
 

Engineering and Applied Sciences 
2016; 1(4): 99-106 

http://www.sciencepublishinggroup.com/j/eas 

doi: 10.11648/j.eas.20160104.14 

ISSN: 2575-2022 (Print); ISSN: 2575-1468 (Online)  

 

Recent Results on Sliding Collapse for Masonry Structures 
Under Static Load Test 

Fernando Magdalena
1
, Antonio Aznar

2
, Juan F. de la Torre

2
, José I. Hernando

2
 

1Department of Building Construction, Edification School, Technical University, Madrid, Spain 
2Department of Building Structures, Architecture School, Technical University, Madrid, Spain  

Email address: 
joseignacio.hernando@upm.es (J. I. Hernando) 

To cite this article: 
Fernando Magdalena, Antonio Aznar, Juan F. de la Torre, José I. Hernando. Recent Results on Sliding Collapse for Masonry Structures 

Under Static Load Test. Engineering and Applied Sciences. Vol. 1, No. 4, 2016, pp. 99-106. doi: 10.11648/j.eas.20160104.14 

Received: October 21, 2016; Accepted: November 8, 2016; Published: January 24, 2017 

 

Abstract: This paper presents experimental test on sliding collapse. An array of up to fifty three tests on dry masonry 

specimens has been performed. Each specimen is subjected only to self-weight and to a horizontal load, whose position is 

chosen from a predefined set of three different locations. For the rest of properties, all specimens are totally equal. For each of 

the three locations, two sub-arrays of ten specimens and one of thirty-three have been tested. For each specimen, pieces layout 

is randomly performed so that imperfections randomly spread throughout the specimen as well. The main aim of this work is 

the comparison of these static tests with the results obtained from several commonly used numerical methods, especially with 

the ones retrieved under the non-Standard Limit Analysis. This paper shows that when the contribution of mortar to the 

strength of the structure cannot be taken into account and collapse by sliding occurs, the solution for collapse load and 

mechanism can be multiple. Hence, and since the solution is not necessarily unique, we should carefully consider the limits 

under which all methods finding a unique solution can be used. 
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1. Introduction 

Safety assessment of historic masonry structures is still a 

controversial matter nowadays [1]. In the steps prior to 

collapse, the field for the actual stress state cannot easily be 

obtained and, in most cases, actual boundary conditions are 

far to be known, at least not in an accurate enough 

description to be posed as certain. As a general property for 

masonry, its mechanical behaviour is quite heterogeneous 

and anisotropic, with high compressive strength. On the 

opposite, low capacity and brittle cracking appear when it 

acts in tension. As a matter of fact, it is certain that global 

failure for masonry will occur long after cracking has started 

at any region of the body. Furthermore, global failure is often 

due to instability when yield conditions appear at a certain 

number of points, which means that the body is no longer a 

structure but has turned out into a mechanism, even when 

compressive stresses could still be under their limit value. 

What described before assumes that no sliding movements 

between parts of the body develop, thus leading to what 

several authors [2-5] have proposed as an excellent 

simplified tool for these cases, which is the Limit Analysis 

theory, that has in fact proved efficient enough for such 

purposes. Other authors [6-8] during the first steps of plastic 

theory, established the equivalence of Limit Analysis theory 

with Linear Programming, and later some others [9, 10] have 

used such procedures for dry masonry, which allows obtain 

the actual ultimate load factor at the very start of collapse. 

But when collapse develops under sliding movements [11-

13] standard Limit Analysis theorems are no longer valid and 

the load factor for the collapse onset is no longer linked to a 

compulsory uniqueness. Hence many researchers have tried 

to find the solution for the minimal load factor related to the 

onset of collapse. This is a very difficult problem to be 

solved and in its simplest formulation is presented under a 

Linear Complementarity Problem one [14] and as for its 

computational complexity it is NP-hard complex [15-17]. In 

any case, there is no method, for the time being, that could 

guarantee the obtaining of such a minimal load factor or 

prove the inexistence of it with full certainty. 

Developing a different approach, some researchers have 
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pointed out that this minimum load factor solution is perhaps 

too conservative [4, 18], and some results recently obtained 

by means of the Monte Carlo simulation [19] seem to make 

possible the conjecture that whenever a solution can be 

numerous, minimum and maximum values of it are not the 

most likely ones. Therefore, in order to bring some clarity on 

this question it has been considered as necessary the retrieval 

of some test results. 

2. Tests and Specimens Description 

Our will is to study the effect of sliding in the collapse of 

masonry, which means that our tests will be carried out on 

specimens only subjected to self-weight composed with a 

relatively high horizontal external force, as a simulation of 

the mechanical behaviour of upper parts of buttresses, the 

upper bands of masonry shear walls under thrust of roofs or 

transverse walls, or the anchorage zones for tension ties. 

Quite a few tests have been performed on arch shaped 

structures [20-22], with or without mortar in the inner joints. 

Specimens were both scaled and full size ones, and even in a 

few cases, some real arch bridges were led to collapse. 

As for shear walls [23], some tests have been developed 

including shear resistance of mortar in the test results, 

which is an approach suitable to new structures. Tests on 

dry masonry walls are more scarce [24-26 ]. However, 

"The testing of dry stone masonry has been used in the 

past as a way to derive useful references for the study of 

historical masonry. In fact, many approaches that aim to 

analyze the lateral strength capacity of historical 

unreinforced masonry walls recognize that the tensile 

strength along the joints between the stone elements is 

negligible either because the mortar is absent or because 

its tensile strength and bond is usually low and cannot be 

quantified in a reliable way. It is also quite common the 

case of pre-existing cracks...", [27]. In any case, 

neglecting mortar strength is a safe hypothesis. 

Almost all aforementioned tests analyze global effects by 

placing the specimens on an inclined plane, making therefore 

collapse develop dynamically. In our case, the test procedure 

provides a quasi-static collapse, which is of main importance 

to fulfil our will to especially look at the local effects of in-

plane loads. 

Our test is designed so that collapse of the dry masonry 

specimen is reached by pure sliding in a quasi-static manner. 

The reason for this is a twofold one. On the one hand this 

behaviour is the simplest one and the easiest one to be 

interpreted. Whenever there appears a rocking and sliding 

mixed collapse configuration, experimental results are much 

more difficult to be interpreted [28], apart from being a 

dynamic collapse configuration, which is out of our current 

scope. On the second hand, when considering mixed rocking 

and sliding collapse, results show that the minimum value of 

them is always higher than in our case, since sliding is the 

only cause for their variation. 

Being given that our test has been designed to reach 

collapse by pure sliding, the corresponding collapse 

mechanism is verified by means of assembled brick groups 

that slide the yield line long. Such a line is defined by contact 

surfaces on which the friction yield constraint has reached its 

limit (Figure 1). 

 

Figure 1. Two different yield lines for a same horizontal load location. 

3. Experimental Tests 

An experimental sliding tests campaign has been carried 

out in order to compare experimental results retrieved from it 

with the theoretical results that by means of several 

numerical methods (FEM, Limit Analysis,...) have been 

calculated. All tests have been performed at the Building 

Structures Department laboratory, ETSAM, Technical 

University of Madrid. 

3.1. Materials 

An array of 53 contact sliding tests has been carried out on 

dry brickwork masonry specimens. Brick pieces were chosen 

as base material due to its geometrical consistency, the best 

to be expected for this type of assemblies. Brick pieces are 

ceramic clay based ones, HD R-20 type, whose nominal 

dimensions are 240 mm in length, 115 mm in width and 50 

mm in height. Its geometrical features can be found on Table 

1, where %Min stands for the difference in percentage 

between minimum and mean values. Min stands for the 

minimum value, Max for its maximum, SD for the standard 

deviation, CV for the coefficient of variation (standard 

deviation / mean) and %Max for the difference in percentage 

between the maximum and mean values. 
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Table 1. Features of the brick HD R-20 used in experimental tests. 

 %Min Min Mean Max %Max SD CV% 

length mm. 0.42 239 240 24.1 0.42 0.50 0.20 

width mm. 0.35 115 115.4 116.0 0.51 0.51 0.43 

height mm. 1.05 49.8 50.3 50.8 0.94 0.21 0.41 

weight N 0.63 16.42 16.52 16.76 1.43 0.07 0.42 

friction coefficient 8.17 0.5 0.54 0.58 6.64 0.03 5.56 

 

Friction coefficients have been obtained by means of the 

same methods and apparatuses used in the tests described 

below, and under those same conditions. 

Brickwork specimens are 15 rows in height for a total 

number of 90 pieces (82 entire bricks and 8 of them split in 

two halves. All bricks are numbered and their layout has been 

performed by following the Fisher-Yates-Durstenfeld shuffle 

[29] method to ensure a random distribution of them in each 

specimen. Figure 2 shows one of these specimens. 

 

Figure 2. Photograph of one tested specimen, 

Time for every specimen erection (recorded from the very 

beginning of assembly to the test start) has been controlled to 

make sure that the bricks' surfaces offer similar conditions in 

all tests. 

3.2. Test Description 

All tests have been performed under controlled 

environmental conditions both for temperature (20°C+-2) 

and for relative humidity (R. H. 40%+-10). Furthermore, 

before the manufacturing process, relative humidity and 

temperature of each brick have been measured by means of a 

Hydromette HT-85-T hygrometer. Both values have been 

recorded together with each test result. 

As explained before, tests have been performed for three 

different locations of the horizontal force. These three 

different configurations are represented on Figure 3. As it can 

be found on it, configuration “A” corresponds to a position 

for the horizontal load far from the constrained edge of the 

specimen, “B” to a position of the force at the mid-width of 

the specimen, and “C-D” to a load applied close to the 

constrained edge.  

 

Figure 3. Test layout. 

Of all tests, thirty three of them have been carried out for 

the “C-D” configuration. For “A” and “B” configurations ten 

been performed for each. The reason for a bigger number of 

“C-D” tests stands on the fact that in this case edge 

conditions have brought more interesting results and a higher 

variability for them. 

The test procedure consists in applying an increasing 

horizontal load at the second lower row of the specimen, 

being displacements of the first row restricted at the edge. 

Load is introduced on the specimen by means of a Imnasa-

350 capstan, and with the help of a Sauter FA-500 

dynamometer load data have been measured. Once load starts 

to be applied, as soon as sliding opposition intensity 

decreases the horizontal load is forced to vanish. Then the 

gap appearing on the point of the brick on which load was 

applied is measured and recorded. Finally, this same process 

is repeated several times, and the yield line progression data 

are retrieved and recorded. 

4. Test Results 

For the sake of simplicity and legibility results are shown 

on tables and graphics.  

As a start, ten results have been retrieved from each of 

three different tests, corresponding to the onset of collapse in 

cases A, B and C. Values, in N, are shown on Table 2. 
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Table 2. Results of tests A, B and C (force in N). 

A 713.8 718.5 723.6 723.7 728.6 738.7 742.8 755.5 755.6 783.7 

B 459.6 549.3 569.3 579.4 597.7 604.5 649.4 654.5 679.4 689.4 

C 309.5 354.3 389.3 398.9 404.3 404.3 469.2 479.0 508.6 509.1 

 

Then, results on case C have been extended up to thirty 

three different results, being these last labelled as D. Results 

in N are shown on Table 3. Bold characters represent values 

for case C. 

Table 3. Results of test D: C+23 (force in N). 

309.5 324.1 329.1 334.4 339.1 339.4 354.3 359.1 364.4 379.0 384.2 

388.9 389.0 389.0 389.3 398.9 398.9 404.3 404.3 418.9 424.2 424.2 

433.8 433.8 453.8 459.2 463.8 469.2 474.2 479.0 508.6 509.1 533.6 

Using the same abbreviations as shown on Table 1, some descriptive statistics for values from the four cases are shown on 

Table 4. 

Table 4. Statistics of tests A, B, C and D. 

 %Min Min Mean Max %Max SD CV% 

A (10) 3.34 713.8 738.5 783.7 6.13 21.58 2.77 

B (10) 23.81 459.6 603.3 689.4 14.28 69.34 10.91 

C (10) 26.77 309.5 422.7 509.1 20.45 66.69 14.97 

D (33) 24.20 309.5 408.3 533.6 30.68 58.03 13.99 

On Figure 4 frequency distribution and best-fit normal 

distribution for cases A, B and D are shown. 

 

Figure 4. Frequencies and the best-fit normal distributions. 

Because the sample size is too small, the implementation 

of several goodness of fit tests and normality tests does not 

allow to conclude which is the best-fit distribution for results 

on cases A, B and C. For case D, a normal distribution 

(gaussian) seems to be the best-fit option. 

However, despite the underlying frequencies distribution is 

unknown beforehand and the sample size is quite restricted, a 

most likely range of values for the most relevant statistic 

parameters has to be found. Hence, as a conclusion, 

confidence intervals are obtained only for case D, for the 5% 

percentile and other parameters, for a 99% confidence level 

after using resampling methods [30-33] applied on the best-

fit normal distribution (parametric bootstrap). Results for 

case D are shown on Table 5. 

Table 5. Confidence intervals for case D. 

Confidence intervals at 

99% confidence level 
5% percentile Mean 95% percentile 

Case D 285-347 383-435 460-538 

Shown values are approximate since, in any case, 

bootstrap is a simulation method. 

5. Comparison with Some Numerical 

Methods 

For better understanding results retrieved from some 

numerical methods and from our tests are compared as 

shown on two different tables. The numerical methods here 

used are: 

Min nSLA: minimum value of non-Standard Limit 

Analysis (without dilatancy), as described in [12-14]. 

Min USD: minimum value of Uniform Stress Distribution, 

following Rankine theory about frictional tenacity [31]. 

FEM: Finite Element Method, as described below. 

Max SLA: maximum value of Standard Limit Analysis, 

obtained by Limit Analysis by Linear Programming [9,10]. 

This previous selection does not involve any preliminary 

judgement on the suitability these methods may bring to our 

purposes. 

5.1. Brief Remarks on the Chosen Methods 

Although the simplest formulation for the non-standard 

Limit Analysis is posed as a Linear Complementarity Problem 

and, therefore, it stands as a great difficulty one, in our case, 

once a yield line has been selected (Figure 5 a) and the 

corresponding limit conditions are substituted in the original 

problem, it turns out a linear problem and the global minimum 

can be obtained by means of linear programming. Figure 5 a 

and Figure 6 b refer to a couple of yield line plus collapse 

mechanism for the global minimum of the horizontal load. 

Figure 6 a refers to the equilibrium of the remains of the 

specimen once the slid bricks have been removed and, hence, 

lacking any contact force linked to the previous yield line. 

Figure 6 c refer to a collapse mechanism near maximum. 
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Figure 5. Yield lines and sliding mechanisms corresponding to the three first methods. 

In the Rankine model for frictional tenacity, stresses only 

depend on the depth the point presents within the wall. Thus, 

the minimum load factor can easily be obtained by selecting 

the same yield line (Figure 5 b) and one uniform stress 

distribution along every horizontal joint. 

 

Figure 6. a- Post-collapse equilibrium, b- Mechanism of minimum, c- Mechanism near maximum. 

The maximum value for the load or for the load factor 

corresponding to Standard Limit Analysis can be obtained by 

means of the Limit Analysis problem formulation as a Linear 

Program. Such an approach guarantees that the value thus 

obtained is an optimum that is unique. Nevertheless, there 

can be different solutions related to this unique value and, 

therefore, we can only assure that the yield line shown is only 

one among the possible ones (Figure 5 c). Although 

apparently unlikely, yield lines running backwards, like the 

one shown, have actually occurred in our tests. 

None of the three previous methods uses in an explicit 

manner the displacements that appear prior to collapse. 

A wider explanation for the Finite Element Method (FEM) 

is required. FEM is widely accepted as a standard tool for 

analysis in continuous bodies, but it must be remarked that 

discontinuity in the current case is remarkable. Specimens 

are modelled as an assembly of continuous bodies under one-

sided contact. Analysis has been carried out on ANSYS 

commercial software. Bricks have been modelled as 

PLANE42 elements, and contact conditions by means of 

TARGE169 and CONTA171 elements. The actual contact 

surface is only 20% out of the total contact surface due to 

several factors: bricks are multi-hollow extruded ones, being 

the void surface guaranteed by the manufacturer 40-45% of 

the total one. In addition, their layout is interlaced. Two 

different analyses have been carried out to get the 

aforementioned percentage: one has taken 0'20x115 mm as 

the actual width of the brick and the other has considered the 

total width of it, 115 mm. Stresses appear different in both 

analyses but the maxima of the maximum horizontal force 

are equal. As a first approach, these results make unnecessary 

a more complex analysis. The rest of mechanical properties 

used are: Young's modulus E=20000 N/mm2, Poisson´s ratio 

ν=0.25 (both values brought by brick manufacturer) and the 

friction coefficient µ=0.54. Numerical results are shown on 

Table 6. 
Table 6. Maximum force in N obtained for the different FEM models. Results for cases A, B and C, for two different elements' widths and three different 

discretizations of them are shown.  

 Thickness=115mm Thickness=115*0.2mm  

  Element size   Element size  Rankine 

 40mm 10mm 2.5mm 40mm 10mm 2.5mm  

A 705.21 705.91 705.93 705.21 705.91 705.93 705 

B 656.16 657.18 658.94 656.22 656.65 658.72 656 

C 454.68 452.77 454.22 454.68 452.77 454.22 455 

 

Loads have been applied in two steps. First, self-weight is 

the only acting load. In a second step the horizontal load is 

increased by successive load substeps until the algorithm 

fails convergence. These results should be cautiously taken, 

for displacements are elastic and absolutely different from 

the post-collapse (inelastic) ones obtained for gaps in the 

experimental tests. Figure 7 shows the displacements and the 

principal stresses for a substep previous to convergence 

failure, showing a numerical instability when collapse is 

about to start. 
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Figure 7. FEM results in cases A, B and C-D. 

It should be noted that the maximum stresses occur at the 

horizontal force location point and, even for this point, 

stresses are much lower than the minimum strength the 

manufacturer guarantees for bricks. In addition, elastic 

displacements are much lower than geometrical 

imperfections of the base material. As a result, its behaviour 

in the elastic rank does not seem the main factor to be 

considered. 

5.2. Comparison of Results 

Table 7 and Table 8 show the results for the four different 

numerical methods used to estimate the minimum load to 

happen at the collapse onset, both in absolute values and in 

percentage related to the minimum value retrieved from tests 

results. 

Table 7. Results from numerical methods and test statistics (force in N). 

Collapse load (N) Min nSLA Min USD FEM Max SLA Min test Mean test Max test 

A 294 705 706.3 705 713.8 738.5 783.7 

B 94 656 658.6 656 459.6 603.3 689.4 

D 45 455 454.8 589 309.5 408.3 533.6 

Table 8. Results compared in percentage to the minima of tests. 

% respect to min. test Min nSLA Min USD FEM Max SLA Min test Mean test Max test 

A 41.19 98.77 98.95 98.77 100 103.46 109.79 

B 20.45 142.73 143.30 142.73 100 131.27 150 

D 14.54 147.01 146.95 190.31 100 131.92 172.41 

 

Results overestimating the minimum collapse load are 

shown in bold characters and those underestimating it in 

italic ones. 

On Table 9, for case D, results are referred to lower and 

upper bounds for the 5% percentile confidence interval 

respectively. The latter is best shown on Figure 8. 

Table 9. Results from D compared to test statistics and confidence intervals. 

 Min nSLA Conf. Int. 5% Min test Mean test Conf. Int. Mean Min USD FEM Conf. Int. 95% Max test Max SLA 

D (N) 45 285-347 310 408 383-435 455 455 460-538 534 589 

D (%) 
13  89 118  131 131  154 170 

16  109 143  160 160  187 207 

 

On the left side of Figure 8 values and functions for 

tests having a zero initial gap are shown: a histogram 

scaled to 0'50, the frequency distribution, the best-fit 

normal distribution, maximum and minimum values 

retrieved from tests and the 5% percentile confidence 

interval of those values for a 99% confidence level. All 

values are compared with those retrieved from numerical 

methods. On the right side of that same graphic initial gap 

vs force points are represented. These points correspond to 

such a couple of values obtained for all tests. Those 

belonging to the same test are linked by straight lines. 

 
Figure 8. Comparison of numerical and experimental results. 
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6. Discussion 

Obviously, a short number of tests does not allow to give 

an affirmative response to the questions posed, but it does 

allow a negative one, because a few counterexamples are 

enough to underline the limits for a model or a theory.  

The solution for the collapse onset, and hence its load 

factor, is not always unique. 

Dispersion in results sometimes cannot be explained 

through dispersion in data. The coefficient of variation is 

only 5'56% for friction, and 0'42% in weight, whereas, for 

collapse load we get 2.77% (A), 10.91% (B), 14.97% (C). 

The cases in which behaviour could be qualified as more 

local, B and especially C-D, three of the four methods 

overestimate severely the collapse load, and the fourth one 

underestimates it extremely. 

The maximum load factor obtained by applying Limit 

Analysis by Linear Programming does not guarantee in all 

cases to obtain the actual load factor for the collapse onset or 

at least a close value. Same results are found when the 

solution is obtained by applying the Rankine theory or the 

non-linear solution by FEM with contact conditions. 

Furthermore, sometimes these methods yield unsafe 

solutions. 

On the other hand, the minimum load factor obtained by Non-

Standard Limit Analysis, is not always the actual load factor of 

the collapse onset. In fact it never happened for the current tests, 

but results bring always a safe solution. Perhaps this last is 

excessively safe, especially when taking into account that the 

current case of pure-sliding collapse is much less favourable that 

the cases of mixed rocking-sliding collapse. 

7. Conclusions 

The main conclusion of this paper is that when the 

contribution of mortar to the strength of the structure cannot 

be taken into account and collapse by sliding occurs, the 

solution for collapse load and mechanism can be multiple. 

Hence, and since the solution is not necessarily unique, we 

should carefully consider the limits under which all methods 

finding a unique solution can be used. 

Results obtained by some commonly used methods, like 

SLA and FEM, are sometimes not very close to the actual 

collapse loads. In addition, they do not always find safe 

solutions, at least in cases like the tested ones. Apparently, this 

is more important for the cases running under local sliding and 

further efforts on identifying such cases should be developed. 

Answering about the collapse loads for cases presented in 

this paper, the search for the global minimum by non-

Standard Limit Analysis does not seem to prove efficient 

either in terms of computational costs or for its accuracy in 

approximating the actual minimum. Furthermore, in cases 

including rocking as well, the likely experimental minimum 

should be placed even much farther from that global 

minimum. 

To conclude, although sliding instability is not the main 

mode for collapse in masonry structures, a larger research in 

this field is required, both from the theoretical and the 

experimental points of view. 
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