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Abstract: Quantitative assessment and forecasting of one or another hydrological phenomenon is important for estimation of 

vulnerability of natural riverside. Mechanism of riverside destruction by water is considered in the represented work as random 

process, which is depended both on influence of flow speed and on riverside resistance. As the indicator of this process against 

such influence is taken riverside characteristic – vulnerability, for determination of which is used a well-known model of the 

theory of reliability, called “load-strength” model. Proceeding from this fact a result obtained via theoretical formalization in the 

form of represented formula is considered at this stage as approximation and time factor should be taken into account in the 

modeling process that will be a step forward in relation to current reality. 
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1. Introduction 

Modern world is in the period of unprecedented global 

changes. Areas of vital importance (atmosphere, hydrosphere, 

lithosphere and biosphere), which are necessary for human’s 

existence are changing in various directions that can probably 

create a danger for well-being of both present and future 

generations.  

According to UN experts data, against the background of 

established tendencies of climate changes of the last period 

among natural disasters, which cause certain ecological 

problems and social-economic difficulties, such phenomena 

became rather more frequently and don’t give the pas, as 

floods and freshets.  

There is also much tension around mentioned problem in 

Georgia, where up to 26000 big and small rivers are regitered 

against the diverse orographic background, and most of them 

fall at the western Georgia.  

Rivers very often damage coastal strips of river bed, and 

water mass, which overflows the banks creates serious dager 

for settlements, industry, agriculture, communications etc.  

From the ancient times the mankind had fought against 

floods and negative effects caused by them and had used 

diferent approaches and methods for it. First stages of this 

fight according to chronology were based on descriptive and 

empirical studies and they lacked the opportunities of deep 

scientific solution. The latter became partially implementable 

only after that hydrology has transformed into science, which 

is able to quantitatively assess one or another phenomenon 

and to carry out its forecasting.  

Despite the fact that at present we have data on lots of 

fundamental scientific studies related to forecasting of floods 

and freshets, nevertheless we can’t assert that the issue is 

solved at desirable level, even results of verification of 

already performed best works in some cases are considerably 

deviated from reality.  

Certain progress in use of modern machinery of random 

processes and field theories is mentioned recently in regard 

to hydrological forecasting. 

The practice shows that water overtopping from 

water-bearing artery (river bed) of the river in most cases is 

related to damage of coastal strip by the flow and its 

malfunction as of water-retaining object. Remarkable 

example of this fact is well-known freshet at Rioni river on 

January 31, 1987, when intensive lateral erosion processes 

caused by powerful flow originated in river bed, washed off 

and knocked out of action coast-protection structures (dikes) 

almost in twenty places, as a result of which 2-meter high 

wave flooded human settlements, arable and crop areas, 
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communication road network, a lot of houses has been 

destroyed, plenty of cattle was drowned and even human 

losses were registered [1,2].  

The foregoing and other similar examples insistently 

require preliminary assessment of vulnerability of riverside. 

2. Research Method 

2.1. Determination of Probable Value of Vulnerability 

By vulnerability is meant object feature, which reflects its 

ability to offer resistance to current load (influence) on it, i.e. 

it is a feature, inverse to resistance. Degree of vulnerability is 

depended both on intensity and duration of loading and on 

existing interrelation between component elements of  the 

object. Critical limit of vulnerability determines the range of 

trouble-free performance of the object. It is desirable to 

assess vulnerability according to all the indicators, which 

characterize its critical value, however it is unrealizable due 

to restriction of precise analytical modeling of current 

processes. That’s why we must select one basic determining 

(integral) factor among characteristic indicators of critical 

state, according to which will be implemented the analysis of 

vulnerable state of the object [3]. 

After selection of determining factor it is possible to use 

well known procedures of establishment of reliability for 

assessment of vulnerability. Model “load-strength” is 

frequently used for this purpose in the theory of reliability. 

In our case a bottom velocity of water flow )( bv  can be 

considered as determining factor in regard to “load”. 

Determination of approximate values of bottom velocity for 

any cross-section can be carried out by taking into account 

the values of morphometrical characteristics, hydrological 

and hydraulic elements of river bed, precise definition of 

which in case of necessity will be implemented according  

to direct measurements, while in regard to riverside as 

determining factor will be used integral characteristic of soil 

compaction, which determines permissible (non-washing out) 

speed of water flow )( pv . The latter is the maximal value of 

water flow, which doesn’t cause washing-out of given soil.      

Let’s consider a short, straight-line stretch of river bed, 

which can be taken as prizmatic one with uniform riverside 

soils. Under this assumption we may be able to formalize at 

some level the problem of determination of riverside 

vulnerability. Let’s assume that in certain time period (decade) 

river movement at the stretch under review is steady and 

bottom velocity )( bv experiences relatively insignificant 

changes. Under these conditions bottom velocity of the flow 

can be taken as random value bv  distribution density of 

which is )(1 bvf , mathematical expectation is 
bvm and 

mean square deviation is 
bvδ . 

In the same way we consider as random values a 

permissible speed of water flow pv , distribution density of 

which is )(2 pvf , mathematical expectation is 
pvm and 

mean square deviation is 
pvδ . It is natural that if bv  will 

exceed pv , riverside washing-off will take place, i.e. mutual 

consideration of random values bv  and pv  as of system 

gives us an opportunity of forecasting of riverside 

vulnerability. With this end we input new random value – Z, 

which is related to our start random values via general 

functional dependence: 

)( pb VVZ −= φ                     (1) 

Let’s suppose as already known the probability density 

)( pb VVf −  of the system of random values )( pb VV −  

and determine the distribution law for value Z. Therefore the 

problem of forecasting of vulnerability is considerably 

simplified, since we are moving from the system of two 

random values to one random value Z. 

As far as the dependence (1) represents certain surface in 

ZVV pb 0  system, distribution function G(z) of random 

value Z will be written as follows [4,5] 

))(()()( zVVPzZPzG pb <=<= ,ϕ      (2) 

where z is a distance from cutting plane H to coordinate 

plane pb VV 0 , which is drawn in parallel to it secant line K, 

points of which satisfy the equality Zvv pb =),(ϕ , during 

project onto the coordinate plane pb vv 0  will divide the 

latter into two areas, and points of one of them (let us denote 

it as D) satisfy the condition Zvv pb <),(ϕ . Then for 

fulfillment of (2) a random point  ),( pb VV  must get into D 

area, proceeding from this fact we can write down 

( ) ∫∫=⊂=
)(

),(),()(
D

pbpbpb dvdvvvfDvvPzG
  (3) 

In this mathematical expression the parameter z implicitly 

enters into integration limits, after differentiation of G(z) on z 

we will get distribution density for random value Z 

)()( zGzg ′=                   (4) 

Knowing concrete form of function ),( pb vvZ φ= , we 

can take z as integration limits and write down expression for 

g(z) in an explicit form. As far as the difference between pv  

and bv  is significant for forecasting of riverside 

vulnerability, we can consider functional dependence 

),( bp vvZ φ=  in the form of difference between random 

values 

)( bp vvZ −=              (5) 
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In this case D area will be represented as semiplane of 

coordinate plane )0( pb vv , which is laid below straight line 

Zvv bp =− . This line cuts coordinate axes into Z 

congruent segments (in positive and negative directions)   

Random points, which got into this area, satisfy the 

condition Zvv bp <− . In this case distribution function (3) 

will be as follows: 

b

vz

ppb

D

pbpb dvdvvvfdvdvvvfzG
b

∫ ∫∫∫
−∞

∞+

+

∞− 











== ),(),()(
)(

 (6) 

After differentiation of this expression on z we will get 

distribution density for random value Z  

∫
+∞

∞−

+= ppb dvvzvfzg ),()(        (7) 

As far as bV  and pV  are independent random values, 

)()(),( 21 pbpb vfvfvvf ⋅= . 

Thus distribution density (7) for random value Z will be  

∫
+∞

∞−

+= ppp dvvzfvfzg )()()( 21
      (8) 

In this case it may be said that takes place composition of 

two laws, which will be written down as follows:  

21 ffg ∗=                (9)      

In general cases distribution laws for 1f  and 2f  can be 

of any form, while in our case bV  and pV  represent 

random value of normal distribution that is testified by 

statistical data of long-term observations.   

In this case distribution densities 1f  and 2f  will be 

written in following form:  

( ) 2

2

2

)(

1
2

1
b

bvb

b

mv

v

b evf
δ

πδ

−

=         (10) 

( ) 2

2

2

)(

2 2

1
p

pvp

b

mv

v

p evf
δ

πδ

−

=         (11) 

It is known that composition of two normal distribution 

laws provides normal distribution law [6,7], at the same time 

mathematical expectation of new random value is an 

algebraic sum of start random values, while dispersion is a 

sum of dispersions. 

In our case we will have:  

bp vvz mmm −= , 
bp vvz δδδ += ,     (12) 

Distribution density of random value Z will be as follows:  

2
vp vb

2 2
vp vb

p b

[z (m m )]

2( )

v v

1
g(z) e

2

− −
−

δ −δ= ⋅
δ + δ π

         (13) 

while function of its distribution will be: 

∫
∞−

=
z

dzzgzG )()(            (14) 

As far as there is no risk of riverside washing-off for 

random value Z > 0, vulnerability (r) will be assessed 

according to equation  

( ) ∫
∞−

==<=
0

)()0(0 dzzgGZPr      (15) 

Analysis of obtained formulas shows that increase of bv  

causes reduction of zm , that in its turn increases the area 

below the curve in the negative area of axis z and, therefore, 

assessment of riverside vulnerability at one or another section 

increases, too. 

As far as distribution function )(zG (15) with parameters 

),( zzm δ  can be expressed in the following form by normal 

distribution function 
∗Φ  of random value with parameters 

(0.1) 








 −Φ= ∗

z

zmz
zG

δ
)(            (16) 

then the value of riverside vulnerability can be calculated by 

following formula 









−Φ== ∗

z

zm
Gr

δ
)0(           (17) 

2.2. Defining the Confidence Probability of the Parameters  

Let us consider the following common problem in advance. 

Say, we have random quantity X, with its distribution law 

containing unknown parameter a . We must find a~ , which 

is the relevant evaluation of this parameter and which is 

gained from n  independent experiments, where X acquires 

certain values nXXX ..., 21 .. It is clear that this assessment 

depends on the distribution law of X, as well as on the 

number of experiments (n), and is therefore, a random 

quantity with the distribution law of unknown value a~ . In 

addition, it is a necessary condition that as n increases, the 

assessment approximates parameter a  itself by probability, 

and its mathematical expectation [ ]aM  equals to a . In 
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particular, for m  mathematical expectation of X random 

quantity and D dispersion, we will have:  

n

X

m

n

i

i∑
== 1~ ; 

1

)(
~ 1

2

−

−
=
∑

=

n

mX

D

n

i

i        (18) 

These values for unknown m and D determine the point 

valuation. Let us note that m~ coincides with its statistical 

analog 
n

X

m

n

i

i∑
== 1*

and D
~

differs from 

n

mX

D

n

i

i∑
=

−
= 1

*

*

)(

. However, as n increases, the 

difference between D
~

and 
*D virtually, abolishes.  

First, let us try to determine the confidence interval for the 

principal parameters of the random quantity, in particular, for 

mathematical expectation m let us take some high 

probability ..95.0,9.0(β  ...)95.0,9.0(β and let us find 

interval βI , for which the following condition is true:  

βε β =<− mmP ~(           (19) 

Where βε  is half of width of βI . Values β  and βI   

are called confidence probability and confidence interval, 

respectively. If the distribution law of m~  had been known, 

the solution to the problem would have been trivial. In case 

of unknown distribution law of m~ , a rough method to 

define the confidence interval is used, which is based on the 

assumption that the distribution of random quantity m~  is 

normal notwithstanding the kind of law of distribution of 

initial random quantity X . On the other hand, if admitting 

that the distribution law of random quantity X  is normal, 

then from random quantity m~  we can shift to new random 

quantity T  by using the following formula:  

D

mm
nT

−=
~

                (20) 

which obeys to so called Student distribution law with 

1−n  degree of freedom. The distribution density of this 

law is as follows:  
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Where )(xG  is a known gamma-function: 

∫
∞

−=
0

1)( dueuxG ux
              (21) 

By considering (20), expression (19) will be as follows:  

β
εβ =



















<=

n

D
TP ~ . 

By denoting β
βε

t

n

D
=~ , we will have: 

( ) ( )∫
−

− ==<
φ

β

ββ

t

t

n dttStTP 1  

By considering that )(1 tSn−  is an even function, finally 

we will have:  

( )∫ =−

β

β
t

n dttS
0

12  

By solving this equation, the values of β  given in 

relation to βt and by using the number of 1−n  degree of 

freedom, we will find: 

n

D
t

~

ββε =                 (22) 

In reality, there are tables of Student distribution fractiles, 

where βt  is defined according to β  and )1( −n . 

The confidence interval for mathematical expectation m  

is defined depending on βε , which is symmetrical to m~ : 

( )βββ εε +−= mmI ~;~
             (23) 

The confidence interval of X random quantity with normal 

distribution for D  dispersion is defined similarly. 

Assessment of D  dispersion in formula (18) is expressed 

by means of v  random quantity, which has 
2χ  

distribution for 1−n  degree of freedom. 


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As the distribution density of )(1 σ−nK  is not a 

symmetrical function, the limits of the confidence interval of 

v  random quantity will be selected from the condition of the 

same probability of the departure from any end of this 

interval. As the given confidence interval equals to β , the 

probability of v  not occurring in the confidence interval, 

equals to β−1 . This condition is met, if the probability of 

V random value occurring beyond the right and left ends of 

the interval equals to 
2

1

2

β−=a
. The tables are drafted for 

2χ  distribution, according to which, for p  probability 

and 1−n  number of degree of freedom, the values of 
2χ  

can be found to meet the following condition: 

( ) pVP => 2χ  

In our case, for 
2

1

α=P  let us find 
2

1χ  and for 

2
12

α−=P  let us find 
2

2χ . Now, we can define 1D  and 

2D  limits of confidence interval D , which corresponds to 

1−β   confidence probability: 

( ) β=<< 321 DDDP  

Equation (23) shows that condition 
2

1χ<V  is 

corresponded by condition
( )

2

1

1

1
~

χ
−=> nD

DD , while 

condition 
2

2χ>V  is corresponded by condition 

( )
2

1

2

1
~

χ
−=< nD

DD . Thus, the confidence interval for D

dispersion of normally distributed X  random quantity βI , 

which corresponds to β  confidence probability and 

)1( −n  number of degree of freedom, will be: 

( ) ( )







 −−=
2

2

2

1

1
~

;
1

~

χχβ
nDnD

I  

Now, we can define the confidence interval for τ  value 

of the river bank, whose point valuation is calculated by the 

formula:  









−=

z

zm
t

δ
ϕ *

                (24) 

Here Z  is a random value equaling to the difference 

between the non-washing (admissible) velocity of the coast 

pV  and bV  bed velocity of the water current 

)( bp VVz −= , while )(* xϕ  – is the normal parameters 

of the distribution function (0.1). It is implied that pV  and 

bV  are normally distributed values with relevant 

mathematical expectation and mean square deviation pm , 

pσ  and bm , bσ . From here, it is clear that random value 

z  itself is subject to the distribution law with mathematical 

expectation bpz mmm −=  and mean square deviation of: 

22

bpz δδδ −= . 

To calculate the values of τ  by formula (24), point 

valuations 
zm~ and zδ~  are used for mz mathematical 

expectation of random quantity z  and mean square 

deviation zσ , and in line with formula (18) the following 

values are defined pm~ , pD
~

 and 
bm~ , bD

~
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b

n

i

bi

b
n

V

m

b

∑
== 1~ ; 

1

)~(
~ 1

2

−

−
=
∑

=

b

n

i

bib

b
n

mV

D

b

       (26) 

Where pn  and pn  are the numbers of the observation 

data of random quantities pV  and pV , respectively. 

By considering 
zm~  and zδ~  randomness, to strictly 

define the limits of Z  confidence interval, we must 

consider a new random quantity 

z

zm
V

δ~
~

−=  and its 

distribution law must be identified. 

After identifying the limits of ym  confidence interval of 

the mathematical expectation of value Y , we can fix the 

limits of z  confidence interval, 
1z  and 

2z , from formula 

(24):  

( )1

*

1 yz ϕ=  and ( )2

*

2 yz ϕ=  

Identification of the distribution law of random quantity 

y  entails certain difficulties leading to an unjustified 

complication of the problem [8,9]. However, if considering 

the slight dependence of z  on the form of distribution 

density of random quantity z , i.e. 
zσ and essential 

dependence on the location of the dissipation center, on axis 
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z  (i.e. on 
zm ), then, in formula (24), instead of parameter 

zδ , we may use its point evaluation zδ~ , which by the first 

receiver may be considered a permanent value. Then, 

confidence interval (τ ) of vulnerability is defined with the 

confidence interval of 
zm , which will be taken 

symmetrically from its point evaluation bpz mmm ~~~ −= ,  

for the same probability )(β  for pm  and 
bm , the 

confidence interval can be defined by the same confidence 

probability )( βI   for xm . We can note that as the number 

of degree of freedom )1( −n  is reduced, the degree of 

indefiniteness to asses the mathematical expectation of 

random quantity m  increases, i.e. the confidence interval 

increases for the same confidence probability. Therefore, the 

number of degree of freedom for xm  cannot be more than 

the minimum values of the numbers of degree of freedom for 

pm  and 
bm  [10]. 

Thus, if taking β  as confidence probability and 

( ) 1,min −= bp nnK  as a number of degree of freedom for 

zm , from the Student distribution equation we can identify 

βt , then from formula (22) we can identify βε  and 

consequently, the lower and upper limits of the confidence 

interval of 
1m  and 

2m  (22): 

1

~

+
=

K

D
t z

ββε ; ;~
1 βε−= mm  βε+= mm ~

2 ; 

By inserting the values of 
1m  and 

2m  in formula (24), 

we will gain the confidence interval for the lower and upper 

limits for 
1τ  and 

2τ  vulnerability, with its confidence 

interval of β : 















+
−Φ=

bp DD

m
z ~~

1*

1 ; 














+
−Φ=

bp DD

m
z ~~

2*

2 (27) 

Thus, by β  probability, the value of vulnerability of the 

river bank will not go beyond the interval: 

















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
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
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




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



+

−
−Φ=

bpbp DD

m

DD

m
I ~~

~
;~~

~
** ββ

β
εε

(28) 

3. Results 

Assume, we have the observation data subject to the 

normal distribution law. For the admissible river current 

velocity 15=pn , mathematical expectation 3=pm  

m/sec, mean square deviation 9.0=pσ ; for bed velocity, 

20=bn ; 4=bm m/sec and 3.1=bσ . We must identify 

the confidence interval of the bank vulnerability.  

To imitate the given random quantities, let us use the table 

of values of ξ  random quantity of Gauss, with its 

mathematical expectation of 0=a  and its mean square 

deviation of 1=σ . It is easy to prove that random quantity 

ξσξ +=′ a ξ′  (25), which will be subject to the normal 

distribution law, with mathematical expectation of 

[ ] αξ =′m  and dispersion sion [ ] 2σξ =′D . 

By subsequent use of formula (25) and Gauss table of 

values of ξ  random quantity, we will calculate the values 

of pV  and 
bV : 

1pV =3+0.9·0.2005 ≈ 3.18; 2pV =3+0.9·0.1922 ≈ 4.07;... 

1bV =4+1.3·0.2005 ≈ 4.26;... 

Let us put the calculated values in the table 1 and table 2: 

Table 1. Calculate the values of p
V . 

i  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1p
V  3.80 4.07 2.99 3.03 3.94 1.37 4.06 3.00 4.04 2.40 1.57 3.52 4.69 3.66 2.75 

Table 2. Calculate the values of 
b
V . 

i  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

1b
V  4.26 5.55 3.93 4.04 5.35 1.64 5.50 4.00 5.53 3.13 1.93 4.76 6.45 4.96 3.64 5.40 4.70 2.80 4.12 5.92 

 

Let us calculate the relevant values from formula (25): 

pm~
=48.27:15=3.22; pD

~

=12.2407:14=0.874; pδ~
= 0.935 

bm~ =87.78:20=4.39; bD
~

=31.9652:19=1.682; bδ~ = 1.297 

For random quantity bp VVz −=  we will have: 

17.197.422.3~~~ −=−=−= bpz mmm
 

56.2682.1874.0
~~ =+=−= bpz DDD

�
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6.156.2
~~ === zz Dδ  

From formula (24) and table of the values of distribution 

of normal function, we identify the z -point evaluation of 

the vulnerability of the river bank: 

( ) 77.073.0
6.1

17.1
~

~
*** ≈Φ=







 −Φ=







−Φ=

z

zm
z

δ
 

Now, let us determine confidence interval for mz, with 

confidence probability of β =0,95. As min( pn ,
bn )= 

min(15, 20)=15, then the degree of freedom will equal to K
=15-1=14. From the table of distribution of the given Student 

fractiles β  and K  we find 
95.0t = 2.14. 

From here, by using formula (26) we define:  

88.0
15

56.2
14.2

1

~

95.095.0 ≈=
+

=
K

D
t zε

 

Consequently, the lower and upper limits of the confidence 

interval for values 
1m  and 

2m  will equal to: 

05.288.017.1~
95.01 −=−−=−= εzmm

 

29.088.017.1~
95.02 −=+−=+= εzmm

 

Consequently, from table of the normal function 

distribution and formula (27) we identify 
1z  and 

2z  limits 

of the confidence interval for the vulnerability of a river 

bank: 

( ) 9.028.1
6.1

05.2
~

~
***

1 =Φ=






Φ=







−Φ=

z

zm
z

δ
 

( ) 9.028.1
6.1

05.2
~

~
***

1 =Φ=






Φ=







−Φ=

z

zm
z

δ
 

Finally, the vulnerability of a river bank with 0.95 

probability will be within the interval of 95.0I =(0.57; 0.9) 

with point evaluation z =0.77. 

4. Conclusions 

Among natural processes freshets represent such 

phenomenon, which was, is and will be the reason of biggest 

damage for population of any country. At present there is no 

methodology, which makes possible forecasting of risks 

related to river bed coastal degradation with permissible 

accuracy in order to timely take measures for getting rid of 

expected damage. That’s why a mentioned phenomenon will 

remain so far the research subject for appropriate field of 

science. 

Mechanism of riverside destruction by water flow is 

considered in the presented work as random process, which is 

depended both on influence of flow speed and riverside 

resistance. As the indicator of this process against such 

influence is taken riverside characteristic – vulnerability, for 

determination of which is used a well-known model of the 

theory of reliability, called “load-strength” model. 

Proceeding from this fact a result obtained via theoretical 

formalization in the form of represented formula has to be 

considered as rough approximation and it can’t claim the 

high accuracy. 

Within the frameworks of initiated researches is scheduled 

a follow-up of works with the end of removal of current 

disadvantages, namely determination of limits for 

approximate value of vulnerability with predefined accuracy 

and taking into account time factor in the modeling process 

that will be a step forward in relation to current reality. 
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