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Abstract: Electroencephalogram (EEG) remains the primary technique in the diagnosis and localization of partial epilepsy 

seizures. Despite the advent of modern neuroimaging techniques, the use of EEG signals for locating epilepsy-affected brain 

areas is still convenient. That is why during these last decades, several computer-aided detection (CAD) methodologies have 

been proposed to detect and discriminate focal (F) EEG signals, and hence locate epileptogenic foci. In this impetus, this paper 

applied Jacobi polynomial transforms (JPTs)-based entropy measures to analyze the complexity and discriminate the bivariate 

focal (F) and non-focal (NF) EEG signals. Jacobi polynomial transforms namely discrete Legendre transform (DLT) and 

discrete Chebyshev transform (DChT) are applied to separate F and NF EEG signals into their different rhythms. Furthermore, 

entropy measures like approximate entropy (ApEn), sample entropy (SampEn), permutation entropy (PermEn), fuzzy entropy 

(FuzzyEn) and increment entropy (IncrEn) are extracted. For direct discrimination between F and NF EEG signals, extracted 

entropies are combined to define different features vectors that are fed as inputs of two kernel machines namely the least-

squares support vector machine (LS-SVM) and simple multi-layer perceptron neural network (sMLPNN). Experimental results 

demonstrated that our methodology achieved the highest performance of 98.33% sensitivity, 98.00% specificity, and 98.17% 

accuracy in discriminating F and NF EEG signals with sMLPNN classifier. In addition, our methodology will be useful to 

clinicians in providing an accurate and objective paradigm for locating epilepsy-affected brain areas. 

Keywords: Electroencephalogram (EEG) Signals, Jacobi Polynomial Transforms (JPTs), Entropy Measures,  

Bivariate Focal (F) EEG, Epileptogenic Focus, Kernel Machines 

 

1. Introduction 

Electroencephalogram (EEG) signals are recordings of the 

brain’s electrical activity. One of the main diagnostic 

applications of EEG is in epilepsy [1]. Epilepsy is broadly 

separated into two categories namely focal (F) or localized 

and diffuse or generalized epilepsy. F epileptiform discharges 

affect a partial area of the brain. Around 20% of patients with 

generalized epilepsy and 60% of patients with localized 

epilepsy develop resistance to drugs and undergo surgery [2]. 

Generally, non-treated F epilepsy can progress to generalized 

epilepsy. Hence, the identification of the F EEG signals can 

be helpful to locate the epileptogenic focus before pre-

surgical evaluation. 

Despite the advent of modern neuroimaging techniques 
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like positron emission tomography (PET), magnetic 

resonance imaging (MRI), and single-photon emission 

computed tomography (SPECT), the use of EEG signals for 

locating epilepsy-affected brain areas is still convenient. 

Moreover, EEG signals enable higher temporal resolution 

and hardware costs are significantly lower for EEG sensors. 

Recently, several computer-aided detection (CAD) methods 

have been proposed to detect and discriminate F and NF EEG 

signals, and hence locate epileptogenic focus [3-11]. In 

addition, it is noted that nonlinear features are generally used 

for the detection of F EEG signals. Rajeev Sharma et al. [4] 

defined an integrated index for the identification of F EEG 

signals using discrete wavelet transform (DWT) and entropy 

measures. Entropy features are extracted based on DWT 

separation of the EEG signals and fed into the LS-SVM 

classifier which achieved the highest average classification 

accuracy of 84%, sensitivity of 84% and specificity of 84%. 

Manish Sharma et al. [5] proposed a framework based on 

orthogonal wavelet filter banks and computed various 

entropies from the wavelet coefficients of the signals as 

features given to the LS-SVM for the discrimination of F and 

non-focal (NF) EEG signals with the highest classification 

accuracy of 94.25%, and a 91.95% sensitivity and 96.56% 

specificity. Abhijit et al. proposed a tunable-Q wavelet 

transform-based multivariate sub-band fuzzy entropy with 

application to discrimination of F and NF types of EEG 

signals [6]. Applied to different time-segmented F and NF 

EEG signals, the Kruskal-Wallis statistical test of their Q-

based multivariate sub-band fuzzy entropies was more 

significant for longer-duration EEG signals. Finally, these 

multivariate fuzzy entropy features were fed to the random 

forest and least-squares support vector machine (LS-SVM) 

classifiers, and their method has achieved the highest 

classification accuracy of 84.67% in discriminating F and NF 

EEG signals with LS-SVM classifier. Arunkumar et al. [8] 

used entropies such as approximate entropy (ApEn), sample 

entropy (SampEn) and Reyni’s entropy as features for 

discrimination of F and NF EEG signals. These entropy 

features were fed into six different classifiers such as naïve 

bayes classifier (NBC), radial basis function (RBF), support 

vector machine (SVM), k-nearest neighbor (KNN) classifier, 

non-nested generalized exemplars classifier (NNge) and best 

first decision tree (BFDT) classifier. It was found that NNge 

classifier gave the highest accuracy of 98%, sensitivity of 

100% and specificity of 96%. 

However, it is firstly observed that most of the reported F 

and NF EEG signals discrimination systems have a limited 

success rate and kernel machines aim to be more accurate 

than others classifiers machines. In addition, the ability to 

discern levels of complexity within biological data sets has 

become increasingly important even if some models extend 

to be very complex for practical applications on EEG signals 

classification. On the other hand, more efforts have been 

focused on the association of EEG rhythms extraction 

methods and entropy measures to discriminate F and NF 

EEG signals. Also, some of these discrimination systems do 

not relate the extracted rhythms to the ones defined in the 

literature in terms of spectral coefficients as shown by 

Djoufack et al. [12-13]. In short, despite many techniques 

used, polynomial transforms are not yet associated with 

entropy measures for the purpose of F and NF EEG signals 

discrimination even if it is already shown that the physical 

interpretation of the spectral coefficients leads to a new issue 

for automatic diagnosis in epilepsy [12, 13]. In this impetus, 

this paper aims to develop Jacobi polynomial transforms 

(JPTs)-based entropy measures like approximate entropy 

(ApEn), sample entropy (SampEn), permutation entropy 

(PermEn), fuzzy entropy (FuzzyEn) and increment entropy 

(IncrEn) for F and NF EEG signals discrimination. JPTs 

namely discrete Legendre transform (DLT) and discrete 

Chebychev transform (DChT) are applied to separate F and 

NF EEG signals into their different rhythms before 

computing entropy measures. Different feature combinations 

are formed from these entropies and fed into the LS-SVM for 

F and NF EEG signals discrimination. 

The rest of the paper is organized as follows. Section 2 

describes the EEG database used. The EEG rhythms 

separation using JPTs technique is briefly presented. 

Algorithms of different entropy measures and kernel 

machines are also described. Section 3 presents and discusses 

the results obtained for the discrimination of F and NF EEG 

signals. Finally, Section 4 summarizes the study with some 

concluding remarks. 

2. Materials and Methodology 

This section describes the set of materials and the 

methodology used to develop our automated discrimination 

framework, as depicted in Figure 1. Our proposed 

discrimination framework applies the JPTs to separate EEG 

rhythms before computing entropy measures that are used to 

define inputs of kernel machines. 

 

Figure 1. Block diagram of the proposed F and NF EEG signals 

discrimination framework. 

2.1. Data Description 

The data consists of bivariate F and NF EEG signals in the 

X and Y time series obtained from the publicly available 

Bern-Barcelona EEG database [14]. The data are collected 

from five patients suffering from longstanding pharmaco-

resistant temporal lobe epilepsy. Each set (F and NF) 
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contains 3750 EEG derivations recording with a sampling 

frequency of 512 Hz. The duration of each derivation is 20 s 

and leads to 10240 samples. Figure 2 presents an example of 

EEG signals of the data. 

 

Figure 2. Exemplary of the Bern-Barcelona EEG signals [14]. 

2.2. EEG Rhythms Separation Using JPTs 

EEG signals are non-stationaries and typically described in 

terms of rhythmic activities. Efficient separation of the EEG 

rhythms can be done based on the projection of the EEG 

signals into polynomial bases. The proposed scheme is 

recently briefly described as follows [12]: 

Decompose the EEG signal as a set of Jacobi spectral 

coefficients using DLT and DChT equations in (1) and (2), 

respectively; 
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Figure 3. EEG rhythms separation of (a) a F and (b) a NF X time-series EEG signals using (i) DLT and (ii) DChT. From top to bottom we have the original 

EEG signal, and the delta, theta, alpha, beta and gamma rhythms, respectively. 
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Where the coefficient kα  is the projection of the signal s  

on the Jacobi base component ,
kJα β , and M is the order of 

approximation. 

Select the spectral coefficients that correspond to each 

EEG rhythm using the Fourier transform; 

Therefore, using the corresponding spectral coefficients for 

reconstruction with equation (3) provides the rhythms 

separation of the EEG signal. 

,

0

( ) ( )

M

k k

k

s x J xα βα
=

=∑                               (3) 

Examples of X time series of F and NF EEG rhythms 

separation using DLT and DChT are presented in Figure 3. 

2.3. Entropy Measures 

The notion of entropy is extremely discussed in the 

literature during this last decade. Characteristics of F and 

NF EEG signals can be gathered using non-stationary 

features as entropy measures. After processing the data 

with the JPTs, EEG signals and their separated rhythms 

can be represented by typical entropies that are 

representative of the two classes of bivariate signals. 

Entropies are mathematical algorithms created to measure 

the repeatability or predictability of time series. This 

paper exploits different entropy measures depicted in the 

following. 

2.3.1. Approximate Entropy (ApEn) 

Approximate entropy (ApEn) was developed by Steven 

Pincus to quantify the regularity or predictability of a time 

series [15-17]. Unlike Shannon’s entropy, ApEn accounts 

the temporal order of points in a time sequence and 

therefore it is considered as a measure of randomness 

[17]. 

Given a time-series data{ }  ( ), 1u i i N≤ ≤  of length N, the 

necessary steps involved in the computation of ApEn are 

provided below. 

Step 1: Fix the vector length m as a positive integer, and 

the relative tolerance limit r as a positive real number; 

Step 2: Construct (N-m+1) m-dimensional equally spaced 

vectors from the initial time-series data as: 

[ ]( ), ( 1),.   , 1,2,..., 1.., ( 1)m
iX u i u i u i mi m N= + + = − +−  (4) 

Step 3: For each 
m
iX , compute the measure that describes 

the similarity between it and the others as: 

m
jX  as: ( )

          

1

im j

i

j suNumber o ch that df
C r

N m

r
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− +
≤

   (5) 
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=

=

= −

= + − − + −

m m
i

k

k m

ij j
m

X k X k

u i u k

d

k j
. 

Step 4: Define the following function: 

( ) ( )( )
1

1

1
ln

1

N m
m m

i

i

r C r
N m

− +

=

Φ =
− + ∑             (6) 

Step 5: Repeat the previous steps 2 to 4 and compute 

( )1m r+Φ . 

Step 6: Then, the ApEn is defined by: 

( ) ( ) ( )1, , m mApEn m r N r r+= Φ − Φ                  (7) 

2.3.2. Sample Entropy (SampEn) 

Due to the fact that ApEn inherently includes a bias 

towards regularity, as it will count a self-match of vectors, 

Richman and Moorman [18] develop a sample entropy 

(SampEn) that does not count a self-match and thus 

eliminating the bias towards regularity. In addition to 

eliminating self-matches, the SampEn algorithm is simpler 

than the ApEn algorithm. 

For a given time-series data { }  ( ), 1u i i N≤ ≤  of length N, 

SampEn is depicted as follows. 

Step 1: Fix the embedding dimension m as a positive 

integer, and the relative tolerance limit r as a positive real 

number; 

Step 2: Construct (N-m+1) m-dimensional and (N-m) 

(m+1)-dimensional vectors from the initial time-series data 

using equations (8) and (9), respectively: 

[ ]( ), ( 1),..., (   ,?  1, 2,... 11) ,m
iX u i u i u i m i N m+ + − = − +=  (8) 

[ ]( ), ( 1),...,   ,?  1, 2,...( ) ,m
iY u i u i u i i Nm m= + = −+    (9) 

Step 3: Using only the first (N-m) m-dimensional vectors, 

and all the (N-m) (m+1)-dimensional vectors: for each 
m
iX

and 
m

iY , compute the similarity measure between it and its 

others m
j iX ≠  and m

j iY ≠ , respectively as: 
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X
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Step 4: Define the functions: 
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Step 5: Then, the SampEn is defined as: 

( ) ( )
( )

, , ln

m

m

A r
SampEn m r N

B r

 
 =
 
 

               (14) 

2.3.3. Permutation Entropy (PermEn) 

Different from ApEn and SampEn, Bandt and Pompe 

propose permutation entropy (PermEn), a parameter of average 

entropy, to describe the complexity of a time series [19]. The 

PermEn takes into account the temporal order of the values in 

a time series. Thus, it is robust under non-linear distortion of 

the signal and is also computationally efficient [20]. These 

advantages make it suitable for analyzing data sets of huge 

sizes without any preprocessing and fine-tuning of parameters. 

Given a time-series data{ }  ( ), 1u i i N≤ ≤  of length N, the 

necessary steps in the computation of PermEn are provided 

as follows. 

Step 1: Fix the vector window length or embedded 

dimension m and the time delay τ  as positive integers; 

Step 2: Define the set of ordinal patterns 

{ }1, !m i i mΩ = Π ≤ ≤  as the possible permutations of {1, 

2,…, m}. For example, 

{ } { } { } { } { } { }1, 2,3 ; 1,3, 2 ; 2,1,3 ; 2,3,1 ; 3,1, 2 ; 3, 2,1m  Ω =    for 

m=3. 

Step 3: Construct ( )( 1)*N m τ− −  m-dimensional vectors 

from the initial time-series data: 

[ ] [ ](1), (2),..., ( ) ( ), ( ),..., ( ( 1)* )  ,?  1,2,..., ( 1)*τ τ τ= −= = + − −+iV v v v m u i u i mm Ni u i                            (15) 

Step 4: Arrange each vector iV  to an increasing order such that 1 2( ), ( ),..., ( )i mV v j v j v j=    . If there exist two or more 

elements of iV  that have the same value, their original positions can be sorted according to their appearance. Thus, the 

corresponding ordinal pattern of iV  is { }1 2, ,...,i mj j jπ = ; 

Step 5: For each ordinal pattern iΠ , the corresponding probability distribution is defined by 

( )
1 2 ( 1)*                 ; ;...;

(

 

1)*

i N m

i
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p

N

e o

m

rn n τπ π π π
τ

− − Π =  =
− −

                          (16) 

Step 6: Then, the PermEn is evaluated using the Shannon 

entropy as: 

( ) ( )
( 1)*

1

, , ln

N m

i i

i

PermEn m N p p

τ

τ
− −

=

= − ∑            (17) 

2.3.4. Fuzzy Entropy (FuzzyEn) 

In 2007, Chen et al. [21] develop a new related family of 

statistics called fuzzy entropy (FuzzyEn) that is freer parameter 

selections and more robustness to noise. The FuzzyEn as a 

measure of complexity excludes self-matches like SampEn. 

For a time-series data { }  ( ), 1u i i N≤ ≤  of length N, the 

necessary steps in the computation of FuzzyEn are provided 

as follows. 

Step 1: Fix the embedded dimension m and the parameter 

gradient of the boundary n as positive integers, and the 

relative tolerance limit r as a positive real number; 

Step 2: Construct (N-m+1) m-dimensional and (N-m) 

(m+1)-dimensional vectors from the initial time-series data 

using equations (18) and (19), respectively: 

[ ]( ), ( 1),.   , 1,2,..., 1.., ( 1)m
ix u i u i u i mi m N= + + = − +−  (18) 

[ ]( ), ( 1),..., (   , 1,2,...,)m
iy u i u i u i im N m+ == + −       (19) 

Step 3: Remove the baseline on each m- and 

(m+1)-dimensional vectors in order to define 

centered vectors: 

1m m m
i i iX x x

m
= −                             (20) 

1

1

m m m
i i iY y y

m
= −

+
                         (21) 

Step 4: Using only the first ( )N m−  m-dimensional 

vectors, and all the ( )N m−  (m+1)-dimensional vectors: for 

each 
m
iX and 

m
iY , compute the similarity degrees 

X
iΦ  and 

Y
iΦ  between each and corresponding neighbors m

j iX ≠  and 

m
j iY ≠ , respectively as: 

( ) ( )
1,

1
,

1

N m
X X
i ij
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Where ( )
1,2,...,
max    (  ) ( )X m m

ij i j
k m

d X k X k
=

= −  and 

( )
1,2,...,
max    (  ) ( )Y m m

ij i j
k m

d Y k Y k
=

= − . For the sake of 

convenience and to catch as much detailed information as 

possible using the fuzzy function ( ) ( ), exp ( / )n
ij ijd r d rµ = − , 

Chen et al. [22] recommend small integers greater than one of 

the parameter gradient of the boundary n. 

Step 5: Define the functions: 
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Step 6: Then, the FuzzyEn is defined as: 
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2.3.5. Increment Entropy (IncrEn) 

Increment entropy (IncrEn) is a new approach to 

measure the complexity of time series introduces in 2007 

by Xiaofeng et al. [23]. IncrEn indicates hidden 

characteristics of the dynamic changes in a signal since it 

can detect either structural or energetic changes because. 

During the process, each increment is mapped using two 

letters word. 

Considering a time-series data { }  ( ), 1u i i N≤ ≤  of length 

N, the IncrEn algorithm is described as follows. 

Step 1: Fix the window or run length m N≤  as a positive 

integer, and the resolution level R as a positive real number; 

Step 2: Construct an increment time-series 

{ }( ), 1 1  v i i N≤ ≤ −  where ( ) ( 1) ( )v i u i u i= + − . 

Step 3: Construct (N-m) m-dimensional vectors from the 

increment time-series as 

[ ]( ), ( 1),..., (   , 1,2,..1) .,iV v i v i v i i N mm= + =+ −−    (27) 

Step 4: Map each element of the vector iV  into a word of 

two letters. The sign of each element is denoted as a letter 

(positive, negative, zero), ( ) ( )  , 1,2,...sg ( ) ,ni ik V k mkδ == . 

The magnitude of each element compared with other 

elements in the vector is quantified as another letter, ( )iq k , 

which is dependent on the quantifying resolution R. Then, iV  

is mapped into a word of 2m letters: 

1 ( ) ( ) 
m

i k i iU k q kω δ==                          (28) 

And for the time-series data { }  ( ), 1u i i N≤ ≤  we obtain 

(N-m) words { } ,1i i N mω ≤ ≤ − . In this paper, the 

magnitude of increment is quantified by the standard 

deviation of increment epoch and the quantifying resolution 

defined as [23], 

( )
( )

( ) ( )

 , 00

( )
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i
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i
i

i

q k V k R
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std

std V
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
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

 (29) 

Where     round the element toward zero. 

Step 5: Calculate the relative frequency of each unique 

word nω  in { } ,1i i N mω ≤ ≤ −  as, 

{ }                   ,1n i
n

the uniquNumber of occcu e word orences of
p

N

n

m

i N mωω ≤ ≤ −
=

−
                                       (30) 

Step 6: Then, the IncrEn is defined using the Shannon 

entropy as: 

( ) ( ), , lnn nIncrEn m R N p p= −∑                 (31) 

2.4. Kernel Machines 

2.4.1. Least-Squares Support Vector Machine (LS-SVM) 

Introduced by Suykens and Vandewalle [24, 25], the LS-

SVM is an extension of the standard SVM that analyses 

data and recognizes patterns. In addition, LS-SVM is a 

class of kernel-based learning methods that solves linear 

systems. Given a training set ( ){ }
1

,
N

k k k
x y

=
, with input 

n
kx IR∈  and class label { }1ky ∈ ± , the parameters 

1

( )
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=∑  and b of the hyperplane are obtained by 

solving the formulation: 
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Subject to the equality constraints: 

      , 1,2,...,( ) 1T
k k k k Ny x b eω ϕ 
 

=+ = −          (33) 

Where γ  is the regularization parameter and , 1,2,  ...,k k Ne =

are the errors between the desired and the obtained outputs of 

the LS-SVM. 

To derive the dual problem of equations (32) and (33), the 

Lagrange multipliers , 1,2,  ...,k k Nα =  are used: 
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And the conditions for optimality are defined by: 
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Can be written as the linear system: 
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Nα α α α=     and I is the identity 

matrix. Mercer’s conditions for kernels are applied within the 

matrix Ω  with elements given as 
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Hence, the obtained classifier is defined by: 
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Figure 4. sMLPNN architecture. 

2.4.2. Simple Multi-layers Perceptron Neural Network 

(sMLPNN) 

The MLPNN is a popular kernel machine for data 

processing [26-29]. The goal is to discriminate F and NF EEG 

signals using a sMLPNN. As shown in Figure 4, the sMLPNN 

has n, fifteen and one neurons at the input, hidden and output 

layers, respectively. Here, we have a unique hidden layer and 

the input layer is not really treated as a layer of a neural 

processing unit. No processing will occur in the input layer and 

it is only an input vector augmented with a bias term, whose 

components will be fed to the next layer. The advantage of 

using this sMLPNN is the rapid execution and generalization 

of the trained network, which is particularly advantageous in 

the detection of EEG signals applications. 

The weights and bias are determined using the 

backpropagation algorithm, which is based on searching a 

minimum mean square error between the desired and 

obtained solutions using gradient descent [27]. The 

backpropagation algorithm is performed repeatedly until the 

sMLPNN solution agrees with the desired value within a pre-

specified tolerance. 

2.5. Experiments and Performance Measures 

The discrimination of F and NF EEG signals is closely related 

to the clinical application of locating epilepsy-affected brain 

areas. In this work, the Kruskal-Wallis test, the LS-SVM with 

radial basis function (RBF) kernel 

( ( )
2

1
, exp

2
k kK x x x x

σ
 = − − 
 

), the sMLPNN with fifteen 

neurons on the unique hidden layer, the 10-fold cross-validation 

technique, and the first 750 pairs of F and NF bivariate EEG 

signals of the Bern-Barcelona EEG dataset [14] are used for 

studying the performances of the proposed method. 

Initially, each entropy measure (ApEn, SampEn, PermEn, 

FuzzyEn, or IncrEn) is computed on the EEG signal and its 

corresponding rhythms for the X and Y time series of each F 

and NF EEG signal. Furthermore, the sum of each entropy 

measure on the X and Y time series (X+Y) is computed. In 

addition, a statistical procedure used to compare several 

populations in terms of mean namely the Kruskal-Wallis test is 

performed to determine the statistical significance of the 

different X+Y entropy measures. The procedure returns the p-

value for the null hypothesis that F and NF entropy measures 

were obtained from the same population (or equivalently, from 

different populations with the same distribution). If the p-value 

is near zero, this casts doubt on the null hypothesis and 

suggests that F and NF entropy measures are significantly 

different. It is common to declare a result significant if the p-
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value is less than 0.05. This helps to design different 

experiments as follows. Each X+Y entropy measure on EEG 

and corresponding rhythms firstly defines a 6-dimension 

feature vector; secondly, all computed X+Y entropies are put 

together to define a 30-dimension feature vector. Thereafter, all 

computed X+Y entropies are used to define a 5-dimension 

feature vector on EEG and each rhythm. 

For each experiment, the 10-fold cross-validation 

technique is used to determine the parameters of kernel 

machines. In the 10-fold cross-validation technique, the data 

is once permutated randomly and partitioned into 10 equal 

disjoint subsets. In the i-th (i=1, 2,…, 10) iteration, the i-th 

subset is used to estimate the parameters of the model trained 

on the other 9 subsets. Finally, the 10 different estimates 

parameters of the model are combined and averaged to obtain 

the final parameters of the model. The 10-fold scheme is 

used to achieve best performances which are evaluated using 

three measures defined as: 

Sensitivity: 

( )% 100 P

P N

T
Sen

T F
= ×

+
                    (38) 

Specificity: 

( )% 100 N

N P

T
Spe

T F
= ×

+
                    (39) 

Accuracy: 

( )% 100 P N

P N N P

T T
Acc

T F T F

+
= ×

+ + +
       (40) 

Where PT , NF , NT  and PF  are the total number of true 

positive (F), false negative, true negative (NF) and false 

positive, respectively. 

3. Results and Discussion 

The JPTs-based entropies described in the previous 

section have been applied to 750 F and 750 NF bivariate 

EEG signals. In this work, the parameters used to compute 

different entropy measures are determined empirically after 

a multitude of tests. At the end of the procedure, computed 

measures on X and Y time series are ApEn (3, 0.2, 10240), 

SampEn (3, 0.2, 10240), PermEn (3, 1, 10240), FuzzyEn (3, 

2, 0.2, 10240) and IncrEn (3, 4, 10240). This work studies 

different time series EEG signals of durations 

corresponding to 20 s. The Kruskal-Wallis statistical test is 

performed to find the statistical significance (p < 0.05) of 

the computed X+Y entropy measures over EEGs and 

different rhythms. Table 1 presents the results of the 

statistical analysis of the computed X+Y entropies using the 

X and Y time series. 

Table 1. Statistical analysis of the proposed JPTs-based X+Y entropy measures. 

EEG or rhythms Statistical measures 
Entropy measures 

ApEn SampEn PermEn FuzzyEn IncrEn 

EEG 

F: Mean (SD) 0.738 (0.220) 0.619 (0.205) 4.310 (0.285) 0.509 (0.172) 8.664 (0.605) 

NF: Mean (SD) 0.885 (0.288) 0.776 (0.273) 4.251 (0.293) 0.652 (0.232) 8.530 (0.623) 

p-value 6.49x 10-26 6.61 x 10-31 0.05 x 10-0 2.492 x 10-37 0.02 x 10-0 

EEG rhythms 

separation 

using DLT 

δ 

F: Mean (SD) 0.289 (0.046) 0.267 (0.041) 1.752 (0.023) 0.131 (0.022) 2.233 (0.051) 

NF: Mean (SD) 0.279 (0.063) 0.268 (0.049) 1.760 (0.028) 0.139 (0.034) 2.253 (0.056) 

p-value 2.53 x 10-7 2.09 x 10-2 3.01 x 10-21 0.05 x 10-0 8.23 x 10-18 

θ 

F: Mean (SD) 0.644 (0.051) 0.646 (0.130) 2.088 (0.018) 0.479 (0.066) 3.030 (0.045) 

NF: Mean (SD) 0.666 (0.047) 0.647 (0.121) 2.098 (0.016) 0.500 (0.059) 3.064 (0.049) 

p-value 2.06 x 10-42 2.87 x 10-16 5.74 x 10-31 1.08 x 10-40 7.21 x 10-28 

α 

F: Mean (SD) 0.760 (0.056) 0.675 (0.071) 2.486 (0.016) 0.680 (0.081) 3.930 (0.042) 

NF: Mean (SD) 0.781 (0.038) 0.690 (0.059) 2.505 (0.021) 0.710 (0.070) 3.941 (0.051) 

p-value 2.38 x 10-5 4.89 x 10-9 0.96 x 10-0 9.11 x 10-13 0.62 x 10-0 

β 

F: Mean (SD) 0.975 (0.101) 0.905 (0.115) 3.271 (0.043) 1.055 (0.141) 5.744 (0.089) 

NF: Mean (SD) 0.998 (0.089) 0.956 (0.088) 3.250 (0.045) 1.099 (0.099) 5.689 (0.092) 

p-value 0.03 x 10-0 5.89 x 10-10 9.46 x 10-18 1.21 x 10-10 3.02 x 10-19 

γ 

F: Mean (SD) 1.534 (0.193) 1.331 (0.253) 4.372 (0.032) 1.710 (0.191) 8.130 (0.074) 

NF: Mean (SD) 1.628 (0.110) 1.389 (0.172) 4.366 (0.020) 1.799 (0.110) 8.128 (0.060) 

p-value 4.45 x 10-37 8.84 x 10-14 4.82 x 10-0 2.75 x 10-40 2.91 x 10-0 

EEG rhythms 

separation 

using DChT 

δ 

F: Mean (SD) 0.283 (0.047) 0.210 (0.039) 1.758 (0.021) 0.116 (0.026) 2.226 (0.046) 

NF: Mean (SD) 0.272 (0.063) 0.205 (0.041) 1.767 (0.025) 0.121 (0.033) 2.246 (0.056) 

p-value 1.07 x 10-7 0.09 x 10-0 1.18 x 10-21 0.00 x 10-0 5.60 x 10-21 

θ 

F: Mean (SD) 0.639 (0.049) 0.529 (0.060) 2.112 (0.020) 0.415 (0.049) 3.032 (0.045) 

NF: Mean (SD) 0.667 (0.044) 0.555 (0.057) 2.124 (0.020) 0.450 (0.046) 3.060 (0.045) 

p-value 2.48 x 10-41 1.68 x 10-22 1.03 x 10-31 5.47 x 10-48 5.39 x 10-30 

α 

F: Mean (SD) 0.765 (0.054) 0.670 (0.069) 2.508 (0.015) 0.671 (0.080) 3.920 (0.034) 

NF: Mean (SD) 0.778 (0.040) 0.690 (0.051) 2.507 (0.017) 0.702 (0.061) 3.916 (0.038) 

p-value 2.38 x 10-5 3.93 x 10-10 0.93 x 10-0 7.04 x 10-16 0.37 x 10-0 

β 

F: Mean (SD) 0.971 (0.111) 0.856 (0.113) 3.277 (0.040) 1.042 (0.148) 5.734 (0.083) 

NF: Mean (SD) 0.993 (0.090) 0.894 (0.080) 3.256 (0.043) 1.092 (0.099) 5.684 (0.089) 

p-value 0.00 x 10-0 3.88 x 10-14 7.26 x 10-18 3.33 x 10-12 1.82 x 10-23 
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EEG or rhythms Statistical measures 
Entropy measures 

ApEn SampEn PermEn FuzzyEn IncrEn 

γ 

F: Mean (SD) 1.529 (0.191) 1.214 (0.186) 4.396 (0.034) 1.647 (0.177) 8.134 (0.072) 

NF: Mean (SD) 1.629 (0.110) 1.297 (0.108) 4.394 (0.024) 1.748 (0.089) 8.123 (0.056) 

p-value 5.44 x 10-36 7.42 x 10-20 0.21 x 10-0 1.52 x 10-47 0.01 x 10-0 

 

Taking in account the results of the above statistical 

analysis, the comparison of some computed measures is 

projected and presented in Figure 5 and Figure 6. These 

projections can be used to visualize and determine if the 

computed X+Y entropy measures are able to discriminate F 

and NF EEG signals. 

 

Figure 5. Boxplot comparison of some DLT-based X+Y entropy measures. Where (a) to (e) represent the ApEn, SampEn, PermEn, FuzzyEn and IncrEn, 

respectively. For each projection, boxes are grouped two by two such that from the left to the right we have the delta to gamma rhythms, and EEG, 

respectively. 

 

Figure 6. Boxplot comparison of some DChT-based X+Y entropy measures. Where (a) to (e) represent the ApEn, SampEn, PermEn, FuzzyEn and IncrEn, 

respectively. For each projection, boxes are grouped two by two such that from the left to the right we have the delta to gamma rhythms, and EEG, 

respectively. 

Table 1 reports the analysis of the EEG and corresponding 

rhythms in terms of mean, standard deviation (SD) and 

statistical significance for the discrimination of F and NF 

EEG signals. From Table 1, Figures 5 and Figure 6, it is 

clearly observed that DLT and DChT extend to give similar 

results; and in low frequency, entropy measures computed on 

F EEG signals extend to be higher than the ones on NF EEG 

signals in EEG and EEG rhythms for analysis. This supports 

the outcomes of the previous study using the same database 

[3]. The measures in different rhythms increased with the 

frequency band occupation and the p-values of the theta 

rhythm are statistically more significant to discriminate F and 

NF EEG signals. In addition, it is also shown that for some 

entropy measures, F data have the lowest values, which 

means that the NF data are more regular, periodic and 

predictable than the F data. This implies that JPTs-based 

entropy measures can give better discrimination of F and NF 

EEG signals. It is also observed that neither of the entropy 
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measures by themselves sufficiently discriminate F and NF 

time series of EEG signals. In a few cases, the overlaps of the 

computed entropy measures are significantly high. This 

implies that a simple threshold applied to these measures will 

not be sufficient to distinguish the F and NF time series of 

EEG signals. Overall, this experimental analysis of entropy 

measures based on statistical analysis using the Kruskal-

Wallis test and visual projection using boxplots demonstrated 

that computed JPTs-based entropy measures try to explicitly 

model differences between class labels within the data and 

successful discrimination for different experiments can be 

achieved using classifier machines. 

Thus, keeping in mind the outcome of the above statistical 

analysis and the comparison on 750 F and 750 NF EEG 

signals using our proposed methodology, we use two kernel 

machines namely LS-SVM and sMLPNN to discriminate F 

and NF EEG signals. For different pre-defined experiments, 

all the first 750 F and 750 NF EEG bivariate signals of the 

database are considered. To find the optimal classifier 

machine, the first 60% of each set of bivariate signals are 

used as the training set and the last 40% as the testing set. 

The training data set and the 10-fold cross-validation 

technique are used to train and determine the parameters of 

the kernel machine, while the testing data set is used to verify 

the accuracy of the trained kernel machine. In this work, the 

LS-SVM toolbox proposed by Suykens et al. [25] and the 

artificial neural network (ANN) Matlab toolbox are used, and 

obtained results are summarized in Table 2. 

Table 2. Discrimination performances of kernel machines using JPTs-based X+Y entropy measures computed on EEG and rhythms of the X and Y time series. 

Data 

Kernel machines with corresponding discrimination performances (%) 

DLT-based X+Y entropy measures 

LS-SVM sMLPNN 

Sen Spe Acc Sen Spe Acc 

Entropy measure on 

EEG and rhythms 

ApEn 98.67 57.67 78.17 86.00 84.00 85.00 

SampEn 88.67 65.00 76.83 81.67 81.00 81.33 

PermEn 71.67 83.33 77.50 78.67 77.67 78.17 

FuzzyEn 81.67 75.00 78.33 84.67 86.33 85.50 

IncrEn 72.67 81.67 77.17 75.00 79.67 77.33 

All entropies 86.00 81.67 83.33 97.33 96.67 97.00 

All entropies on 

EEG or rhythm 

EEG 82.33 70.00 76.17 84.67 85.33 85.00 

Delta 88.00 62.33 75.17 83.67 81.67 82.67 

Theta 66.33 86.67 76.50 81.67 78.33 80.00 

Alpha 91.00 63.33 77.17 84.67 86.33 85.50 

Beta 72.68 81.33 77.00 81.67 77.67 79.67 

Gamma 86.00 81.67 83.33 89.00 90.33 89.67 

Table 2. Continued. 

Data 

Kernel machines with corresponding discrimination performances (%) 

DChT-based X+Y entropy measures 

LS-SVM sMLPNN 

Sen Spe Acc Sen Spe Acc 

Entropy measure on 

EEG and rhythms 

ApEn 84.67 77.67 81.17 88.33 82.00 85.17 

SampEn 89.33 67.00 78.17 83.67 81.67 82.67 

PermEn 72.33 82.00 77.17 82.00 87.33 84.67 

FuzzyEn 91.67 69.33 80.50 87.33 85.67 86.50 

IncrEn 89.00 67.67 78.33 83.00 86.67 84.83 

All entropies 84.67 81.33 83.00 98.33 98.00 98.17 

All entropies on 

EEG or rhythm 

EEG 83.33 65.67 74.50 84.67 85.33 85.00 

Delta 88.00 62.33 75.17 80.33 84.00 82.17 

Theta 87.00 67.67 77.33 84.67 85.67 80.17 

Alpha 91.00 63.33 77.17 87.67 84.00 85.83 

Beta 73.33 83.00 78.17 72.33 90.33 81.33 

Gamma 85.00 81.67 83.33 88.00 92.67 90.33 

 

Table 2 presents the performances of the LS-SVM and 

sMLPNN classifiers using different entropy measures as inputs. 

In general, Table 2 demonstrates that lower performances are 

obtained when each entropy measure is used individually. 

Thus, using all measures in EEG and rhythms gives a more 

discriminative feature vector and our automated discrimination 

system extends to be more accurate than using individual 

measures. In addition, the feature vector defined in gamma 

rhythm using all entropy measures is more discriminative than 

the feature vector defined in EEG or other rhythms, and higher 

performance accuracies of 89.67% and 90.33% are obtained 

with sMLPNN using the DLT and DChT at the rhythms 

separation stage, respectively. The highest discrimination 

accuracy obtained with the LS-SVM is 83.33% using the 

DLT-based all entropy measures on EEG and rhythms, and the 

JPTs-based all entropy measures on gamma rhythm. Using the 

DChT-based all entropy measures on EEG and rhythms, 

sMLPNN obtained the highest discrimination accuracy of 

98.17%. In sum, from our current study, it is found that for 

each considered experiment, the performances of the sMLPNN 
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classifier with sigmoid as activation function is better than the 

performances of the LS-SVM classifier with the RBF kernel 

function. 

For comparison, several methodologies have been recently 

proposed to detect and discriminate F EEG signals, and 

hence locate epileptogenic foci. In previous studies using the 

same database as reported in Table 3, different features are 

extracted and fed as inputs of different classifiers. This 

comparison can help to highlight the useful potential of 

polynomial transforms-based entropy measures for 

epileptogenic zones identification. From the supervision of 

Table 3, it is firstly observed that several methods have been 

applied to separate EEG in their different rhythms before 

extracting or computing different features that were fed as 

inputs of different classifier machines. Some authors used 

Fourier-based methods [7, 11, 35], EMD [10, 31, 33, 36, 39], 

WT [4, 5, 31] and its extensions [6, 32, 34, 37] to separate 

EEG rhythms and extract different entropies [4-6, 10, 30-32] 

for the discrimination of F and NF EEG signals. In addition, 

the LS-SVM is an extremely used kernel machine. It is 

shown that most of the reported previous works have gained 

fewer discrimination performances than our proposed 

methodology. However, some methodologies extend to be 

more accurate than our proposed methodology. Jukic et al. 

[40] proposed a methodology of epileptic F region 

localization that applied the multi-scale principal component 

analysis (MSPCA) denoising algorithm, and the 

autoregressive (AR) Burg method to generate the power 

spectral density (PSD) of denoised EEG signals. 

Furthermore, PSD values were fed as inputs to five machine 

learning techniques that gained a higher performance 

accuracy of 98.90% using the Rotation Forest (RF) classifier. 

Sharma et al. [41] also proposed a methodology where third-

order cumulant features were extracted and fed as inputs of 

SVM that gained a higher discrimination accuracy of 

99.00%. Recently, an automated diagnosis methodology of F 

EEG signals that applied the Fast Walsh-Hadamard 

Transform (FWHT) method to analyze EEG signals in the 

frequency domain in terms of Hadamard coefficients is 

developed [42]. Using the decomposed Hadamard 

coefficients, ApEn, log-energy entropy (LogEn), FuzzyEn, 

SampEn, and PermEn are extracted and supplied to the ANN 

classifier, with a 10-fold cross-validation method to classify 

the F and NF classes. This methodology achieved a 

maximum discrimination accuracy of 99.50%. 

In sum, five different entropy measures are computed in 

this paper and fed as inputs of two well-known kernel 

machines to discriminate F and NF EEG signals with 

acceptable performances. Thus, despite many proposed 

methodologies, this paper can provide a roadmap of 

polynomial transforms-based entropies to measure the 

complexity and discriminate F and NF biomedical signals. 

Table 3. Comparison of the F and NF discrimination performances using the same Bern-Barcelona EEG data. 

Authors Frameworks 

Number of 

bivariate F and NF 

EEG signals 

Discrimination 

performances (%) 

Sen Spe Acc 

Zhu et al., 2013 [30] Delay permutation entropy (DPE) - SVM 50 F - 50 NF - - 84.00 

Rajeev et al., 2015b [4] DWT - Entropy measures/Integrated index - LS-SVM 50 F - 50 NF 84.00 84.00 84.00 

Manish et al., 2016 [5] Orthogonal wavelet filter banks - Entropies - LS-SVM 3750 F - 3750 NF 91.25 96.56 94.25 

Das et al., 2016 [31] EMD-DWT - Entropies - KNN 50 F - 50 NF 90.70 88.10 89.40 

Singh and Pachori, 2017 [7] Fourier-based rhythms - Features - LS-SVM 50 F - 50 NF - - 89.70 

Abhijit et al., 2017 [6] Tunable-Q WT (TQWT) - Multivariate sub-band fuzzy entropy - RF/LS-SVM 3750 F - 3750 NF 83.86 85.46 84.67 

Vipin et al., 2017 [32] 
Flexible analytic WT (FAWT) method - Cross correntropy/Log energy 

entropy/SURE entropy - LS-SVM with RBF kernel 
3750 F - 3750 NF 93.25 95.57 94.41 

Rajeev et al., 2018 [33] EMD - Amplitude, precession and deformation bandwidth - LS-SVM 3750 F - 3750 NF 83.47 84.56 84.01 

Abhijit et al., 2018 [34] Empirical WT - Area measures of the 2D reconstructed phase space - LS-SVM 750 F - 750 NF 81.60 83.46 82.53 

Gupta et al., 2018 [35] Fourier-Bessel series expansion (FBSE) - 17 different features - LS-SVM 50 F - 50 NF - - 81.50 

Acharya et al., 2018 [9] Various non-linear features - LS-SVM 3750 F - 3750 NF 89.97 85.89 87.93 

Gupta and Pachori, 2019 [10] EMD - Sharma-Mittal entropy - LS-SVM 3750 F - 3750 NF 85.78 80.45 83.18 

Subasi et al., 2019 [36] EMD - Statstical features - Random forest (RF) classifier 3750 F - 3750 NF 95.80 96.10 95.94 

Dalal et al., 2019 [37] 
Flexible time-frequency coverage analytic WT - Fractal dimension - Robust 

energy-based least square twin SVM 
50 F - 50 NF - - 90.20 

Fasil and Rajesh, 2019 [38] Time domain - Exponential enrgy - SVM 3750 F - 3750 NF - - 89.00 

Chen et al., 2020 [39] ARMA/EMD - Singular value - SVM 50 F - 50 NF 100 97.9 93.00 

Vipin and Pachori, 2020 [11] 
Fourier-Bessel series expansion based (FBSE) flexible time-frequency 

coverage WT - Mixture correntropy/Exponential energy - LS-SVM 
3750 F - 3750 NF 95.47 96.24 95.85 

Jukic et al., 2020 [40] MSPCA - AR/PSD - Rotation forest classifier 1000 F - 1000 NF 99.30 98.50 98.90 

Sharma et al., 2020 [41] Third-order cumulant - SVM 3750 F - 3750 NF 99.33 98.66 99.00 

Prasanna et al., 2020 [42] FWHT - Entropies (ApEn, LogEn, FuzzyEn, SampEn, PermEn) - ANN 3750 F - 3750 NF 99.70 99.30 99.50 

This paper 
Polynomial-based rhythms - Entropy measures (ApEn, ampEn, PermEn, 

FuzzyEn, IncrEn) - Kernel machines (LS-SVM, sMLPNN) 
750 F and 750 NF 98.33 98.00 98.17 

 

4. Conclusion 

The discrimination of F and NF EEG signals using JPTs-

based entropy measures and kernel machines is discussed in 

this paper. The recently proposed JPTs approach is used to 

separate bivariate EEG signals into their different EEG 

rhythms before computing entropy measures. Furthermore, 
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the Kruskal-Wallis statistical test is applied and demonstrated 

that JPTs-based X+Y entropy measures increased with the 

frequency band occupation and are statistically significant to 

discriminate F and NF EEG signals. To discriminate F and 

NF EEG signals in order to detect epileptogenic zones, 

computed X+Y measures are fed as inputs of two well-

known kernel machines namely LS-SVM and sMLPNN, and 

obtained results demonstrated that the combination of all 

entropy measures on EEG and rhythms as inputs of the 

sMLPNN produced better discrimination performances. 

Overall, this paper demonstrates that entropy measures are 

suitable for the complexity or regularity analysis of F and NF 

EEG signals. In addition, the simple architecture of the 

MLPNN classifier with sigmoid as the activation function 

can be helpful to locate the epileptogenic focus before pre-

surgical evaluation. 
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