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Abstract: This paper is twofold. On the one hand, standpipe water data for small rural communities in Meknes region are 

studied. 89 villages with population less than 1200 have been probed. In total, about 37000 inhabitants are covered by this study. 

From the conducted analysis, it appears that the daily per capita water-use rate for the considered population is uniformly 

distributed with an estimated average of about 10 liter. The lower and the upper 95% confidence bounds placed on this average 

are 4.3 and 15.9; respectively. Such data can, for example, be useful while planning regional water conveyance systems. On the 

other hand, the statistical test used in this work is based on the closed form of the Shapiro-Wilk statistic, Wu, made explicit by 

Cheng and Spiring in the case of uniformly distributed random variables. Even though Wu is computationally simple, its 

sampling distribution seems to be intractable for arbitrarily sample-size values. On that account, Monte Carlo simulations are run 

to generate custom quantiles frequently needed in a typical hypothesis testing problem. Then, the study extends and improves the 

Cheng-Spiring quantile Table 1 for testing for the uniform distribution. It also proposes a simplified and user-friendly graphical 

support which serves the same task. 
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1. Introduction 

Providing Moroccan rural population with safe drinking 

water is one of the several goals of the National Initiative for 

Human Resources Program, popularly known under the 

acronym ‘INDH’ after its French name. The availability of 

potable water in rural districts can contribute to deep positive 

social ramifications e.g. to promote opportunities for girls to 

attend school and to help with reducing rural exodus as well as 

risks of waterborne diseases. 

Water-use rate for rural communities, denoted hereinafter 

by q, is among essential data required to carry out reasonable 

allocations of drinking water resource at a regional scale. This 

could be ascribed to the fact that a rural population inclines to 

organize itself spatially as village clusters, [1] (p. 145). This 

paper makes an attempt to investigate the pattern of standpipe 

water consumption in Meknes rural areas. It focuses on small 

communities having a population of fewer than 1200. In this 

case, standpipe water is generally used to satisfy vital needs 

such as drinking and cooking while the demand of water 

intensive activities, like livestock keeping, is usually fulfilled 

making use of raw-water sources e.g. nearby streams. 

The next two sections present the survey and suggest an 

intuitive exploration of the collected data set. Then a formal 

hypothesis test is conducted in section 4. Particularly an 

extended and improved Table to test for the uniform 

distribution family is provided. It has resulted in an 

amendment to Cheng-Spiring Theorem 5 that is presented in 

section 5. Some heuristics, which compare bias and variance 

magnitudes in the context of the present analysis, are detailed 

in section 6. Finally, the main conclusions are summed up. 

2. Data and Survey 

89 villages (small-communities) among Meknes provinces 

have been probed; all of them are supplied with standpipe 

water. Their population ranges from 90 to 1143 inhabitants 

and add up to 37652 inhabitants. Billed-water data for these 
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villages over four successive trimesters (i.e. one year) have 

been collected. Let Vit denotes the volume of water consumed 

in the village number i during trimester t and Pi is the 

corresponding population. Then, the daily per-capita water use 

rate, for the village i, is defined by: 

1 2 3 4 ,   1 89
365

+ + += ≤ ≤i i i i
i

i

V V V V
q i

P
                          (1) 

The series of observed rates q1, q2, …, q89 is interpreted as 

89 random outcomes of the rate q. The scatter plot of Figure 1 

displays the observed data-points (log10(Pi),qi). In principle, 

positive correlation implies that data tend to crowd in large 

numbers in quadrants I and III and become less dense in 

quadrants II and IV; and vice versa with negative correlation. 

It is clear from the graph that data points swarm quite 

uniformly over the four quadrants which is indicative of a very 

weak correlation. In fact, an estimate R of the population 

correlation coefficient ρ is numerically equal to 39.5310 .−  And 

the associated 95% confidence interval is (-0.20;+0.22). This 

means that the null hypothesis according to which ρ=0 

couldn’t be rejected in a 5% level two-sided test, [2] (p. 43). 

Similar conclusions are drawn by running the conventional 

significance test of the hypothesis that the slope β is equal to 

zero, in the one-dimensional linear regression model 

q=α+βlog10(P) + ε; ε is normally distributed with zero mean 

and α is the intercept. The relationship between the t-statistic 

associated with the least squares estimate β̂ of β and the 

sample correlation coefficient R is, [3] (p. 85): 
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Numerically, t = 0.089. The standard error, ˆ( )SE β , of β̂  is 

equal to 1.1962 and the usual 95% confidence interval for β is 

(-2.271, +2.484). 

 

Figure 1. Observed standpipe water-use rate versus the decimal logarithm of 

the population for Meknes villages: The solid line (nearly horizontal) is the 

regression line. 

So, practically the observed data carry no evidence against 

the assumption that β=0. Explained and residual sum of 

squares are 0.0918 and 1011.7931; respectively. That is, the 

proportion of variance in the observed water-use rates 

explained by the population is practically insubstantial. And 

the population doesn’t seem to be an effective explanatory 

variable to be included in the analysis, in this case. 

3. Data Informal Processing 

The observed realizations of the daily water-use rate range 

from q(1)=4.078 to q(89)=16.079 liter per capita. The boxplot and 

the histogram of Figure 2 display the familiar appearance of the 

uniform distribution family. That visual perception is 

corroborated by the agreement between the sample summary 

statistics, computed via EXCEL (column 2, Table 1) and their 

population counterparts (column 3). The latter are derived under 

the conjecture of a uniform distribution and using the generalized 

least square estimates, µ̂  and σ̂  of the population mean µ and 

standard deviation σ ; namely [4] (p. 92): 

                            (3) 

q(1) and q(n) denote the first and the last order statistics in the 

series of observed water use-rates; n stands for the sample size. 

A more detailed description of the observed rate qi for i=1, 

2, …, 89 is provided by the empirical cumulative distribution 

function (eCDF). 

 

Figure 2. The histogram and the boxplot for the standpipe water-use data of 

the probed Meknes villages. The labels stand for the fraction of data falling 

under each bin. 

Table 1. Some basic summary statistics of the standpipe water-use data for the 

probed Meknes villages. 

 Sample statistic Population statistic 

Average (l/cap.d) 9.674 10.077 

Standard deviation 3.391 3.542 

Skewness 0.002 0 

Excess kurtosis -1.062 -1.200 

The latter is believed to be a reliable and computable 

substitute for the true but inaccessible CDF. Expressly: 

( )
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N(q) denotes the number of observed rates qi less than or 

equal to q. And CDF(q) is the true (unknown) cumulative 
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distribution function of rate q. The legitimacy of the foregoing 

approximation is formally predicated upon the 

Glivenko-Cantelli Theorem, [5] (p. 100). Based on (4), Figure 

3 shows that the eCDF (black bullets) is globally linear 

(particularly at the tails), which is another distinctive feature 

of the uniform distribution family. So, a plausible 

approximation to the true cumulative distribution function of q 

is denoted by aCDF(q) and could be conjectured as: 

1
1 2

2 1

( )    for   
λ λ λ

λ λ
−= ≤ ≤
−

q
aCDF q q                   (5) 

1λ  and 2λ are the distribution range extremities. It is 

essential to bear in mind that the choice made in (5) is based on 

a free interpretation of the data; another less trivial choice may 

be possible as well. However, this ‘arbitrariness’ is bound by at 

least two major restrictions, both of them are in the mainstream; 

namely (i) the bias/variance tradeoff, and (ii) the (almost sure) 

convergence property of the eCDF(q) to the true CDF(q). 

Regarding the former restriction, a model that contains more 

parameters than required tends to overuse the data by learning 

not only from the signal carried in these data but also from the 

noise they are corrupted by. In such models, where excessive 

bias reduction is sought after, large variance becomes an 

inevitable side effect. So the simpler is the model the better. 

However, the model should incorporate a certain degree of 

complexity in order to capture the main features of the observed 

data. This is exactly what the latter restriction is about. That is, a 

reasonable approximating function, to the cumulative 

distribution function, need to be consistent with the eCDF(q). 

The usual down-to-earth procedure to verify this requirement is 

to construct the 95% confidence band around theeCDF(q). If it 

happens that the selected aCDF(q) is not fully covered by this 

band then it ought to be a poor approximation to the true CDF. 

The lower and the upper bounds of the confidence band, L(q;n,α) 

and U(q;n,α), are found via DKWM inequality, [5] (p. 117). 

                      (6) 

BHW= (-0.5n
-1

log(0.5α))
1/2

 represents the band half-width 

and (1-α) stands for the prescribed confidence level; α=0.05. 

The shaded area in Figure 3 highlights the confidence band for 

Meknes data. Remarkably, the band occurs to be straight 

enough to lodge the whole line that represents ˆ ( )aCDF q (solid 

line in Figure 3). ˆ ( )aCDF q is the estimate of aCDF(q) based 

on the generalized least squares estimates, and of the 

parameters 1λ and 2λ . They are given by Lloyd, [4] (p. 92): 
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The symbols in (7) are defined in (3). Again, this fact is 

more of another piece of evidence showing that the observed 

89 data points lend themselves well to the uniform distribution 

family, than an outcome of pure happenstance. 

 

Figure 3. The empirical CDF (black bullet) corresponding to the standpipe 

water-use rate data for Meknes provinces along with the associated 95% 

confidence band (grey area). The solid line is the generalized least squares 

estimate of the aCDF(q) in (5). 

4. Testing Meknes Data for the Uniform 

Distribution 

The informal data exploration presented in the previous 

section seems to support the claim that “water consumption 

rateq is uniformly distributed.” This statement would be taken 

for the null hypothesis H0, against the alternative H1: “rate q 

is not uniformly distributed.” For the time being no specific 

type of departure from H0 is made explicit, just in line with the 

material presented in chapter 3 of Cox and Hinkley book, [6]. 

That is, the aim is to decide whether the 89 data-point sample 

is typical or atypical compared to the parent population, 

assuming that H0 is true. The typicality of data is highlighted 

by Emmert-Streib and Dehmer, [7] (p. 948). In this work, it is 

quantified by the Shapiro-Wilk statistic Wu and its sampling 

distribution. Under H0, Cheng and Spiring give the closed 

form of statistic Wu in terms of the first and the last order 

statistics q(1) and q(n) and the corrected sum of squares, [8]: 
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Where q and n are the sample mean and size. The statistic 

Wu is computationally simple and stays invariant under linear 

transformations. But from Cheng and Spiring Theorems 4 and 

5 it appears that its exact distribution under H0, 

CDF(Wu|H0,n), shows some propensity to develop a 

cumbersome algebraic form when the sample size is increased. 
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So, it would be convenient to generate the quantiles serving 

the task of hypothesis testing directly via numerical simulation. 

The present survey, based on 89 villages, is not covered by 

Cheng and Spiring Table 1, [8]. The latter is therefore 

extended to include large values of n as well as the 0.025- and 

0.975-quantiles. The question is brought down to solving the 

following basic equation in the quantile κ(p,n) for a target 

percentile p pre-specified between 0 and 1, [9]: 

  ( ,H0)p CDF nκ=                                        (9) 

The standard Monte Carlo method [10] is used to relax the 

foregoing equation by replacing the exact sampling 

distribution CDF(Wu|n,H0) with a tractable Monte Carlo 

estimate, MC_CDF(Wu|n,H0). The latter could be, for 

instance, a piecewise linear analog of the empirical 

cumulative distribution function constructed from the 

generated samples, [11]. The other steps are as per usual: 

(i) Generate M sets of uniformly distributed and 

independent n random numbers: S1=(r11,r21,…,rn1), 

S2=(r12,r22,…,rn2), …, SM=(r1M,r2M,…,rnM). 

(ii) Compute the corresponding realizations of the Shapiro 

Wilk statistic, namely: Wu1=Wu(S1), Wu2=Wu(S2),…, 

WuM=Wu(SM) using (8). 

(iii) Sort the values obtained in step (ii) into order statistics 

Wu(1), Wu(2), …, Wu(M) and take them for (0.5/M), (1.5/M) 

(M-0.5)/M quantiles; respectively. 

(iv) Then compute an estimate κ̂ (p,n,M), for the p-quantile 

κ(p,n) using linear interpolation. 

The MATLAB command rand(.) is used to generate the sets 

of random numbers required in step (i). The quantile estimator 

in steps (iii) and (iv) could be performed in many ways, herein 

the MATLAB implementation is opted for and carried out via 

the command quantile(.,.); it also corresponds to relations (4) 

and (5) in Avramidis and Wilson paper, [12]. The latter show 

(in proposition 2, relation (20)) that the solution κ̂ (p,n,M) 

delivered by the procedure above is biased. And, under some 

regularity conditions, the bias is of order 1/M. This property 

meets the classical condition mentioned by Miller, [13] 

(equality (1.2)) that allows for bias reduction by the jackknife 

technique. However, when the number of replications M is 

made larger, the bias correction becomes negligible compared 

with the statistical error, [12] (section 2.2). This fact is 

confirmed by some heuristics performed in the last section of 

this work. In light of this, the previous four-step procedure is 

directly run with 120000 replications, and it results in Table 2. 

Calculation is carried out using MATLAB. Table 2 and Cheng 

and Spiring’s Table 1 [8] (originally based on 10000 

replications) are in good agreement. Yet, it is worthy of 

mention that the quantiles delivered by Cheng and Spiring’s 

Theorem 5 are inconsistent with the values they have 

tabulated; details are deferred to the next section to keep this 

exposition streamlined. Table 2 can also be useful while 

checking the goodness-of-fit for other distributions that are 

fully specified, [8]. A user friendly representation of this Table, 

specialized to the 95% non-rejection region in a two-sided test, 

is suggested in the four panels of Figure 4 for the sample size n 

between (5 and 25); (25 and 50); (50 and 75); and finally (75 

and 100). For example, with n = 89 the size of the sample used 

in this work; panel IV delivers graphically the 95% 

non-rejection region of about (0.115, 0.164) (i.e. section 

[L,U]). A similar range can also be read from Table 2 by linear 

interpolation. The observed value of the test statistic, 

corresponding to the probed Meknes villages, is 0.146. So, 

formally we conclude that the observed (standpipe) water-use 

rate data bear no substantial evidence against the null H0. And, 

that the uniform distribution can be considered as a suitable 

approximation, possibly among others, to the true but 

inaccessible distribution. Auxiliary information such as the 

feasible range for Wu and its central value can be 

straightforwardly obtained from Cheng and Spiring’s 

Theorems 6 and 1, [8]. For n = 89, they are (0.047, 2.092) and 

0.1379; respectively. In brief, an estimate of the average daily 

standpipe water-use rate for Meknes villages is numerically 

equal to 10.077 liter per capita with the 95% confidence 

interval of (4.249, 15.906). It is noteworthy that consumer 

oriented surveys for several rural communities and desirably 

by more than two independent studies are highly 

recommended, [14]. 
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Figure 4. The lower (blue line) and the upper (red line) 95% confidence limits for the Shapiro-Wilk statistic Wu defined in (8). For example, with a sample size

89n = , the non-rejection region is given by the Panel IV. It corresponds to section [L, U] (green line). 

Table 2. P-quantiles computed via Monte Carlo Method based on 120000 replications; n is the sample size. 

n 
percentile 

0.010 0.025 0.050 0.100 0.900 0.950 0.975 0.990 

3 6.0295 6.0752 6.1497 6.3022 7.9738 7.9933 7.9984 7.9997 

4 3.0666 3.2410 3.4387 3.7359 5.3164 5.4331 5.4934 5.5304 

5 2.1998 2.3097 2.4202 2.5785 4.0074 4.1770 4.2918 4.3855 

6 1.7087 1.8049 1.8927 2.0093 3.2236 3.4011 3.5390 3.6720 

7 1.3979 1.4780 1.5535 1.6503 2.6967 2.8617 3.0041 3.1563 

8 1.1882 1.2552 1.3196 1.4021 2.3158 2.4699 2.6050 2.7568 

9 1.0368 1.0954 1.1517 1.2242 2.0250 2.1719 2.2994 2.4460 

10 0.9223 0.9732 1.0205 1.0830 1.7927 1.9305 2.0504 2.1944 

11 0.8289 0.8752 0.9185 0.9746 1.6018 1.7298 1.8408 1.9813 

12 0.7577 0.7995 0.8374 0.8872 1.4455 1.5611 1.6669 1.7976 

13 0.6976 0.7344 0.7686 0.8142 1.3180 1.4230 1.5236 1.6465 

14 0.6460 0.6797 0.7126 0.7535 1.2107 1.3082 1.4012 1.5150 

15 0.6013 0.6323 0.6623 0.6999 1.1167 1.2068 1.2911 1.3995 

16 0.5639 0.5931 0.6200 0.6552 1.0343 1.1154 1.1916 1.2899 

17 0.5319 0.5593 0.5842 0.6163 0.9672 1.0426 1.1125 1.1996 

18 0.5028 0.5273 0.5515 0.5812 0.9060 0.9753 1.0410 1.1251 

19 0.4760 0.5007 0.5224 0.5507 0.8512 0.9155 0.9745 1.0529 

20 0.4528 0.4749 0.4959 0.5219 0.8026 0.8617 0.9187 0.9934 

21 0.4310 0.4527 0.4721 0.4973 0.7591 0.8150 0.8663 0.9349 

22 0.4134 0.4335 0.4521 0.4747 0.7208 0.7725 0.8232 0.8865 

23 0.3968 0.4157 0.4331 0.4547 0.6851 0.7335 0.7802 0.8386 

24 0.3803 0.3977 0.4147 0.4354 0.6529 0.6980 0.7418 0.7952 

25 0.3665 0.3831 0.3988 0.4183 0.6226 0.6650 0.7068 0.7589 

26 0.3526 0.3688 0.3836 0.4023 0.5961 0.6356 0.6742 0.7218 

27 0.3405 0.3555 0.3697 0.3873 0.5706 0.6082 0.6433 0.6890 

28 0.3287 0.3434 0.3571 0.3739 0.5485 0.5840 0.6183 0.6609 

29 0.3178 0.3316 0.3447 0.3610 0.5278 0.5620 0.5935 0.6332 

30 0.3084 0.3209 0.3337 0.3491 0.5068 0.5387 0.5702 0.6086 

31 0.2988 0.3116 0.3236 0.3386 0.4898 0.5202 0.5495 0.5863 

32 0.2902 0.3026 0.3138 0.3282 0.4721 0.5018 0.5287 0.5638 

33 0.2821 0.2939 0.3047 0.3185 0.4559 0.4836 0.5098 0.5424 

34 0.2743 0.2853 0.2963 0.3092 0.4416 0.4681 0.4923 0.5249 

35 0.2670 0.2779 0.2880 0.3007 0.4276 0.4532 0.4766 0.5056 

36 0.2594 0.2703 0.2803 0.2925 0.4135 0.4375 0.4609 0.4910 

37 0.2529 0.2634 0.2729 0.2848 0.4012 0.4244 0.4460 0.4737 

38 0.2474 0.2573 0.2664 0.2777 0.3902 0.4129 0.4340 0.4598 

39 0.2419 0.2511 0.2596 0.2705 0.3791 0.4001 0.4200 0.4449 
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n 
percentile 

0.010 0.025 0.050 0.100 0.900 0.950 0.975 0.990 

40 0.2357 0.2448 0.2535 0.2641 0.3690 0.3893 0.4087 0.4330 

42 0.2252 0.2343 0.2422 0.2519 0.3491 0.3680 0.3856 0.4077 

44 0.2152 0.2238 0.2316 0.2409 0.3316 0.3490 0.3657 0.3857 

46 0.2068 0.2144 0.2217 0.2305 0.3158 0.3322 0.3479 0.3671 

48 0.1988 0.2062 0.2130 0.2213 0.3012 0.3166 0.3310 0.3485 

50 0.1916 0.1986 0.2049 0.2128 0.2884 0.3029 0.3166 0.3335 

54 0.1782 0.1846 0.1905 0.1976 0.2648 0.2777 0.2898 0.3045 

58 0.1671 0.1728 0.1781 0.1845 0.2449 0.2563 0.2669 0.2798 

62 0.1570 0.1623 0.1670 0.1730 0.2276 0.2379 0.2471 0.2590 

66 0.1481 0.1530 0.1574 0.1628 0.2130 0.2222 0.2308 0.2414 

70 0.1401 0.1447 0.1488 0.1538 0.1999 0.2083 0.2160 0.2259 

75 0.1317 0.1358 0.1396 0.1441 0.1855 0.1930 0.1998 0.2089 

80 0.1239 0.1278 0.1311 0.1353 0.1729 0.1798 0.1860 0.1939 

85 0.1170 0.1205 0.1238 0.1276 0.1621 0.1683 0.1739 0.1808 

90 0.1109 0.1143 0.1173 0.1208 0.1524 0.1580 0.1630 0.1697 

95 0.1056 0.1086 0.1113 0.1146 0.1438 0.1489 0.1537 0.1594 

100 0.1006 0.1035 0.1060 0.1091 0.1362 0.1410 0.1454 0.1509 

 

5. Monte Carlo Versus Closed Form 

Sampling Distributions for n = 3 or 4 

The function defined by Theorem 5 in reference [8] is not a 

feasible PDF because it doesn’t integrate to 1 over its range; it 

integrates approximately to 1.084. As such, the quantiles 

corresponding to 0.99; 0.95; 0.90 and 0.10 percentiles are in 

disagreement with their counterparts computed directly by 

numerical simulation (columns 2 and 3, Table 3). The misfit is 

also clearly displayed on Figure 5; it starts to show up at 

Wu=200/54 (black arrow). The amended expression of the 

sampling distribution for n=4 is deduced using Theorem 2.1.5 

in the Casella and Berger book, [15] (p. 51). It should be: 

1 1

2 2
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The amendment in (10) is brought by the factor b2. Good 

agreement is observed between (10) and the outcome of the 

Monte Carlo code (Figure 5). It is also compiled in the last two 

columns of Table 3. Figure 6 confirms that the sampling 

distribution derived from Cheng and Spiring’s Theorem 4 [8] 

and that simulated by Monte Carlo method agree well. 

 

Figure 5. The cumulative distribution function of the Shapiro-Wilk statistic 

computed via (i) Equation (10) (ii) Monte Carlo Method and (iii) 

Cheng-Spiring Theorem 5, for sample size 4n = . 

 

Figure 6. The cumulative distribution function of the Shapiro-Wilk statistic 

computed via Cheng-Spiring Theorem 4 and the Monte Carlo Method, for 

sample size 3n = . 
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Table 3. Quantiles cross-checked for sample size 4n = . The Monte Carlo Method (MCM) simulation is based on 120000 replications. 

Percentile 
Cheng and Spiring Tabulated 

quantile 

Quantile based on Cheng 

and Spiring Theorem 5 
Quantile based on (10) 

Quantile generated in this 

work by the MCM 

0.01 3.080 3.067 3.067 3.067 

0.05 3.440 3.447 3.447 3.439 

0.10 3.740 3.718 3.738 3.736 

0.90 5.310 5.130 5.316 5.316 

0.95 5.430 5.239 5.433 5.433 

0.99 5.530 5.329 5.531 5.530 

 

6. Heuristic Investigations on the 

Accuracy of the Monte Carlo Quantile 

Estimate 

Estimator, κ̂ (p,n,M) of the root κ(p,n) of (9) is by 

construction a random variable. That is, its realization changes 

randomly from a code run to the next. And, the mean squared 

error (MSE) is a measure widely accepted for the task of 

assessing how well (p,n,M) approximates the unknown 

p-quantile κ(p,n). The heuristics presented in this section are 

intended to provide a straightforward verification (for n=3 and 

4) of the fact that the bias becomes effectively negligible when 

the number of replications is increased. That is, the variance 

may be used as a suitable proxy for the ˆ( ) .MSE κ The 

simulations are illustrated with the least favorable case of 

extreme quantiles notorious for being associated with severe 

bias as explained in the discussion following the proposition 2 

in Avramidis and Wilson paper, [12]. Thereby, percentile p 

would be set equal to 0.990. The ˆ( )MSE κ is conventionally 

broken into two parts, yet a bigger picture is given in reference 

[16] (p. 223): The first part is the variance ˆ( )Var κ ; it refers to 

the expected squared deviation of the estimate κ̂ (p,n,M) 

around its mean. ˆ( )Var κ is numerically computed by running 

the Monte Carlo code T times (T=200, say), for specified p, n 

and M. The sample variance of the resulting series of the code 

outputs 1̂κ , 2κ̂ ,…, ˆ
Tκ is taken for an approximate value of 

ˆ( ).Var κ The second part is the bias-squared, and it measures 

the gap between the average of the estimate κ̂ (p,n,M) and the 

true mean ( , )p nκ . The latter is, in principle, unknown for 

arbitrary values of n. Otherwise, it would be unnecessary to 

seek to solve (9) by approximation. But for n=3, thanks to 

Cheng and Spiring Theorem 4 [8] combined with elementary 

rules of integration [17], the closed form solution κ(p,3) is as 

follows: 

2

24
( ,3)

3 (1 )
p

p
κ =

+ −                                      (11) 

Particularly, (0.990,3) 7.999733κ ≈ . As such, the bias could 

be explicitly computed. Similarly, for n=4 κ(p,n), based on 

(10), is given by: 

50 2
( , 4)

9(2 2 2 )
p

p

πκ
π

=
+ −

 for 
2

1
6

π 
≥ − 
 

p          (12) 

and (0.990,4) 5.5306588κ ≈ . Figure 7 and Figure 8 contrast the 

magnitudes of the variance κ̂ (p,n,M) and the corresponding 

squared bias for M running between 10000 and 120000. It is 

observed that, globally, both the variance and the bias tend 

decrease with the number of replications as illustrated by the 

associated regression lines. Moreover, the squared bias is 

negligible in magnitude compared with the variance. For large 

values of n, (e.g. n = 89, the size of the sample used in this work) 

Figure 9 illustrates to what extent the variance ˆ( )Var κ is 

impacted by the number of replications: For M=10000 (The 

value adopted by Cheng and Spiring, [8]), the 200 Monte Carlo 

code runs result in a series of realizations represented by the 

yellow histogram with a mean value of 0.171925 and a variance 

equals to
7

4.56510
−

. When M is increased to 120000 (The 

value adopted by this work), the mean value remains almost 

unchanged; it is equal to 0.171885 but the corresponding 

variance reduces substantially to
8

4.53210 .
−

 This is visualized 

in the data spread shown by the dotted histogram superimposed 

to the previous one in Figure 9. And it means that, the 

approximate solution to (9) κ̂ (p,n,120000) compiled in Table 

2, is likely not to disperse too much around its mean value. 

Therefore, it could be considered as accurate enough for most 

practical purposes. These conclusions hold true for all 

numerical experiments conducted with various values of pand 

n. 

 

Figure 7. Mean squared error components for the Monte Carlo estimate of 

the 0.99-quantile: Variance (red bullet) and bias squared (blue circle) versus 

the number of replications (sample size n=4). 

κ̂
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Figure 8. Mean squared error components for the Monte Carlo estimate of 

the 0.99-quantile: Variance (red bullet) and bias squared (blue circle) versus 

the number of replications (sample size n=3). 

 

Figure 9. The impact of the number of replications M on the 

spread/accuracy of the 0.99-quantile estimated by the Monte Carlo Method.  

The labels indicate the number of data points under each bin. The Monte 

Carlo code is run 200 times in each case. 

7. Conclusions 

This work surveyed standpipe water consumption in 89 

small villages (less than 1200 inhabitants) in the rural Meknes 

(Morocco). The involved population is about 37652 

inhabitants. It can be concluded that: 

(i) The observed data, being consistent with the uniform 

distribution, suggest that the population form one ‘class’ 

of consumers mainly concerned about covering their 

basic needs e.g. safe drinking water, cooking and 

ablutions, as it is substantiated by the facts on the 

ground. Actually, the other water intensive activities 

(e.g. livestock keeping) are generally satisfied by 

nearby raw-water sources. 

(ii) In similar vein, the ANOVA presented in the second 

section shows that the population is not an effective 

explanatory variable of the variance in the observed 

standpipe water-use rates. 

(iii) An estimate of the average daily standpipe water-use 

rate is 10.077 liter per capita with the 95% confidence 

interval of (4.249, 15.906). Such data are among 

essential inputs for regional water planning and 

management policies, especially under water scarcity in 

a deeply changing environment [18]. 

(iv) Also, the study extends and improves the Cheng-Spiring 

quantile Table 1 for testing hypotheses significance 

about the uniform distribution family. A simplified and 

user-friendly graphical support is proposed as well. 
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