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Abstract: Clinical trials are often costly, and time consuming. The ability to get new products into the market early is critical 

to the success of pharmaceutical and medical device companies. Most practitioners use Fisher's exact tests to determine the 

required sample size for testing efficacy rates. We shall argue that when the sample size is not too small, normal approximation 

tests should be used instead of Fisher's exact tests. Several different sets of hypotheses and their corresponding formulas to 

compute sample size for clinical trial based upon normal approximation test are given. 
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1. Introduction 

The objective of most clinical studies is to evaluate and to 

compare the safety and effectiveness of an experimental 

treatment with either another treatment or no treatment. In 

principle, the sponsor must scientifically show that an 

experimental treatment is effective in order for the (US) FDA 

to approve its release. In other words, to gain approval of a 

new product, one major step is that a statistical test must show 

that it is unlikely (the chance is less than a constant α, e.g. 5%) 

to have the observed clinical data if the effectiveness of the 

new product is not clinically significant. The constant α is the 

probability of the FDA approving the new treatment when in 

fact it should not be approved. Although safety is also 

important, in practice the statistical significance of safety 

rarely needs to be shown in order to gain the approval of the 

product. Therefore, the sample size required for the clinical 

trial is usually based upon the need to demonstrate 

effectiveness. 

Many, if not most, statisticians (practitioners) use "cook- 

books" to determine the required sample size. As a result, 

most clinical trials use Fisher's exact test (e.g. [1, 2]) to 

determine the sample size for testing the efficacy rates. The 

purpose of this paper is to show that, from the sponsor's point 

of view, the normal approximation test (e.g. [3, 4]) is a better 

test as long as the sample size is not too small. In the next 

section, we shall state the steps needed to show the 

effectiveness of new products. Some of these steps (testing 

hypotheses, test statistics, and sample size) are discussed with 

detail in sections 3, 4, and 5. In section 6, we make a 

concluding remark. 

2. Steps to Show the Effectiveness of the 

New Products 

In order to show whether the effectiveness of a new product 

is clinically significant, the first step is to set up the testing 

hypothesis based upon clinical knowledge. Two competing 

hypotheses, a null hypothesis and an alternative hypothesis, 

are required for each test. Usually, the alternative hypothesis 

is the statistical expression for the claim that the sponsor is 

making. For example, the alternative hypothesis can be that 

the new product is more effective than an existing one in the 

market. The null hypothesis is the complement of the 

alternative hypothesis. Continuing the previous example, the 

null hypothesis is that the new product is no more effective 

than the existing one in the market. Once the hypotheses are 

made, sample clinical data (i.e. a small part of the population 

clinical data) are used to make a decision to accept either the 

null hypothesis or the alternative hypothesis. 

Since the decision is based upon only partial information 

(i.e. sample), it could be an incorrect decision (a risk). 

Typically, there are two types of risk. One is called Type I 

error with probability α. The second one is called Type II 
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error with probability β. Type I error is the error that the 

alternative hypothesis is accepted given that the null 

hypothesis is true. Type II error is the error that the null 

hypothesis is accepted given that the alternative hypothesis is 

true. Again continuing our previous example, α is the 

probability that the sample data will show significance (i.e. 

the new product is effective) given that the new product is 

not effective, and β is the probability that the sample data 

will not show significance (i.e. the new product is not 

effective) given that the new product is truly effective. 

The second step is to decide which test statistic to be used. 

A test statistic can be thought of as a formula used by the 

statisticians or practitioners to see whether the null hypothesis 

should be rejected (i.e. statistical significance). Depending on 

the model and the testing hypotheses, there may be several test 

statistics available. If there are multiple test statistics 

available, one must be chosen. Typically, the test statistic 

with the most power (note that the power is 1-β) should be 

used, given a fixed α and sample size. Exceptions may exist 

for certain reasons, such as computational difficulty. 

Alternatively, if α and β are fixed, the test statistic with the 

smallest sample size should be used. 

The third step is then to determine the sample size based 

upon the formula to be used for the statistical test as decided 

in the second step. The last few steps are to conduct the 

clinical trials, to perform statistical tests, and then to make 

statistical decisions and interpretations.  

We shall not discuss the last few steps here. Instead, we 

will focus only on the first three steps. 

3. Testing Hypotheses 

In this section, we shall set up the testing hypotheses. For 

the clinical trials, it is very common to have the following set 

up: 

H�:	P� =	P�	H	:	P� ≠	P�,                   (1) 

where P�  and P�  are the efficacy rates for the new and 

standard treatment groups respectively. Of course, we may 

have the following one-side set ups: 

H�:	P� ≤ P�H	:	P� > P�                     (2) 

Or 

H�:	P� ≥ P�H	:	P� < P�.                    (3) 

However, it is also possible and reasonable to have the 

following testing hypotheses:  

H�:	P� ≤	P� − �
H	:	P� >	P� − �,                  (4) 

where 0 < � < 1. For example, if a new treatment has the 

additional benefits of reducing the risk of complications 

and/or pains and the hospitalization time, then it is very likely 

that the physicians and/or patients would prefer the new 

treatment even if the new treatment has a lower efficacy rate. 

For the rest of the paper, we shall focus on the hypotheses (4), 

although we shall also discuss the hypotheses (1), (2), or (3). 

4. Test Statistic 

For testing the efficacy of two groups, Fisher's exact test has 

been the most popular test for clinical trials with small and 

intermediate size samples. It is likely that the word "exact" 

made this test popular. As a matter of fact, Fisher's exact test is 

not the "unconditional" exact test. It is just a conditional test, 

which is conditioned on the sample sizes of each of two 

groups and numbers of each of successes and failures of two 

groups. These conditions made the test extremely 

conservative (i.e. a test that rejects the null hypothesis too 

rarely (relative to α) given the null hypothesis is true) and 

inappropriate [5, 6, 7, 8, 9, 10]. If the sponsor is willing to 

have a few more patients with about the same power and the 

hypothesis set-up is (1), it would be fine to use Fisher's exact 

test. However, this is not the case for some studies. A more 

reasonable test is the Pearson's chi-square test, which is 

equivalent to the normal approximation test. The difference 

between Pearson's chi-square test (e.g. [11, 12, 13]) and the 

normal approximation test is that the former can only be used 

for two-sided tests (e.g. (1)) and the latter can be used for 

either one-sided (e.g. (4)) or two-sided tests. 

Computing the Fisher's exact test under our hypotheses 

set-up (4) is quite complicated, and there is a lack of 

commercial solutions. On the other hand, the computation for 

normal approximation under either hypotheses set-up (1) or (4) 

is much easier.  

5. Sample Size 

Based upon the discussion above, it is better for sponsors to 

use the normal approximation test to compute the sample size 

for clinical trials that are not too small. It can be shown that the 

number of patients (one treatment group) required is given in 

equation (5) based upon the normal approximation test and 

test hypotheses (4). We have  

n=
�
�� [z�	��P� − ��[1 − �P� − ��� + P��1 − P�� + z 	�2P��1 − P��	�",	                      (5) 

where P� is the efficacy rate of the standard treatment group 

and d is the clinical significant value for the efficacy rate in the 

sense that physicians would be willing to use the new 

treatment even if its efficacy rate is reduced by d due to the 

other benefits of the new treatment. On the other hand, if we 

use testing hypotheses (1), the sample size required (for one 

treatment group) based upon the normal approximation test is 
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n=
�
�� [z#� 	�2P��1 − P�� + 	z 	��P� − ��[1 − �P� − ��� + P��1 − P���".	                      (6) 

Here d is again the clinical significance value for the 

difference of efficacy rates (P� −	P�) and could be positive or 

negative. If the hypotheses test was a one-sided test (2) or (3), 

then the sample size required (for one treatment group) based 

upon the normal approximation test is  

n=
�
�� [z�	�2P��1 − P�� +	z 	��P� − ��[1 − �P� − ��� + P��1 − P���".	                       (7) 

Therefore, if the hypotheses set-up (4) or (1) is given, then 

the sample size required (for one treatment group) based upon 

the normal approximation test is formula (5) or (6), 

respectively. However, if either the hypotheses set-up (2) or (3) 

is given, then the sample size required (for one treatment 

group) based upon the normal approximation test is formula 

(7).  

For the examples below, we consider P� = 0.8, α = 0.05, β 

= 0.2 and the clinical significance value � = 0.2. 

Example 1. If we use the hypotheses set-up (2), then z� = 

z.�&  = 1.645 and z  = z�."  =0.84. Using formula (7), the 

sample size n can be shown to be 54 for one treatment group. 

Therefore, total sample size required for two treatment groups 

is 108. Note that the total sample size required (for two 

treatment groups) based on Fisher's exact test is 148. Hence, 

the required sample size is reduced drastically by using the 

normal approximation test.  

Example 2. If we use the hypotheses set-up (1), then z#
�
 = 

z.'(
�

 = 1.96 and z  = z�." =0.84. Using formula (6), n can be 

shown to be 68 for one treatment group. Therefore, total 

sample size required for two treatment groups is 136. 

Example 3. If we use the hypotheses set-up (4), then z� = 

z.�& = 1.645 and z  = z�." =0.84. Using formula (5), n can be 

shown to be 58 for one treatment group. Therefore, total 

sample size required for two treatment groups is 116. 

Although it is preferable to have the same sample size for 

each of two treatment groups, it is possible to have different 

sample sizes. We'll generalize formula (6) for hypotheses 

set-up (1) when different sample sizes may be required for two 

different treatment groups. 

Let n and m denote the required sample sizes for the new 

treatment group and the standard treatment group, 

respectively. In addition, let m = c n, where c is any given 

positive constant, then the sample size required for the new 

treatment group based upon the normal approximation test is 

n = �
�� 	[z#� 	*+1 +

�
,- P��1 − P��	 	+ z 	

*�P� − ��[1 − �P� − ��� + �
, P��1 − P���".

      (8) 

As can be seen and expected from formula (8), if we assume 

c = 1, then formula (8) is the same as formula (6). Hence, 

formula (6) is just a special case of formula (8).  

Example 4. In Example 2, we consider the hypotheses 

set-up (1) and assume that m = n. Here, we assume that c = 1/2, 

that is m = n/2. Again, z#
�
 = z.'(

�
 = 1.96 and z  = z�." = 0.84. 

Using formula (8), n can be shown to be 98 for the new 

treatment group. In addition, m can be shown to be 49. 

Therefore, total sample size required for two treatment groups 

is 147.  

6. Conclusion 

In this paper, we give four different hypotheses set-ups for 

possible clinical trials. Each of these set-ups is given a formula 

to compute the sample size required for clinical trial based 

upon normal approximation test. 

The Fisher's exact test, which is very popular in the 

pharmaceutical industry for statistical hypotheses set-up (1), 

is extremely conservative (therefore, less powerful) and 

inappropriate. From the discussion above and examples in 

Section 5, we can see that the required sample size can be 

reduced drastically without changing the assumptions if we 

use the normal approximation test. This means that the 

sponsor may be able to save millions of dollars on the cost of 

clinical trials. More importantly, the sponsor may also be 

able to reduce the time to get the new product into the 

market. 
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