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Abstract: The process of hybrid deep learning is highly integrated with the seismic inversion, leading to the black box 

phenomena, which hampers the understanding of deep-learning inversion process. In this paper, a numerical example is 

presented to visualize the process of deep learning from the perspective of elastic inversion. Synthetic seismic data is generated 

by forward modeling on a wedge model, after which the GRU-CNN hybrid deep learning algorithm is applied to obtain the 

inverted impedance method. In specific, the extraction of local seismic features by CNN, the extraction of low-frequency 

seismic features by GRU, activation layer, Adam and learning rate schedules, initialization model, loss function, and training 

process are detailed illustrated and visualized, all of which reveal the internal operating mechanism of the black box. The 

results show that: 1) after required epoch iterations, the features extracted by CNN becomes close to the real impedance, while 

the features extracted by GRU is close to the low-frequency information involved in conventional seismic inversion (which is 

consistent with the cognition from commercial software, e.g., Jason, Geoview, etc.), 2) The learning rate is a very critical 

parameter in the optimization process. Comparing with the constant learning rate, the cosine learning rate converges faster with 

better performance, and 3) the initial impedance model in hybrid deep learning is to initialize the weights of all neurons, which 

is essentially different from those of conventional seismic inversion scheme, e.g., constrained sparse pulse inversion. 
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1. Introduction 

Deep learning has been widely explored since the early 

twentieth century [1]. The remarkable performance of 

deep-learning-based technique has also gained popularity in 

the petroleum exploration industry [2]. 

The rapid development of deep learning is primarily due to 

three reasons: algorithm, big data, and computing power. The 

back-propagation algorithm is the basic algorithm of deep 

learning, which has been well developed [3]. Big data is 

available since the prosperity of the Internet provides 

tremendous data for use and analysis. Computing power is 

greatly enhanced by GPU, TPU, etc., of which performance 

has far exceeded that of CPU. In the past four years, deep 

learning has made a spurt of development in the field of 

seismic exploration. In summary, 2017 can be regarded as the 

year of awakening for the intelligent application, and 2018 

can be regarded as the explosive year of intelligent 

application research, and 2019 is the year of initial results of 

intelligent application research in petroleum exploration [4]. 

The application of deep learning includes seismic structural 

interpretation (e.g., fault, horizon, salt dome, channel, cave, 

etc.) [5], noise suppression and signal enhancement [6], 

litho-facies identification[7], reservoir parameter prediction 

[8], seismic forward modeling [9], seismic velocity modeling, 

first arrival picking, seismic data interpolation [10], seismic 
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attribute analysis, and microseismic data analysis, etc. The 

adopted machine learning techniques include deep neural 

networks, dictionary learning, generative confrontation 

network, random forest algorithm, and cluster analysis 

algorithms [5]. In particular, Alfarraj et al. proposed using 

integrating Gated Recurrent Units (GRU) to extract 

low-frequency information of long-term series, and using 

convolutional neural networks (CNN) to extract 

high-frequency features of seismic data, to improve the 

accuracy of seismic inversion [11]. 

However, unlike the linear system which can be clearly 

explained, the mechanism behind deep learning has a 

characteristic of inexplicability. Researchers often use black 

box to interpret such mechanisms of deep learning. In the 

field of geophysics, the mechanism of deep learning is poorly 

understood. For example, the meaning of manually extracting 

features is clear to us, while the neural network of deep 

learning is trained to get as close to the training set as 

possible. Although the neural network can indeed solve any 

specific questions by minimizing the objective function using 

the reverse gradient algorithm, the change of weights and the 

physical meaning of extracted features remain unclear to us. 

Therefore, we are unable to disassemble it and internally 

analyze the function of each part [12-14]. 

In this paper, we illustrate the black box in detail via a 

numerical example of seismic inversion. The GRU-CNN 

hybrid deep learning algorithm proposed by Alfarraj is 

applied to synthetic seismic data [11]. In specific, the 

extraction of local seismic features by CNN and of 

low-frequency seismic features by GRU, activation layer, 

Adam and learning rate schedules, initialization model, loss 

function, and training process are detailed illustrated and 

visualized. 

2. Methodologies 

2.1. GRU-CNN Hybrid Deep Learning 

We employ the deep learning algorithm proposed by 

Alfarraj et al. to illustrate the mechanism of black boxes [11]. 

The network structure is a hybrid deep learning combining 

Gated Recurrent Units (GRU) and convolutional neural 

network (CNN). The GRU network can extract 

low-frequency information from long-term series, which is 

consistent with the characteristic of seismic data. Notably, the 

GRU network is developed based on Recurrent Neural 

Network (RNN) and (Long Short Term Memory) LSTM, 

which can be selected accordingly in practical applications. 

Figure 1a shows the network structure of GRU-CNN. A 

total of three layers of GRU networks are selected in this 

article (GRU networks with more layers are not discussed 

here). The extraction of high-frequency information is 

achieved by connecting three CNNs in parallel. Different 

local features of seismic data are mainly achieved by setting 

different convolution kernel sizes and step lengths. Similarly, 

a total of three-layer CNN network is analyzed here while the 

CNN network with more layers is suppressed for simplicity. 

In summary, the seismic inversion results containing 

low-frequency and high-frequency information are jointly 

extracted through the combination of GRU and CNN 

networks. 

The inversion process using the hybrid deep learning 

network is outlined in Figure 1b. The synthetic data of a 

wedge model is the input training data, and P-wave 

impedance (Zp) is inverted as output data through the hybrid 

deep learning network, In particular, at the well location, the 

mean square error between the inverted and true impedance 

(i.e., logging curves) can be calculated, which is the 

well-control supervision part. The modeled seismic 

responses (based on the convolution between reflectivities 

and wavelet) and the (input) observed seismic data make up 

the misfit (loss) of seismic data, which is the non-well 

seismic unsupervised part. Through the forward and 

backward propagation of multiple epochs of the deep 

learning network, the total loss of the two parts is minimized 

and the multi-dimensional nonlinear inversion problem can 

be solved. 

 

(a) 
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(b) 

Figure 1. (a) The network structure of the GRU-CNN hybrid deep learning and (b) the work-flow of the GRU-CNN-based seismic impedance inversion. The 

ellipsis represents the number of layers of GRU network in (a) and the number of parallel CNN network layers in (b). 

2.2. Loss Function 

For the back-propagation process of the hybrid deep 

learning network based on gradient descent method, the loss 

function (objective function) should be first defined, then 

partial derivative of the loss function to the gradient is 

calculated, and finally the weights and bias parameters along 

the gradient descent direction can be calculated. The setting 

of the loss function is of significance in calculating the 

gradient. Here, we employ the loss function based on mean 

square error, which is the most commonly used loss function. 

The loss function of the hybrid deep learning inversion 

consists of two parts [11]: the seismic loss and the elastic 

impedance loss, which takes the form as 

1 2( ) ( ) ( )L L Lθ α θ β θ= +            (1) 

where θ represents the angle of seismic incident, L1(θ) 

represents the elastic impedance loss, L2(θ) represents the 

seismic loss, α and β represent the regularization parameters 

which have different values and represent the degree of 

confidence in the seismic data or logging elastic impedance. 

The seismic loss L2(θ) is the mean square error between 

the synthetic seismic and the input seismic, i.e., 
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where mi represents the elastic impedance of ith trace, Fθ(di) 

represents the EI inversion of the seismic data di, F 

represents the forward inversion of the EI from the inversion. 

The impedance loss L1(θ) is the mean square error between 

the predicted EI and the real EI on the training seismic trace, i.e., 
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In the next section, we try to explain each part of Figure 1b 

in detail through a numerical example. With the intention of 

revealing the black box, we illustrate and visualize the 

inversion process and discuss some key parameters involved 

in the hybrid deep learning. 

3. Black Box Visualization 

3.1. Synthetic Model 

We designed a simple geological model with three 

lithologic layers [12], in which the first and third layers are 

clay, the second layer is sandstone. The first and third layers 

(clay) can be considered as two semi-spaces, of which 

thickness is beyond the seismic resolution. The thickness of 

the second layer ranges between 0 and 30 m, as shown in 

Figure 2. In addition, the impedance of clay and sandstone is 

set as 4500 m/s*g/cc and 5500 m/s*g/cc, respectively. The 

model reflectivity is calculated by 

1

1

i i

i

i i

Z Z
R

Z Z

+

+

−
=

+
               (4) 

where Z represents the impedance and the subscript i 

represents the ith layer. According to Equation 4, the 

reflectivities between the clay and sandstone are 0.1 (top 

layer, R1) and -0.1 (bottom layer, R2), respectively, as 

expressed by 

( )0.1, 0.1
T

iR = −            (5) 

For simplicity, we employ a three-point source wavelet 

given by 

( )1,3, 1
T

w = − −             (6) 

Based on the convolutional model, synthetic seismic data d 

can be generated by convolving the reflectivities with source 

wavelet as 

d R w= ∗                (7) 

The synthetic data of the wedge model is shown in Figure 

3a (where the last trace exhibits no seismic reflection since 
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the thickness approaches 0). For simplicity, we only select 

the last three traces (Figure 3b) which involve tuning effect 

for analysis. Since the hybrid deep learning algorithm is a 

semi-supervised learning method, a certain amount of labeled 

data is required as a supervised sample. For this reason, the 

first and third traces are set as labeled data, of which 

impedance is known, and the impedance as well as the 

seismic data are treated as training dataset. 

 

Figure 2. A simple geological wedge model. 

 
Figure 3. (a) Synthetic data of the wedge model with its (b) 47th, 48th, and 

49th traces for analysis. 

3.2. Local Seismic Feature Extraction by CNN 

The basic (calculating) unit for feature extraction by CNN 

is convolution. In order to illustrate the calculating process, 

we take the first trace of seismic data in Figure 3b as an 

example (which is listed in the first row of Table 1). 

Performing the convolution between the seismic data and a 

kernel by 

( ) ( ) ( )Y n x n h n= ∗             (8) 

where x(n) represents the seismic data, h(n) represents the 

convolution kernel, and * represents the convolution. The 

convolution kernel is also known as the weight, is the 

learnable part in deep learning. By means of optimization 

algorithm and reverse gradient transfer, the weight (kernel) 

can be solved and updated. 

Specifically, in Pytorch, one can check the weight of the 

convolution kernel through the following command: 

If isinstance(m, nn.Conv1d) or isinstance(m, 

nn.ConvTranspose1d): 

print (nn.init.xavier_uniform_(m.weight.data)) 

Next, we will illustrate the convolution process by 

demonstrating the seismic data, weights, and extracted 

features. The second and third rows of Table list the initial 

value of the convolution kernel and the convolved results, 

respectively. 

Table 1. Parameters for the convolution process. 

Seismic data -0.5257 1.5770 -0.5257 0.5257 -1.5770 0.5257 -1.5632e-17 

Weights 0.2149 -0.1999 0.1051 -0.1135 0.0651   

Results -0.646 0.7127 -0.4436 0.4836 -0.4440 0.1130 -0.646 

 

 

(a) 

 

(b) 

Figure 4. (a) Initial seismic data and (b) the extracted feature by 1-D 

convolution kernel. 

In order to illustrate the hybrid deep learning network 

clearly, we graphically display the results during the 

convolution process. Figure 4a shows the seismic data in 

Table 1, which is also an enlarged display of the first seismic 

trace in Figure 3b. Figure 4b shows the convolution result of 

Table 1, which is one of the extracted features. In order to 

extract different features from the synthetic data (image), the 

neural network requires a number of different convolution 

kernels. For this reason, we set up 8 convolution kernels and 

extracted 8 seismic features with one training round 

(epoch=1), and the results are shown in Figure 5, from which 

we can see some of these features are similar to seismic data 

and are easy to understand, while some are quite different 

from the data, which are related to the initial value of the 

convolution kernel. In addition, Figure 5 considers the 

boundary expansion (padding=2) and the hole convolution 

(dilation=1). Figure 5b shows the extracted features after 100 

training rounds (epoch=100). It can be seen that some of 

them have shown some real impedance features. Generally, a 

two-layer neural network is sufficient to fit any functions, 

however, in reality, a complex feature is often composed of 

multiple simple features. The DeepLab network structure 

could help understand the image from the part to the whole. 

It shows that this hierarchical structure is very suitable for 

revealing images from part to whole. 

Shale

Wet 

Sand

Shale
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Figure 5. Extracted local features after (a) 1 and (b) 100 epochs by CNN. 

3.3. Low-Frequency Feature Extraction by GRU 

In conventional impedance inversion, the low-frequency 

components of the impedance data are also required in 

addition to the mid- and high-frequency ones. For 

constrained sparse spike inversion, low-frequency 

components can generally be obtained from seismic 

horizons, or can be estimated by interpolating or laterally 

extrapolating logging data (reference). However, this type 

of method is not driven by seismic data, which leads to 

low accuracy. In deep learning, seismic data can be 

considered as sequence samples that change over time, 

which are similar to voice, video, etc. Therefore, adjacent 

seismic data is related, which requires the neural network 

to have the capability to store information in order to 

effectively process sequence samples. However, CNN 

network does not have the capability to change the internal 

weight structure and deal with sequence data. To this end, 

the Gated Recurrent Unit (GRU) network was proposed 

(Figure 6). GRU is a variant of LSTM and is featured by 

processing sequences of any length by using neurons with 

self-feedback. GRU can effectively save the historical 

information of sequences and can remember long-term 

dependencies (low-frequency trends on seismic data), 

therefore, it is more suitable for processing seismic data. 

Compared with the LSTM model, GRU has only update 

gates and reset gates, with fewer parameters and faster 

training speed. 

Similarly, we apply the GRU network to the synthetic 

data in Figure 3b. Here, three GRU networks are 

connected in series, and 8 seismic features are extracted as 

shown in Figure 7. Comparing Figure 7 with Figure 5, 

even if there is only one training round, the information 

extracted by GRU has certain low-frequency features. 

After 100 training rounds, the extracted features (Figure 

7b) exhibit apparent low-frequency trend, which is 

completely different from those extracted by CNN. It 

shows that the GRU network has the capability to store 

information and extract low-frequency features of seismic 

data. 

 
Figure 6. The network structure of (a) GRU and (b) its neuron. 



199 Xiujuan Liu et al.:  Elastic Impedance Inversion with GRU-CNN Hybrid Deep Learning: Visualizing the Black Box  

 

 

Figure 7. Extracted low-frequency features after (a) 1 and (b) 100 epochs by GRU. 

3.4. Activation Layer 

Inspired by neuroscience, deep learning networks are 

composed of layered structures, so the artificial neuron 

activation function can also be arranged on a unified level 

with the layered structure of neurons. In order to achieve 

functional separation and increase flexibility, the deep 

learning framework generally only performs one operation 

on a single-layer structure, and then combines multiple layers 

to construct a new neural network. Therefore, the two parts 

of each neuron, the weighted sum function and the activation 

function are divided into two calculation units during 

processing. According to the adopted function, the activation 

layer can be divided into sigmoid activation layer, tanh 

activation layer, ReLU activation layer, etc. The goal of 

activation layer is to add nonlinear capabilities to the neural 

network so that a large number of complex nonlinear 

problems can be handled. In this article, we make use of the 

tanh activation function, which takes the form as 

2

2

1
( )

1

x

x

e
f x

e

−

−

−=
+

                   (9) 

Figure 8a shows the tanh function distribution with the 

impedance curve before (Figure 8b) and after (Figure 8c) 

expressed by the function. Comparing Figure 8b and 8c,, it 

can be seen that, the original impedance which has a range 

of (-3,3) falls into a range of (-1,1) after the activation, so 

the activation function can provide nonlinear 

characteristics for the neural network. Besides, compared 

with the sigmoid activation function, the tanh function 

solves the non-zero mean value problem existing in the 

sigmoid function, and it converges faster with the output 

centered around zero. 

 
Figure 8. (a) Standard tanh activation function and the impedance curve (b) before and (c) after the activation. 

3.5. Adam and Learning-Rate Schedules 

The neuron nodes (weights) in deep learning networks are 

numerous and complex. Analyzing how the weights change 

during the learning process could help us better understand 

the internal mechanism of hybrid deep learning for seismic 

inversion. The update of the weights is mainly determined by 

the optimization algorithm. The basic gradient-based update 

algorithm takes the form as [6]. 

t+1 t

t

Eω ω α
ω

∂← −
∂

               (10) 
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which ωt represents the current weight value, E represents the 

gradient of the objective function (also known as loss 

function), and α is the learning rate. Here, we employ the 

optimization algorithm Adam. According to Equation 10, the 

learning rate is a key parameter that controls the change of 

the weight value and determines the convergence speed of 

deep learning. In general, if the learning rate is set too large, 

the objective function is likely to oscillate and it is difficult to 

converge, while if the learning rate is too small, although the 

loss function can converge, it suffers from low convergence 

speed, which will greatly influence computation efficiency 

for large deep learning networks, and it is easy to fall into a 

local minimum. 

To address the problem mentioned above, Smith proposed 

the cosine-curve learning rate [15], by which α can be 

expressed as 

( )min max min

max

1
1 cos

2

cur

t

T

T
α α α α π

  
= + − +  

   
     (11) 

where αmin and αmax represent the minimum and maximum 

learning rates, respectively, Tcur represents the range of epoch, 

Tmax represents the maximum number of iteration. In this 

study, αmin and αmax are set as 0.001 and 0.05, respectively, 

Tcur and Tmax are set as (0,100) and 33, respectively. 

Given epoch (t) ranges from 0 to 100, the distribution of 

the learing rate in Equation 11 is shown in Figure 9, from 

which it can been seen that, when epoch increases from 0 to 

33, the initial learning rate is 0.05, and then gradually 

decreases to 0.001, which exhibits a cosine-like trend of 

change; when the epoch increases from 34 to 66, the learning 

rate increases from 0.001 to 0.05; finally, the learning rate 

decreases according to a cosine function. The advantage of 

the cosine-curve learning rate is that the learning rate can be 

changed periodically between a large and small step size. A 

large step size can make the objective function jump out of 

locally optimal solutions, based on which a small step size 

helps a fine-tune to find the global optimal solution. For the 

cosine learning rate, the rate at the last epoch should return to 

its minimum value. 

 

Figure 9. Distribution of cosine-curve learning rate. 

 

Figure 10. The change of weight using different learning rates for (a) input-hidden of the 2nd layer and (b) hidden-hidden of the 1st layer for GRU. 

We compare the change of weights by using two different 

learning rates, i.e., the constant and cosine-curve learning 

rate. The optimization algorithm is Adam and the results are 

shown in Figure 9. In specific, the weight values can be 

checked by calling the following command: 

for name,parameters in inverse_net.named_parameters():  

parm[name]=parameters.detach().cpu().numpy()  

aa=parm['gru.weight_hh_l0'][0, 2] 

bb=parm['gru.weight_ih_l2_reverse'][0,2] % reverse 

means backward direction 

Figure 10a displays the input-hidden weights (ωii, ωif, 

ωig, ωio) of the second layer for GRU network (labeled as 

gru.weight_ih_l2_reverse). Since GRU transmits 

information in both forward and backward directions. 

Figure 10b displays the hidden-hidden weights (ωhi, ωhf, 

ωhg, ωho) of the kth layer for GRU network (labeled as 

gru.weight_ih_l2_reverse). For the cosine-curve learning 

rate, it can be seem that when the epoch is greater than 20, 

the weight changes more smoothly. It is equivalent to 

finding the relatively optimal solution directly after a few 

iterations. For the constant learning rate, when the epoch 

ranges from 20 to 60, the weight changes more drastically, 

indicating that the deep learning network is searching for 

the optimal solution in the continuous iteration process. In 

other words, the constant learning rate requires a large 

number of iterations to be converged, which increases the 

computing time of deep learning. 
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Figure 11. The generated initial impedance given (a) random_seed=30 and (b) random_seed=2. Note that, given different random seeds (weight parameter), 

although the input data is the same, the output is different. 

3.6. Model Initialization and Training Process 

The training dataset is the labeled data. Each training dataset 

consists of seismic data and the corresponding impedance data. 

It can be regarded as a seismic trace along a well and the 

impedance data can be calculated by the logging curves. The 

training dataset itself establishes the mapping relation between 

seismic and impedance data (of course, we don’t know the 

mapping function in advance). The ultimate goal of deep 

learning is to build an objective (loss) function, train the data 

set iteratively, and find this mapping relation (or called the 

mapping function y=f(x)). Different from conventional 

gradient-based seismic inversion. Deep learning inversion does 

not require an initial (impedance) model, but only an 

initialized weight parameters of the deep learning network. 

In summary, the initialization process is as: first, initialize 

the weight parameters of the hybrid deep learning network 

through inverse_net.train() and random_seed. (note that, given 

different random_seed, the generated weight parameters will 

be differed); second, input seismic data to the deep learning 

network, and calculate y_pred through y_pred = inverse_net(x), 

where x is the input data for training (i.e., synthetic seismic 

data), and y_pred represents the P-wave impedance generated 

by the inversion (i.e., mapping function). It should be noted 

that, when the weight parameters are different, even if the 

input data is the same, different initialized impedance models 

will be generated, as shown in Figure 11. 

For conventional seismic inversion, the initial impedance 

model is directly given (e.g., constrained sparse pulse 

inversion); in contrast, for deep learning seismic inversion, 

the initial model is actually the initialized weight parameters 

(for example, the weights in the second row, Table 1), after 

which the initial impedance model can be generated through 

y_pred= inverse_net(x). Therefore, the two ways of 

initializing the model are essentially different. 

Figure 12 displays the comparisons between the inverted and 

true impedance as well as the corresponding seismic data during 

the training process. It can be seen the inverted impedance 

almost recovers the true impedance after 60 training rounds. The 

loss function converges and approaches zero after 50 training 

rounds (Figure 13). The value of the loss function at the specific 

training round is given as L=1*1.002+0.2*1.124=1.227 (Figure 

12a), L = 1*0.04+0.2*0.297 = 0.099 (Figure 12b), L = 

1*0.009+0.2*0.025 = 0.014 (Figure 12c), L = 

1*0.004+0.2*0.002 = 0.004 (Figure 12d), L = 1*0.002+0.2*0 = 

0.002 (Figure 12e). 

 

Figure 12. The inverted and true impedance (left-hand side) and the 

synthetic and true seismic data (right-hand side) after (a) 1 (b) 20 (c) 40 (d) 

60 (e) 80 train rounds. 
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Figure 13. The evolution of the loss function for the hybrid deep learning 

inversion. 

4. Conclusion 

The complexity of subsurface structure, anisotropy of 

speed, and seismic noise contamination, all lead to a highly 

nonlinear seismic-geological forward model, to which the 

deep learning scheme is very applicable. The deep learning 

process is highly integrated with the seismic inversion, and 

the process is a highly complex systematic project with many 

concepts, parameters, and modules, which leads to the black 

box phenomena of deep learning inversion process which is 

difficult to understand. 

(1) In this article, we explain and visualize the extraction 

of local seismic features by CNN, extraction of 

low-frequency seismic features by GRU, activation 

layer, Adam and learning rate from the GRU network, 

the initialization model, loss function calculation, and 

training process, all of which reveal the internal 

operating mechanism as a decomposition of the 

building block. We think the detailed illustration could 

play a certain role in avgood understanding of the deep 

learning inversion process. 

(2) We extracted 8 different local features of the seismic 

data by CNN. The numerical process shows that the 

initial value is the key reason for the difference of the 8 

features, likewise the difference between the 8 

low-frequency features extracted by GRU. After 

multiple epoch iterations, the 8 features extracted by 

CNN is close to the low-frequency information 

involved in conventional seismic inversion (which is 

consistent with the cognition in commercial software, 

e.g., Jason, Geoview, etc.). 

(3) The learning rate is a very critical parameter in the 

optimization algorithm. Comparing with the constant 

learning rate, the cosine annealing learning rate 

converges faster with better performance. By 

simulating the distribution curve of neuron nodes 

(weights), it facilitates understanding the reasons for 

the different convergence speeds of different learning 

rate schemes. 

(4) The initial impedance model in hybrid deep learning 

is to initialize the weights of all neurons, after which 

the initial impedance can be generated. It is 

essentially different from those of conventional 

seismic inversion scheme, e.g., constrained sparse 

pulse inversion. 
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