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Abstract: Seismic facies is a seismic reflection unit defined by specific seismic reflection characteristics, that is, the seismic 

responses of sedimentary facies or geological bodies, whose accuracy will directly affect the reliability of oil and gas exploration 

results. Currently, seismic facies is generally recognized depending upon the differences between certain single trace seismic 

attributes (waveform, frequency spectrum, and amplitude, etc.) and adjacent units to conduct cluster analysis. Such methods, 

however, have ambiguity in identifying special reflective structures with continuous waveforms (e.g. massive carbonate 

deposits). In order to solve this problem, this paper incorporates artificial intelligence (AI) technology into automatic recognition 

of seismic facies with special reflection structures. Firstly, a 2D seismic facies classification sample label set is designed and 

formed. Then, a seismic facies prediction model is designed and constructed using a multi-layer convolutional neural network 

(CNN). Finally, the trained model is used to automatically track the seismic facies in the study area. This method was applied to 

seismic facies recognition for the Sinian Dengying Formation in an area of the Sichuan Basin, and the seismic facies recognized 

were compared with artificially interpreted ones. It is confirmed that the proposed method provides a better effect than artificial 

interpretation, with greatly improved accuracy and efficiency. 
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1. Introduction 

The term "seismic facies" is derived from sedimentary 

facies and can be understood as the sum of the manifestations 

of sedimentary facies in a seismic data volume. It is a 

comprehensive reflection of sedimentary body shape, 

lithology difference, and stacking style of stratigraphic 

assemblage in space. Accurate recognition of seismic facies is 

of great significance for sedimentary facies research and 

hydrocarbon resource exploration and development [1-3]. 

Based on the recognition and division of sequence boundaries 

from regional seismic data, seismic facies types are identified 

according to the internal structure and external morphology of 

seismic reflections, and then the seismic facies are mapped [2]. 

In previous studies, if it is possible to establish corresponding 

relations between different types of seismic facies and simple 

seismic attributes (e.g. seismic waveform, amplitude, and 

frequency), then seismic facies can be recognized through 

clustering methods. However, for seismic facies types that 

must be distinguished through global spatial distribution 

information such as special reflection structures and 

waveform continuity, the application of conventional 

clustering methods generally cannot achieve good results [3]. 

Currently, geologists still rely on their personal experience to 

identify seismic facies by physiognomy method through many 

seismic sections one by one, which has worse repeatability 

and lower efficiency, making it difficult to objectively depict 

seismic facies [4]. 

Artificial intelligence (AI) technologies are widely used in 

various industries [5-8], and they are especially advantageous 

in image feature recognition. If AI technologies can be used 

instead of manual labor to achieve automatic recognition of 

seismic facies with special reflection structures, they will 

greatly improve the efficiency and accuracy of interpretation. 

Currently, there are two major types of methods for seismic 
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facies recognition: one is the patch-based model, and the other 

is the encoder-decoder model [5-6]. The former is to input a 

seismic image patch (for example, in size of 64×64×3), and 

output the classification of the entire image after processing 

(with only one value, such as whether it is a salt dome or a 

river channel, marked at the center of the image). The latter 

inputs the entire seismic section and outputs the classification 

on each sample point (pixel point) on the entire image after 

processing. Considering the application limitations, the first 

method is considered to be more practical. Therefore, this 

paper adopts the first method for subsequent research. 

The application bottlenecks of these methods are mainly 

found in two aspects. One is the training of universal model, 

because the types of seismic facies that are concerned in 

different regions vary greatly, and trained models are often 

only sensitive to specific reflection features. The other is the 

quick creation of a sample set for model training. This paper 

proposes the targeted training of AI model for some blocks in 

the study area and then promotes it in the same study area or 

adjacent areas (the same subfacies zone), which avoids the 

problem of model generalization, and directly creates sample 

labels using existing interpretation results. 

2. Methodology 

2.1. Design and Making of Sample Set and Labels 

Machine learning technologies can be classified to three 

categories according to label types [1], namely, clustering 

methods that do not require sample labels, classification 

methods that require labels, and reinforcement learning 

methods with delayed label types. In AI model training, 

mainstream technologies still need a large number of data 

labels. The sample set is used for the input of the AI model, 

and the label is the expected output of the model. As shown in 

Figure 1, depending upon the actual data characteristics of the 

study area, the sample set is made using multi-trace data from 

the inlines and crosslines of the sample point locations of the 

target layer, and the artificially interpreted seismic facies type 

of the sample point location is used as the sample label. As 

shown in Figure 5, the overall data (3200 km
2
) is divided into 

a training set, a validation set, and an application set. The 

training set is located in the red box for model training; the 

validation set is located in the black box to verify the accuracy 

of the trained model in this area; and the application set is 

located in a colorless area (no label) and is the data for 

promoting application in this area. 

2.2. Design and Training of AI Model 

In this study, a combination of 5-layer CNN (convolutional 

layer) and 2-layer FCN (fully-connected layer) is adopted 

(Figure 2). 

Input layer: It is used to receive model input data. The 

CNN+FCN model is adopted here, so the model input is 

required to be seismic data with fixed size. Moreover, in order 

to improve the adaptability of the model to different data, the 

input samples are normalized. 

 

Figure 1. Process of making sample sets and labels. 

Convolutional layer: The convolutional kernel is used for 

feature mapping and feature extraction. The shared weight 

feature greatly reduces the number of model parameters, and 

improves the trainability and the demand for sample size. The 

activation function RELU layer is used to map the output of 

the convolutional layer nonlinearly to improve the recognition 

ability of nonlinear features. The pooling layer (MAXPOOL) 

is applied to perform dimensionality reduction on input 
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samples and improve the view of the convolutional kernel 

layer by layer, making it capable of extracting global features. 

Fully-connected layer: It is mainly used to re-fit and 

comprehensively analyze the features extracted from the 

convolutional layer. The normalized layer is used for 

preprocessing in the middle of the neural network layer, that is, 

the input from a layer is normalized before entering the next 

layer, which can effectively prevent "gradient dispersion" and 

accelerate network training. DROPOUT is used to improve 

the generalization ability of a model. DROPOUT refers to 

temporarily discarding a portion of neural network elements 

from the network according to a certain probability during the 

training process of a deep learning network. This is equivalent 

to transforming a large neural network into a combination of 

multiple small networks, which can significantly improve the 

generalization ability of the model. 

 

Figure 2. Structure of the proposed AI model. 

Output layer: It is used to output the facies type judgment 

results of input samples, which can be facies classification or 

probability distribution. 

Two aspects are mainly considered in the model training 

process. One is random breaking up of sample data. The large 

amount of data in the sample set can only be loaded in the 

model in batches for training in turn. If the original sample set 

is not randomly broken up, the same batch of data may derive 

similar characteristics, which will lead to fluctuations in the 

prediction accuracy of the model. The other is facies type 

weighting coefficient. Innovatively, different weighting 

coefficients are set for different facies types in the model 

training process to balance the difference in the number of 

samples of different facies types in the sample set. 

3. Application 

The Sichuan Basin is a large superimposed basin developed 

on the basis of the Upper Yangtze craton [9-12]. It has 

experienced the evolution of marine basin in the Late 

Proterozoic–Middle Triassic period and continental basin in 

the Late Triassic–Cenozoic period. The Dengying Formation 

is the first set of basin-wide marine sedimentary strata after the 

deposition of the Doushantuo Formation in the basin. It is 

lithologically composed of algal limestone and dolomite, with 

quartz sandstone and mudstone locally. The study area is 

located in central Sichuan Basin. From the perspective of 

sedimentary paleogeography, the Dengying Formation is 

discovered in the east platform of the platform margin facies 

belt in the Deyang-Anyue rift trough [13-16]. It is a set of 

carbonate platform sedimentary system, belonging to the 

facies belt with relatively calm water body within the platform. 

Sedimentary facies belts such as grain shoal, algal mound, 

intershoal sea and lagoon are developed, and grain shoal and 

algal mound microfacies are relatively developed, with 

platform margin and open platform sediments in dominance. 

 

Figure 3. Classification and interpretation section of four seismic facies models in Deng 4 Member inside platform in central Sichuan Basin. 
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Figure 4. Four seismic facies models and their corresponding relations with sedimentary facies in Deng 4 Member. 

According to the known drilling and seismic reflection 

characteristics (Figure 3), and considering that the seismic 

reflection parameters in the facies change zone are different 

from those in adjacent units [7], the corresponding relations 

between four seismic facies models and sedimentary 

microfacies in the upper part of the fourth member of 

Dengying Formation (Deng 4 Member) of Sinian are 

preliminarily established (Figure 4). It is indicated that the 

weak top reflection structure in Model I represents the deposit 

of algal mound, the wide trough reflection structure in Model 

II represents the deposit of blocky mound beach, the 

intermittent peak reflection structure in Model III represents 

the interbedded deposit of mound beach, and the continuous 

peak reflection in Model IV represents the deposit of 

low-lying zone between algal mounds. 

Based on the waveform section characteristics of four 

seismic facies models, seismic facies are identified and 

extracted artificially on individual seismic section. The 

manually mapped seismic facies model distribution provides 

basic data for subsequent research (Figure 5). 

In the model training process, the prediction errors of the 

training and validation sets are monitored in real-time. As 

shown in Figure 6, the error of the training set decreases 

rapidly; the partial error of the validation set first decreases 

and then maintains a stable level, and no obvious over-fitting 

occurs. This indicates that the model structure set parameters 

are reasonable. 

 

Figure 5. Artificially interpreted seismic facies map. 

 

a. Error monitoring for training set                b. Error monitoring for validation set 

Figure 6. Error monitoring during training. 
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Figure 7 shows the predicted seismic facies by the AI model, 

displaying stable and continuous distribution. The predicted 

results are consistent with the artificially interpreted results in 

trend, except some differences in local regions. 

In the training area and the validation area, regions with 

significant differences between model prediction and artificial 

interpretation are selected for detailed comparison on section 

(Figure 8). After careful recognition of the section, the B-C 

segment in the training area should be interpreted as 

intermittent peak of Model III, which is considered to be an 

artificial interpretation error. The E-F segment in the 

validation area should be intermittent peak and the F-G 

segment should be wide trough, which are considered as errors 

in artificially identified boundaries. The H-I-G-K segment in 

the application area has higher prediction accuracy through 

precise section recognition. 

4. Conclusions 

The AI solution is proposed for automatic seismic facies 

recognition. Practical application verifies that the method can 

effectively recognize seismic facies with special reflection 

structures, indicating that special seismic facies or seismic 

attributes can be quickly recognized through artificial 

intelligence. 

Most of the artificially interpreted seismic facies in the 

study area are compared with the prediction results by AI 

model, confirming that the latter is superior. Artificial 

intelligence can eliminate significant errors in artificial 

interpretation and improve interpretation accuracy. 

 

Figure 7. Classification of seismic facies predicted by AI model. 

 

Figure 8. Analysis and revision of model prediction accuracy. 
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In the same study area, AI technologies are used to achieve 

small-scale, real-time training for the special needs of an 

interpretation and depending upon partial interpretation 

results, thereby achieving automatic seismic facies 

recognition across the area. This application is verified to 

effectively compensate for the inadequate generalization 

ability of AI model in the promotion. 

After fine and artificial interpretation in small areas, the 

application of artificial intelligence's fast and accurate 

learning ability can quickly promote the results of artificial 

interpretation in small areas to nearby areas. While 

maintaining consistency in seismic data quality, it can greatly 

improve interpretation efficiency and reduce the labor 

intensity of interpreters, which is worthy of promotion. 
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