

Engineering and Applied Sciences
2022; 7(6): 93-99

http://www.sciencepublishinggroup.com/j/eas

doi: 10.11648/j.eas.20220706.13

ISSN: 2575-2022 (Print); ISSN: 2575-1468 (Online)

Vision Code Execution Time Prediction Based on Multi-level
and Multi-scale CNN

Fule Ji
†, *

, Yanlong Xi
†

College of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, China

Email address:

*Corresponding author

† Fule Ji and Yanlong Xi are co-first authors.

To cite this article:
Fule Ji, Yanlong Xi. Vision Code Execution Time Prediction Based on Multi-level and Multi-scale CNN. Engineering and Applied Sciences.

Vol. 7, No. 6, 2022, pp. 93-99. doi: 10.11648/j.eas.20220706.13

Received: November 24, 2022; Accepted: December 8, 2022; Published: December 15, 2022

Abstract: Intelligent manufacturing relies heavily on industrial vision, and visual algorithms are rapidly being applied in the

industry. However, industrial controllers are primarily used for logic control with deterministic execution cycles, and the

uncertainty of vision code execution time strongly correlated with input affects their stability. To adjust the scanning cycle of the

system in time to ensure system stability, an algorithm that can predict the time required for the vision code to process the target

image is needed. In this paper, we analyze the weakness of traditional convolutional neural network models (CNN) and propose a

multi-level and multi-scale CNN model (MLMS-CNN) for vision code execution time prediction. Instead of typical convolutional

layers, we design an architecture to collect multi-scale features from the input feature maps. Moreover, a hierarchical structure is

designed to reduce the loss of intermediate feature utilization by fusing features from different abstraction levels. We extract image

features from images and runtime features from vision code blocks, then compare MLMS-CNN to six standard regression models,

all of which are trained with the extracted features as input and the actual execution results of the visual code as output. The

experimental results show that our model achieves better performance and stability.

Keywords: Deep Learning, Performance Prediction, Vision Code

1. Introduction

Vision algorithms are rapidly being used in intelligent

manufacturing processes, such as defect detection of printed

circuit boards [1], automatic flaw detection on the surface of

steel parts [2], and intelligent sorting robots on logistics

production lines [3]. Traditional industrial controllers,

primarily performing logic control, have a predefined

execution cycle. However, the introduction of vision

algorithms not only increases the computational burden but

also introduces unpredictability in the execution time. The

maximum and bottom bounds of the execution time for some

image recognition algorithms may vary significantly

depending on the image content. The controller needs a

method to predict the execution time of the target vision

algorithm for the target image to adjust its scan period

appropriately and ensure stability.

In terms of code execution time prediction, many research

institutions at home and abroad have carried out extensive

research and proposed a series of performance modeling

methods. These methods can be categorized into three

models: analytical models, replay models, and statistical

models. Analytical models use formalized mathematical

formulations to describe the program performance [4, 5, 34],

which needs an in-depth understanding of the

implementation of programs and the hardware characteristics

of the platform and relies on the guidance of domain experts.

The modeling procedure is time-consuming and laborious.

Replay models automatically reconstruct a new program to

reproduce the behavior of the original program and predict its

performance by analyzing the historical program execution

behavior records, avoiding reliance on manual analysis [6, 7,

20, 35]. The generated program fragment can restore the

process of program execution and interaction with hardware,

so this method has a good prediction effect on the

performance of the original program. This method needs a lot

of time and space to generate and process traces and can only

94 Fule Ji and Yanlong Xi: Vision Code Execution Time Prediction Based on Multi-level and Multi-scale CNN

express one execution path of the original program.

Statistical models predict program performance by

establishing the mapping relationship between the program

features and its performance indicators [8, 9, 22, 23]. With

sufficient training data, program performance can be

predicted with relative accuracy, but its prediction effect

depends on the quality of the dataset as well as the

consistency of the software and hardware environment in

training and predicting procedure.

However, the existing performance prediction methods are

mainly intended for general computing programs, and there

is no approach for the vision algorithm with execution time

strongly correlated with the content of the input image. This

requires a feature extraction method for the input image to

obtain image features related to algorithm execution time. In

traditional image feature extraction, the Histogram of

Oriented Gradients (HOG) [10] constructs features by

calculating and counting the gradient direction histograms of

local regions of the image, and is widely used in image

recognition; Local Binary Patterns (LBP) [11] is used to

describe the local texture features of images, which have the

characteristics of rotation invariance and grayscale invariance;

Haar features [12] can reflect the grayscale changes of

images and are applied to face representation. However,

traditional feature extraction methods are not suitable for all

application scenarios. The emergence of deep learning has

made it possible to extract image features for specific

problems, and many mature models have emerged in this

regard, such as VggNet [13], resnet [14], and DenseNet [15]

and their variants are widely used in image feature extraction.

To this end, we propose a deep learning-based strategy to

predicting performance of vision code blocks. The

contributions of our study are as follows:

1) This paper proposes the multi-level multi-scale

convolutional neural network (MLMS-CNN) for the

runtime prediction of vision code blocks.

2) This paper proposes a dual feature extraction scheme

based on image features and code runtime features,

which obtains code runtime features through

instrumentation technology [23] and extracts the image

feature by Inceptionv3 migration training [33].

3) The result of independent replicate experiments shows

that MLMS-CNN achieves excellent performance and

stability.

The rest of this paper is organized as follows. Section 2

introduces the related work in performance modeling and

convolutional neural networks. Section 3 discusses the two

optimizations of CNN the framework of MLMS-CNN.

Section 4 presents the experiment on model performance and

stability. Section 5 concludes this paper.

2. Related Work

2.1. Performance Modeling

As mentioned before, the performance prediction methods

can be classified into the following three categories: analytical

modeling methods, replay-based modeling methods, and

statistical modeling methods.

2.1.1. Analytical Modeling Method

The analytical modeling methods intend to formalize the

execution procedure and execution platform. Altenbernd et al.

[16] proposed a method modeling from the source code level

and predicts the execution time on the target platform through

the linear combination of the execution time of a single

instruction of the program. Van den Steen et al. [17] modeled

the performance of superscalar processor programs. Taking

the microarchitecture-independent features of the program as

input, only once analysis of the program, its performance on

multiple target platforms can be well predicted. Jongerius et al.

[18] model the performance of multi-core processor programs

with vector instruction set extensions, including inter-core

shared cache contention, memory bandwidth contention, and

instruction level parallelism, with the better predictive

performance achieved on the Intel Xeon and ARM

Cortex-A15 platforms. Those approaches require a deep

understanding of the underlying, and it is highly customized.

2.1.2. Replay-Based Modeling Method

The replay-based modeling method attempt to reproduce

the behavior of the original program by analyzing the

historical behavior record of the program execution. Zhang et

al. [19] propose a performance prediction tool that predicts the

performance of the original program by collecting and

recording computation and communication events during

program execution and generating a tiny program that can

mimic the behavior of the original program. For IO-intensive

programs, Hao et al. [6] use a more efficient trace merge

algorithm and trace compression algorithm, and the generated

benchmark program can accurately simulate the calculation,

communication, and IO behavior of the original program. The

behavioral consistency of the benchmark program with the

original program determines the prediction accuracy of the

original program's performance. Aaziz et al. [21] used the

run-time data of the original program and the benchmark

program to evaluate the similarity of the two programs by

hierarchical clustering and realized the evaluation of the

consistency of their behaviors. Those methods avoid the

dependence on manual analysis and have a good prediction

performance. But a large amount of time and space overhead

limits its scope of application.

2.1.3. Statistical Modeling Method

Statistical modeling methods, in general, predict program

performance more correctly than other methods. Pham et al.

[22] model program execution time as a function that depends

on cloud workflow input and cloud characteristics and is used

to predict workflow task execution time for different input

data in the cloud. Sun et al. [23] predict the execution time of a

program under new input by modeling the correlation between

its runtime characteristics and execution time. But this method

only extracts the early behavior features of the program, and

the performance of complex behavioral programs cannot be

accurately predicted. In [24], the performance prediction task

 Engineering and Applied Sciences 2022; 7(6): 93-99 95

of the complex program is divided into the prediction task of

each atomic unit by using the modularization method. In

practice, the difference between the training and prediction

environments has a significant impact on the prediction effect.

2.2. Convolutional Neural Networks

Like traditional ANNs, CNNs are organized hierarchically,

comprised of an input layer, several hidden layers, and an

output layer. The only difference is convolution operations are

employed in CNNs, with which CNNs get better performance

in image feature extraction and suit more for image-based

tasks. A convolution layer has several convolutional kernels,

which are two dimensional matrices. In this layer, the

convolution operations would be conducted on the input

feature maps with convolutional kernels. The number of

kernels determines the number of the output feature maps.

A 2D convolution operation for input � with kernel k������

can be calculated as:

�	,� �
������� ∗ ��	,� � ∑ ��,���	��,�����,� , (1)

Where � is the output matrix, �, � is the height and

width of the kernel, � is a matrix of shape � � � ,

representing the weight of the kernel, �, � is the sliding step

of the kernel in width and height. Usually, � � � � 1, which k������ can be recorded as ���� , L is a matrix of shape � � �.

Since the width and height of each kernel is designed to be

smaller than the input, i.e., � � �, � � �, each neuron in

this layer is only connected to a small local region of the input.

In other words, the receptive field of each neuron is small and

equal to the kernel size.

The local connections ensure that the trained filter has the

strongest response to local regions of the input, thereby

exploiting the spatially local correlation of the input (for an

input image, pixels are more correlated with nearby pixels

than with distant pixels) [25]. At deeper layers of the network,

convolutions generally extract more abstract patterns and

higher-level information.

A spatial pooling operation would be applied after a set of

convolutional layers to spatially down-sample the input

feature maps to reduce the feature map size while preserving

crucial information, which can detect more abstract features

and cross-scale spatial context, thereby concentrating

semantic information [26]. The application of pooling layer

can reduce model parameters, thus reduce the amount of

computation and the chance of overfitting. Like convolution,

pooling is defined by kernel size, stride, and padding

operations. A typical max pooling operation with a 2 � 2

kernel size and a stride of 2 can reduce the size of the input

feature map by a factor of 4.

3. Framework

Traditional CNN follows a sequential structure, which has

two characteristics: (1) Each convolution layer can only

extract features with fixed scale. (2) There is only one

computational path between input and output data. Therefore,

only the features computed from the last convolutional layer

can be used for regression, and feature maps in the middle are

only used as the input of the next layer, these disadvantages

lead to the loss of intermediate feature utilization. In the

following two sections, we propose effective frameworks for

these two problems, respectively.

Figure 1. Multi-Scale Block.

3.1. Multi-scale Block

This section extends the convolution and pooling

operations between layers and proposes a parallel structure, as

shown in Figure 1, which we call Multi-Scale Block (MSB).

To obtain the features under different receptive fields, we

create a basic kernel set � � �!, �" … , ��$, which contains � convolution kernels of various scales.

There are three parallel branches inside the block. Each

branch contains different numbers and scales of convolution

kernels from S, which can extract different levels of feature

representations from receptive fields of various sizes. In

addition, each branch has a down-sampling layer to reduce the

dimension of the data. To avoid wasting feature information

and ensure stable training, a special convolution kernel %��

is designed to replace pooling.

3.2. Multi-level Network Model

As shown in Figure 2, the Mulit-Level Network model

(MLN) extracts features by introducing feature fusion.

Supposing we have � layers &!, &", … , &�$, each layer &	 has

one input '�	 and one output ()�	. We concat all outputs and

fusion by full connection.

96 Fule Ji and Yanlong Xi: Vision Code Execution Time Prediction Based on Multi-level and Multi-scale CNN

MLN
'�!� � FC /Concat 567
out!�, FC
out"�,… , FC
out9� :; (2)

'�	�! � ()�	 � &	
'�	� (3)

As in a traditional sequential network, the output of one

layer is the input of the next layer, which means that the layers

close to the '�! are used to extract concrete features, while

layers close to the ()�� are used to extract abstract features.

So, in a typical CNN, due to layered transmission, only

abstract features can reach the final fully connected layer,

which leads to the neglect of micro-scale information. Feature

fusion mechanism can overcome this shortcoming by

collecting information from various abstraction levels and

directly weighting features at all resolutions in the fused

fully-connected layers.

3.3. Multi-level and Multi-scale CNN Model

Based on the above two frameworks and the extracted code

features to be introduced in detail in Session 4, we propose a

multi-level and multi-scale convolutional neural network

model (MLMS-CNN) to predict code runtime.

As shown in Figure 3, we choose � � �!�!, �!�", �!�<$, %�� is a �!�" with 2 strides. Each feature generated by 5

MSBs will be flattened and connected to a fully connected

layer of length 12. The output of these 5 fully connected layers

will be further concatenated and injected into the fused fully

connected layer with a length of 640 to obtain the final output.

Figure 2. Multi-Level Network model.

4. Experiment

4.1. Setting

We perform a series of vision code block runtime prediction

experiments on 500 pictures, which are split into train/test sets

sequentially with a ratio of 8:2. The vision code block in

experiments is Canny edge detection, which is a standard

algorithm for edge detection developed by John F. Canny in

1986. Its internal structure is relatively complex, and it has

many logical branches. So, we choose it as a representative

vision code block for research. Before the experiment, we

have obtained runtime features =�6 � >�?!, >�?", … , >�?@A$
of the Canny vision code block through instrumentation

technology [23] and features of each image BC6 �

 'C?!, 'C?", … , 'C?!DDD$ by Inceptionv3 migration training

[33].

Figure 3. MLMS-CNN architecture.

4.2. Evaluation Metrics

=", Mean Squared Error (MSE), and Mean Absolute Error

(MAE) are used as the evaluation metrics in the experiment.

The definitions are shown in (4-6). The results of =" are

normalized, which makes it easier to see the gap between

models. MSE refers to the mean square error between the real

and the predicted values, while MAE reflects the actual error

value.

=" � 1 E ∑
FGHFIG�JKGLM∑
FGHF̄�JKGLM (4)

��O � !
� ∑
P	 E PI	�"�	Q! (5)

�RO � !
� ∑ |P	 E PI|�	Q! 	 (6)

4.3. Result of MLMS-CNN

To explore the effect of the number of MSBs on the

prediction performance, we conducted 5 experiments on each

of the 6 models containing different numbers of multi-scale

blocks and took the =" value for statistics. Particularly, the

0-MSB model is a simple CNN. As shown in Figure 4, when

the number of MSBs increases, =" gradually increases, while

the standard deviation of =" (performed as the length of the

error bar) gradually decreases. When the number of MSBs is 5,

the value of =" reaches 0.927. After that, the increase of the =" value slows down. This indicates that when the number of

MSBs increases to 5, the training of the network parameters is

 Engineering and Applied Sciences 2022; 7(6): 93-99 97

close to optimal, the ability of model regression tends to be

saturated, and the benefit of continuing to increase the number

of multi-scale modules begins to decline, which will increase

the training time of the model. Therefore, we finally adopt 5

MSBs to construct the MLMS-CNN. This not only ensures the

regression ability of the network but also reduces the

parameters of the model, which is beneficial to shorten the

training time of the model.

Figure 4. Effect of the number of MSBs on the prediction performance.

We also compare the model with MLN with the model

without MLN, both have five MSBs, and both experiment five

times. As shown in Figure 5, It can be intuitively known that

multi-level feature fusion can facilitate the runtime prediction

of vision code blocks. With the use of MLN, the value

increased from 0.9274 to 0.9595 and the standard deviation

decreased to 0.09%, indicating that the MLMS-CNN can not

only enhance the utilization of features but also provide a

more stable prediction of run times with a 50% increase in

stability.

Figure 5. Comparison of two models’ performance.

4.4. Comparison with Other Models

Table 1 shows the comparison results of MLMS-CNN with

Partial Least-Squares Regression (PLSR) [27], Ridge

regression [28], AdaBoost [29], Gboost [30], KNNR [31],

SVR [32]. The =" of the SVR model is 0.107, the MSE mean

square error is 1013.44, and the MAE average absolute error is

27.33. It is very unsatisfactory. The prediction effect of the

KNNR model is better than that of SVR, which may be

because the data set in this study is not linear. However,

KNNR cannot effectively screen out interference features, so

compared with other models, KNNR's performance is not

excellent. Both PLST and Ridge are variants of the least

squares method, and the least squares method is easily

disturbed by outliers. PLST uses principal component analysis

approach to reduce the dimensionality of the input data and

reduce the influence of interference data, resulting in a slightly

better performance than Ridge. Both AdaBoost and Gboost

are evolutionary algorithms. They use model self-learning to

regress data with large errors, gradually reduce the regression

error, and gradually improve the regression performance of

the model. It can be concluded from the table that AdaBoost

and Gboost have certain advantages over the other 4 models.

However, the proposed MLMS-CNN model outperforms

other models in all three evaluations, which demonstrates the

superiority of the architecture.

To eliminate the effect of randomness, we conducted 60

98 Fule Ji and Yanlong Xi: Vision Code Execution Time Prediction Based on Multi-level and Multi-scale CNN

independent replicate experiments on the 6 existing models

and the improved model proposed in this paper. The

experimental results are shown in Figure 6. Because of the

relatively poor prediction of SVR, it is not shown in the figure.

The gap between the upper and lower quartiles of

MLMS-CNN is small, and the lower edge is much higher than

other models, indicating that MLMS-CNN's prediction effect

is more concentrated and stable when predicting the runtime

of vision code blocks.

Table 1. Comparison with other models.

 R2 MSE MAE

PLSR 0.919 91.753 7.537

Ridge 0.860 158.748 10.354

AdaBoost 0.930 78.937 6.776

Gboost 0.927 83.379 7.219

KNNR 0.752 281.634 14.463

SVR 0.107 1013.444 27.325

MLMS-CNN 0.960 45.974 5.428

Figure 6. Boxplot of Model Predictive Performance.

5. Conclusion

This paper has presented a novel variant of CNN for vision

code block runtime prediction. We design MSB to extract

features from receptive fields of different sizes, and design

MLN to fuse features of different abstraction levels. On this

basis, we further propose MLMS-CNN for runtime prediction

problem. The results of comparative experiments show that

our MLMS-CNN obtains the best performance. In an

additional 60 independent replicate experiments,

MLMS-CNN still has a stable performance. In the further, we

will further investigate how to predict the execution time of

vision code blocks in different operating environments and

further optimize our model.

References

[1] Lim D, Kim Y G, Park T H. SMD classification for automated
optical inspection machine using convolution neural network
[C]//2019 Third IEEE International Conference on Robotic
Computing (IRC). IEEE, 2019: 395-398.

[2] Luo, Q., Sun, Y., Li, P., Simpson, O., Tian, L., & He, Y.
(2018). Generalized completed local binary patterns for
time-efficient steel surface defect classification. IEEE
Transactions on Instrumentation and Measurement, 68 (3),
667-679.

[3] Abbood W T, Abdullah O I, Khalid E A. A real-time
automated sorting of robotic vision system based on the
interactive design approach [J]. International Journal on
Interactive Design and Manufacturing (IJIDeM), 2020, 14 (1):
201-209.

[4] Barker K J, Pakin S, Kerbyson D J. A performance model of
the krak hydrodynamics application [C]//2006 International
Conference on Parallel Processing (ICPP'06). IEEE, 2006:
245-254.

[5] Kerbyson D J, Alme H J, Hoisie A, et al. Predictive
performance and scalability modeling of a large-scale
application [C]//Proceedings of the 2001 ACM/IEEE
conference on Supercomputing. 2001: 37-37.

[6] Hao M, Zhang W, Zhang Y, et al. Automatic generation of
benchmarks for I/O-intensive parallel applications [J]. Journal
of Parallel and Distributed Computing, 2019, 124: 1-13.

[7] Sodhi S, Subhlok J, Xu Q. Performance prediction with
skeletons [J]. Cluster Computing, 2008, 11 (2): 151-165.

 Engineering and Applied Sciences 2022; 7(6): 93-99 99

[8] Huang L, Jia J, Yu B, et al. Predicting execution time of
computer programs using sparse polynomial regression [J].
Advances in neural information processing systems, 2010, 23.

[9] Adams A, Ma K, Anderson L, et al. Learning to optimize
halide with tree search and random programs [J]. ACM
Transactions on Graphics (TOG), 2019, 38 (4): 1-12.

[10] Wang X, Han T X, Yan S. An HOG-LBP human detector with
partial occlusion handling [C]//2009 IEEE 12th international
conference on computer vision. IEEE, 2009: 32-39.

[11] Ojala T, Pietikainen M, Harwood D. Performance evaluation
of texture measures with classification based on Kullback
discrimination of distributions [C]//Proceedings of 12th
international conference on pattern recognition. IEEE, 1994, 1:
582-585.

[12] Papageorgiou C P, Oren M, Poggio T. A general framework
for object detection [C]//Sixth International Conference on
Computer Vision (IEEE Cat. No. 98CH36271). IEEE, 1998:
555-562.

[13] Simonyan K, Zisserman A. Very deep convolutional networks
for large-scale image recognition [J]. arXiv preprint arXiv:
1409.1556, 2014.

[14] He K, Zhang X, Ren S, et al. Deep residual learning for image
recognition [C]//Proceedings of the IEEE conference on
computer vision and pattern recognition. 2016: 770-778.

[15] Huang G, Liu Z, Van Der Maaten L, et al. Densely connected
convolutional networks [C]//Proceedings of the IEEE
conference on computer vision and pattern recognition. 2017:
4700-4708.

[16] Altenbernd P, Gustafsson J, Lisper B, et al. Early execution
time-estimation through automatically generated timing
models [J]. Real-Time Systems, 2016, 52 (6): 731-760.

[17] Van den Steen S, Eyerman S, De Pestel S, et al. Analytical
processor performance and power modeling using
micro-architecture independent characteristics [J]. IEEE
Transactions on Computers, 2016, 65 (12): 3537-3551.

[18] Jongerius R, Anghel A, Dittmann G, et al. Analytic multi-core
processor model for fast design-space exploration [J]. IEEE
Transactions on Computers, 2017, 67 (6): 755-770.

[19] Zhang W, Cheng A M K, Subhlok J. Dwarfcode: a
performance prediction tool for parallel applications [J]. IEEE
Transactions on Computers, 2015, 65 (2): 495-507.

[20] Sieh V, Burlacu R, Hönig T, et al. Combining Automated
Measurement-Based Cost Modeling With Static Worst-Case
Execution-Time and Energy-Consumption Analyses [J]. IEEE
Embedded Systems Letters, 2018, 11 (2): 38-41.

[21] Aaziz O, Cook J, Cook J, et al. A methodology for
characterizing the correspondence between real and proxy
applications [C]//2018 IEEE International Conference on
Cluster Computing (CLUSTER). IEEE, 2018: 190-200.

[22] Pham T P, Durillo J J, Fahringer T. Predicting workflow task
execution time in the cloud using a two-stage machine

learning approach [J]. IEEE Transactions on Cloud
Computing, 2017, 8 (1): 256-268.

[23] Sun J, Sun G, Zhan S, et al. Automated performance modeling
of HPC applications using machine learning [J]. IEEE
Transactions on Computers, 2020, 69 (5): 749-763.

[24] Singh A, Purawat S, Rao A, et al. Modular performance
prediction for scientific workflows using Machine Learning
[J]. Future Generation Computer Systems, 2021, 114: 1-14.

[25] Ke, Q., Liu, J., Bennamoun, M., An, S., Sohel, F., & Boussaid,
F. (2018). Computer Vision for Human-Machine Interaction.
In L. Marco, & G. M. Farinella (Eds.), Computer Vision for
Assistive Healthcare (pp. 127-145). Academic Press.

[26] Kattenborn T, Leitloff J, Schiefer F, et al. Review on
Convolutional Neural Networks (CNN) in vegetation remote
sensing [J]. ISPRS Journal of Photogrammetry and Remote
Sensing, 2021, 173: 24-49.

[27] Hair J F, Sarstedt M, Ringle C M. Rethinking some of the
rethinking of partial least squares [J]. European Journal of
Marketing, 2019.

[28] Fan P, Deng R, Qiu J, et al. Well logging curve reconstruction
based on kernel ridge regression [J]. Arabian Journal of
Geosciences, 2021, 14 (16): 1-10.

[29] Shahraki A, Abbasi M, Haugen Ø. Boosting algorithms for
network intrusion detection: A comparative evaluation of Real
AdaBoost, Gentle AdaBoost and Modest AdaBoost [J].
Engineering Applications of Artificial Intelligence, 2020, 94:
103770.

[30] Yung L S, Yang C, Wan X, et al. GBOOST: a GPU-based
tool for detecting gene–gene interactions in genome–wide
case control studies [J]. Bioinformatics, 2011, 27 (9):
1309-1310.

[31] Cai L, Yu Y, Zhang S, et al. A sample-rebalanced
outlier-rejected k-nearest neighbor regression model for
short-term traffic flow forecasting [J]. IEEE access, 2020, 8:
22686-22696.

[32] Sharifzadeh M, Sikinioti-Lock A, Shah N. Machine-learning
methods for integrated renewable power generation: A
comparative study of artificial neural networks, support vector
regression, and Gaussian Process Regression [J]. Renewable
and Sustainable Energy Reviews, 2019, 108: 513-538.

[33] Szegedy C, Vanhoucke V, Ioffe S, et al. Rethinking the
inception architecture for computer vision [C]//Proceedings of
the IEEE conference on computer vision and pattern
recognition. 2016: 2818-2826.

[34] Sundaram-Stukel D, Vernon M K. Predictive analysis of a
wavefront application using LogGP [C]//Proceedings of the
seventh ACM SIGPLAN symposium on Principles and
practice of parallel programming. 1999: 141-150.

[35] Lu G, Zhang W, He H, et al. Performance modeling for mpi
applications with low overhead fine-grained profiling [J].
Future Generation Computer Systems, 2019, 90: 317-326.

