based modeling method attempt to reproduce 

the behavior of the original program by analyzing the 

historical behavior record of the program execution. Zhang et 

al. [19] propose a performance prediction tool that predicts the 

performance of the original program by collecting and 

recording computation and communication events during 

program execution and generating a tiny program that can 

mimic the behavior of the original program. For IO-intensive 

programs, Hao et al. [6] use a more efficient trace merge 

algorithm and trace compression algorithm, and the generated 

benchmark program can accurately simulate the calculation, 

communication, and IO behavior of the original program. The 

behavioral consistency of the benchmark program with the 

original program determines the prediction accuracy of the 

original program's performance. Aaziz et al. [21] used the 

run-time data of the original program and the benchmark 

program to evaluate the similarity of the two programs by 

hierarchical clustering and realized the evaluation of the 

consistency of their behaviors. Those methods avoid the 

dependence on manual analysis and have a good prediction 

performance. But a large amount of time and space overhead 

limits its scope of application. 

2.1.3. Statistical Modeling Method 

Statistical modeling methods, in general, predict program 

performance more correctly than other methods. Pham et al. 

[22] model program execution time as a function that depends 

on cloud workflow input and cloud characteristics and is used 

to predict workflow task execution time for different input 

data in the cloud. Sun et al. [23] predict the execution time of a 

program under new input by modeling the correlation between 

its runtime characteristics and execution time. But this method 

only extracts the early behavior features of the program, and 

the performance of complex behavioral programs cannot be 

accurately predicted. In [24], the performance prediction task 
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of the complex program is divided into the prediction task of 

each atomic unit by using the modularization method. In 

practice, the difference between the training and prediction 

environments has a significant impact on the prediction effect. 

2.2. Convolutional Neural Networks 

Like traditional ANNs, CNNs are organized hierarchically, 

comprised of an input layer, several hidden layers, and an 

output layer. The only difference is convolution operations are 

employed in CNNs, with which CNNs get better performance 

in image feature extraction and suit more for image-based 

tasks. A convolution layer has several convolutional kernels, 

which are two dimensional matrices. In this layer, the 

convolution operations would be conducted on the input 

feature maps with convolutional kernels. The number of 

kernels determines the number of the output feature maps. 

A 2D convolution operation for input � with kernel k������ 

can be calculated as: 

�	,� � 
������� ∗ ��	,� � ∑ ��,���	��,�����,� ,     (1) 

Where � is the output matrix, �, �  is the height and 

width of the kernel, �  is a matrix of shape � � � , 

representing the weight of the kernel, �, � is the sliding step 

of the kernel in width and height. Usually, � � � � 1, which k������  can be recorded as ���� , L is a matrix of shape � � �. 

Since the width and height of each kernel is designed to be 

smaller than the input, i.e., � � �, � � �, each neuron in 

this layer is only connected to a small local region of the input. 

In other words, the receptive field of each neuron is small and 

equal to the kernel size. 

The local connections ensure that the trained filter has the 

strongest response to local regions of the input, thereby 

exploiting the spatially local correlation of the input (for an 

input image, pixels are more correlated with nearby pixels 

than with distant pixels) [25]. At deeper layers of the network, 

convolutions generally extract more abstract patterns and 

higher-level information. 

A spatial pooling operation would be applied after a set of 

convolutional layers to spatially down-sample the input 

feature maps to reduce the feature map size while preserving 

crucial information, which can detect more abstract features 

and cross-scale spatial context, thereby concentrating 

semantic information [26]. The application of pooling layer 

can reduce model parameters, thus reduce the amount of 

computation and the chance of overfitting. Like convolution, 

pooling is defined by kernel size, stride, and padding 

operations. A typical max pooling operation with a 2 � 2 

kernel size and a stride of 2 can reduce the size of the input 

feature map by a factor of 4. 

3. Framework 

Traditional CNN follows a sequential structure, which has 

two characteristics: (1) Each convolution layer can only 

extract features with fixed scale. (2) There is only one 

computational path between input and output data. Therefore, 

only the features computed from the last convolutional layer 

can be used for regression, and feature maps in the middle are 

only used as the input of the next layer, these disadvantages 

lead to the loss of intermediate feature utilization. In the 

following two sections, we propose effective frameworks for 

these two problems, respectively. 

 
Figure 1. Multi-Scale Block. 

3.1. Multi-scale Block 

This section extends the convolution and pooling 

operations between layers and proposes a parallel structure, as 

shown in Figure 1, which we call Multi-Scale Block (MSB). 

To obtain the features under different receptive fields, we 

create a basic kernel set � �  �!, �" … , ��$, which contains � convolution kernels of various scales. 

There are three parallel branches inside the block. Each 

branch contains different numbers and scales of convolution 

kernels from S, which can extract different levels of feature 

representations from receptive fields of various sizes. In 

addition, each branch has a down-sampling layer to reduce the 

dimension of the data. To avoid wasting feature information 

and ensure stable training, a special convolution kernel %�� 

is designed to replace pooling. 

3.2. Multi-level Network Model 

As shown in Figure 2, the Mulit-Level Network model 

(MLN) extracts features by introducing feature fusion. 

Supposing we have � layers  &!, &", … , &�$, each layer &	 has 

one input '�	 and one output ()�	. We concat all outputs and 

fusion by full connection. 
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MLN
'�!� � FC /Concat 567
out!�, FC
out"�,… , FC
out9� :;  (2) 

'�	�! � ()�	 � &	
'�	�           (3) 

As in a traditional sequential network, the output of one 

layer is the input of the next layer, which means that the layers 

close to the '�! are used to extract concrete features, while 

layers close to the ()�� are used to extract abstract features. 

So, in a typical CNN, due to layered transmission, only 

abstract features can reach the final fully connected layer, 

which leads to the neglect of micro-scale information. Feature 

fusion mechanism can overcome this shortcoming by 

collecting information from various abstraction levels and 

directly weighting features at all resolutions in the fused 

fully-connected layers. 

3.3. Multi-level and Multi-scale CNN Model 

Based on the above two frameworks and the extracted code 

features to be introduced in detail in Session 4, we propose a 

multi-level and multi-scale convolutional neural network 

model (MLMS-CNN) to predict code runtime. 

As shown in Figure 3, we choose � �  �!�!, �!�", �!�<$, %�� is a �!�"  with 2 strides. Each feature generated by 5 

MSBs will be flattened and connected to a fully connected 

layer of length 12. The output of these 5 fully connected layers 

will be further concatenated and injected into the fused fully 

connected layer with a length of 640 to obtain the final output. 

 
Figure 2. Multi-Level Network model. 

4. Experiment 

4.1. Setting 

We perform a series of vision code block runtime prediction 

experiments on 500 pictures, which are split into train/test sets 

sequentially with a ratio of 8:2. The vision code block in 

experiments is Canny edge detection, which is a standard 

algorithm for edge detection developed by John F. Canny in 

1986. Its internal structure is relatively complex, and it has 

many logical branches. So, we choose it as a representative 

vision code block for research. Before the experiment, we 

have obtained runtime features =�6 �  >�?!, >�?", … , >�?@A$ 
of the Canny vision code block through instrumentation 

technology [23] and features of each image BC6 �

 'C?!, 'C?", … , 'C?!DDD$  by Inceptionv3 migration training 

[33]. 

 
Figure 3. MLMS-CNN architecture. 

4.2. Evaluation Metrics 

=", Mean Squared Error (MSE), and Mean Absolute Error 

(MAE) are used as the evaluation metrics in the experiment. 

The definitions are shown in (4-6). The results of ="  are 

normalized, which makes it easier to see the gap between 

models. MSE refers to the mean square error between the real 

and the predicted values, while MAE reflects the actual error 

value. 

=" � 1 E ∑ 
FGHFIG�JKGLM∑ 
FGHF̄�JKGLM              (4) 

��O � !
� ∑ 
P	 E PI	�"�	Q!            (5) 

�RO � !
� ∑ |P	 E PI|�	Q! 	           (6) 

4.3. Result of MLMS-CNN 

To explore the effect of the number of MSBs on the 

prediction performance, we conducted 5 experiments on each 

of the 6 models containing different numbers of multi-scale 

blocks and took the =" value for statistics. Particularly, the 

0-MSB model is a simple CNN. As shown in Figure 4, when 

the number of MSBs increases, =" gradually increases, while 

the standard deviation of =" (performed as the length of the 

error bar) gradually decreases. When the number of MSBs is 5, 

the value of =" reaches 0.927. After that, the increase of the =" value slows down. This indicates that when the number of 

MSBs increases to 5, the training of the network parameters is 
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close to optimal, the ability of model regression tends to be 

saturated, and the benefit of continuing to increase the number 

of multi-scale modules begins to decline, which will increase 

the training time of the model. Therefore, we finally adopt 5 

MSBs to construct the MLMS-CNN. This not only ensures the 

regression ability of the network but also reduces the 

parameters of the model, which is beneficial to shorten the 

training time of the model. 

  
Figure 4. Effect of the number of MSBs on the prediction performance. 

We also compare the model with MLN with the model 

without MLN, both have five MSBs, and both experiment five 

times. As shown in Figure 5, It can be intuitively known that 

multi-level feature fusion can facilitate the runtime prediction 

of vision code blocks. With the use of MLN, the value 

increased from 0.9274 to 0.9595 and the standard deviation 

decreased to 0.09%, indicating that the MLMS-CNN can not 

only enhance the utilization of features but also provide a 

more stable prediction of run times with a 50% increase in 

stability. 

 
Figure 5. Comparison of two models’ performance. 

4.4. Comparison with Other Models 

Table 1 shows the comparison results of MLMS-CNN with 

Partial Least-Squares Regression (PLSR) [27], Ridge 

regression [28], AdaBoost [29], Gboost [30], KNNR [31], 

SVR [32]. The =" of the SVR model is 0.107, the MSE mean 

square error is 1013.44, and the MAE average absolute error is 

27.33. It is very unsatisfactory. The prediction effect of the 

KNNR model is better than that of SVR, which may be 

because the data set in this study is not linear. However, 

KNNR cannot effectively screen out interference features, so 

compared with other models, KNNR's performance is not 

excellent. Both PLST and Ridge are variants of the least 

squares method, and the least squares method is easily 

disturbed by outliers. PLST uses principal component analysis 

approach to reduce the dimensionality of the input data and 

reduce the influence of interference data, resulting in a slightly 

better performance than Ridge. Both AdaBoost and Gboost 

are evolutionary algorithms. They use model self-learning to 

regress data with large errors, gradually reduce the regression 

error, and gradually improve the regression performance of 

the model. It can be concluded from the table that AdaBoost 

and Gboost have certain advantages over the other 4 models. 

However, the proposed MLMS-CNN model outperforms 

other models in all three evaluations, which demonstrates the 

superiority of the architecture. 

To eliminate the effect of randomness, we conducted 60 
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independent replicate experiments on the 6 existing models 

and the improved model proposed in this paper. The 

experimental results are shown in Figure 6. Because of the 

relatively poor prediction of SVR, it is not shown in the figure. 

The gap between the upper and lower quartiles of 

MLMS-CNN is small, and the lower edge is much higher than 

other models, indicating that MLMS-CNN's prediction effect 

is more concentrated and stable when predicting the runtime 

of vision code blocks. 

Table 1. Comparison with other models. 

 R2 MSE MAE 

PLSR 0.919 91.753 7.537 

Ridge 0.860 158.748 10.354 

AdaBoost 0.930 78.937 6.776 

Gboost 0.927 83.379 7.219 

KNNR 0.752 281.634 14.463 

SVR 0.107 1013.444 27.325 

MLMS-CNN 0.960 45.974 5.428 

 

 
Figure 6. Boxplot of Model Predictive Performance. 

5. Conclusion 

This paper has presented a novel variant of CNN for vision 

code block runtime prediction. We design MSB to extract 

features from receptive fields of different sizes, and design 

MLN to fuse features of different abstraction levels. On this 

basis, we further propose MLMS-CNN for runtime prediction 

problem. The results of comparative experiments show that 

our MLMS-CNN obtains the best performance. In an 

additional 60 independent replicate experiments, 

MLMS-CNN still has a stable performance. In the further, we 

will further investigate how to predict the execution time of 

vision code blocks in different operating environments and 

further optimize our model. 
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