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Abstract: Recent advanced studies have demonstrated that post-transcriptional gene regulation is involved in many aspects of 

biological processes and in the pathogenesis of various types of disorders, such as neurodegenerative diseases, autoimmune 

diseases, and cancer. In addition to transcriptional regulation, spatially and temporally regulated gene expression is achieved by 

the post-transcriptional control of transcribed RNAs, including through splicing, export, stability, localization, and translation. 

These processes are regulated by the formation of ribonucleoprotein complexes with RNA-binding proteins and small 

non-coding RNAs. Here, we will describe the findings obtained from studies on mice deficient for individual RNA-binding 

proteins and microRNAs involved in maintaining homeostasis or causing disease. 
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1. Introduction 

Accumulating evidence clearly indicates that 

post-transcriptional gene regulation is essential for various 

aspects of biological processes [1-6]. Transcription of mRNA 

is the first step in gene expression, and changes in 

transcriptional rates caused by the assembly of transcription 

factors are critical determinants of the majority of temporal 

changes in mRNA levels in cells [7]. In addition, 

post-transcriptional regulation such as splicing; modification 

with an m7G cap and poly-adenylation at the 5ʹ- and 3ʹ-ends, 

respectively; nuclear export; stabilization; and localization is 

also important for shaping “peaked” responses such as 

receiving external stimuli and extending the duration of 

expression [7-10]. Furthermore, mRNA stabilization and/or 

degradation; RNA modifications such as methylation and 

pseudouridylation; and associations with the translational 

machinery affect the efficiency of protein synthesis [11-14]. 

These post-transcriptional events are regulated by the 

formation of ribonucleoprotein complexes with RNA-binding 

proteins (RBPs). In addition, small non-coding RNAs such as 

microRNAs (miRNAs) are also involved in regulation 

through the formation of RNA-induced silencing complexes 

(RISCs). 

In this review, we will highlight the roles of the 

post-transcriptional regulation of gene expression in 

development, maintaining immune homeostasis, and the 

pathogenesis of autoimmune diseases and cancer, with 

insights from studies on knockout mouse models of individual 

miRNAs and RBPs. 

2. MicroRNAs 

MiRNAs are ~22-nucleotide single-stranded small 

non-coding RNAs that are highly conserved among 

eukaryotes and play a critical role in the post-transcriptional 

regulation of gene expression. miRNAs have a unique 

synthesis process [15]. Many miRNAs have their own 

transcription initiation region, and some miRNAs are located 

on introns of other genes or exist as a cluster of transcriptional 
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units. First, an miRNA is transcribed by RNA polymerase II to 

produce a primary miRNA (pri-miRNA), which is a long 

primary transcript containing one or more miRNA. Drosha, a 

nuclear RNase III, then crops the pri-miRNA into a precursor 

miRNA (pre-miRNA), which has a hairpin loop structure and 

is then exported from the nucleus into the cytoplasm by 

Exportin 5 [16-18]. Finally, the pre-miRNA is cleaved by 

cytoplasmic RNase III Dicer to form short nucleotide 

duplexes, and either one of the single strands is incorporated 

into an Argonaute (Ago) protein complex, known as an RISC. 

The single-stranded RNA is now a mature miRNA and is able 

to bind a partial complementary sequence, mainly located on 

the 3ʹ-untranslated region (3ʹ-UTR) of the target mRNA, and 

impart its translation repression or degradation [19-21]. 

Because Dicer knockout mice display severe growth arrest at 

an early embryonic stage [22], miRNAs are regarded as 

critical factors for development. Recently, some 

loss-of-function studies revealed that individual miRNAs play 

critical roles in various biological processes such as 

development, homeostasis, and immune system function, and 

these roles are highlighted below. 

2.1. MiR 17~92 Cluster 

The miR-17~92 cluster contains miR-17, miR-18a, 

miR-19a, miR-19b-1, miR-20a, and miR-92a-1, which are 

promoted by MYC (v-myc avian myelocytomatosis viral 

oncogene homolog) and are representative miRNAs that are 

considered “oncogenes” [23, 24]. miR-17~92 knockout mice 

show perinatal lethality with heart, lung, and skeletal defects, 

indicating that the miR-17~92 cluster is critical for 

development [25]. Knockout mice lacking miR-106a~363 and 

miR-106b~25, which are known as the miR-17~92 family, 

have no obvious phenotypes; however, mice with co-deletion 

of miR-17~92 with miR-106a~363 and miR-106b~25 die 

before embryonic day 15 [25], indicating that these clusters 

functionally cooperate in regulating embryonic development. 

2.2. MiR-34/449 

The miR-34/449 family contains miR-34a/b/c and 

miR-449a/b/c, constituting a conserved family in vertebrates, 

and seed sequence homology among miR-34/449 miRNAs 

predicts robust functional redundancy. Although the miR-34 

family has been proposed as critical modulators of the p 53 

pathway and potential tumor suppressors, miR-34 knockout 

mice exhibit normal development and do not display increased 

susceptibility to spontaneous, irradiation-induced, or 

c-Myc-initiated tumorigenesis [26]. On the other hand, 

miR-34/449 miRNAs are highly enriched in mucociliary 

epithelia that contain motile cilia, and miR-34/449 deletion in 

mice and frogs leads to defects in ciliogenesis. miR-34/449 

knockout mice exhibit frequent postnatal mortality, with only 

~40% surviving to adulthood [27]. These results indicate that 

the miR-34/449 family is essential for development. 

2.3. MiR-1/126/205 

The above examples are phenotypes of the deletion of an 

miRNA cluster or family in mice. However, severe 

developmental phenotypes in single-miRNA knockout mice 

have also been reported. miR-1 and miR-133 are 

muscle-specific miRNAs [28-32]. miR-1-2 knockout mice 

exhibit cardiac morphogenic, electrical conduction, and cell 

cycle defects and 50% lethality at weaning [33]. In addition to 

this miRNA, other single-miRNA knockout mice showing 

lethal phenotypes, such as knockout mice lacking miR-205 

(100% neonatal lethality with compromised epidermal and 

hair follicle growth; [34]) and miR-126 (40-50% 

embryonic/perinatal lethality with angiogenesis defects; [35]), 

have also been reported. 

2.4. MiR-140 

Our group revealed that miRNA is important for cartilage 

development and homeostasis. miR-140 is specifically 

expressed in the cartilage of mouse embryos and zebrafish 

[36-38], and this expression is regulated by Sox 9, a master 

regulator of chondrogenesis [39]. Previous studies also found 

reduced miR-140 expression in human osteoarthritis (OA) 

cartilage [40, 41]. miR-140 knockout mice show a mild 

skeletal phenotype with a short stature, although the structure 

of the articular joint cartilage appeared grossly normal in 

1-month-old miR-140 mutant mice. However, interestingly, 

miR-140−/− mice manifest age-related OA-like changes [37]. 

miR-140 directly regulates Adamts-5, which degrades 

aggrecan and is a critical enzyme for OA pathogenesis [37, 42, 

43]. These findings demonstrate that miR-140 is required for 

skeletal development and cartilage homeostasis and protects 

against OA-like pathology via Adamts-5 regulation. 

2.5. MiR-155 

MiRNAs are critical regulators of not only development 

and homeostasis but also the immune system. miR-155 maps 

within an exon of the noncoding RNA bic [44, 45], its primary 

miRNA precursor [46]. bic/miR-155 shows greatly increased 

expression in activated B- and T-cells, macrophages, and 

dendritic cells (DCs) [46-50]. Increased expression of 

bic/miR-155 has been reported in B-cell lymphomas and solid 

tumors [51], and transgenic miR-155 mice have also been 

shown to develop B-cell malignancies [52], indicating that the 

miRNA might be linked to cancer. miR-155/bic knockout 

mice are immunodeficient and display increased lung airway 

remodeling [53], indicating that miR-155 plays a key role in 

the function of the immune system. 

2.6. MiR-146 

MiR-146a was initially discovered as an miRNA that was 

induced upon microbial infection [49]. miR-146a is induced 

by NF-kB and inhibits innate immune responses by repressing 

TRAF6 and IRAK1 [49], and miR-146a knockout mice show 

several immune defects. miR-146a null mice show 

hyperresponsiveness of macrophages to bacterial LPSs, which 

leads to an exaggerated inflammatory response in 

LPS-challenged mice [54]. Later in life, miR-146a knockout 

mice develop a spontaneous autoimmune disorder, 



 Biomedical Sciences 2016; 2(3): 16-23 18 

 

characterized by splenomegaly, lymphadenopathy, and 

multiorgan inflammation; as a result, many die prematurely 

[54]. In addition, aged miR-146a knockout mice display an 

excessive production of myeloid cells and develop myeloid 

sarcomas and some lymphomas [54, 55], suggesting that 

miR-146a can function as a tumor suppressor in the context of 

the immune system. 

3. RNA-Binding Proteins 

RBPs play pivotal roles post-transcriptionally in the 

regulation of gene expression. RBPs are estimated to be 

encoded in over 1,500 genes in the human genome and are 

known to be involved in inflammation and neurodegenerative 

disorders [56-58]. As with miRNAs, the binding specificity 

between cognate RNA and RBPs is determined by the primary 

RNA sequence. The most prominent example is the adenine 

(A) and uridine (U)-rich element (ARE) that is characterized 

by AUUUA or UUAUUUUAUU in the U-rich context. Over 

three decades ago, AREs were found in the 3ʹ-UTR of 

GM-CSF and TNFα and shown to destabilize mRNA [59, 60]. 

A later study estimated that 5-8% of all mRNAs contain 

functional AREs and are involved in various biological 

processes, including the immune response, inflammation, and 

development [61, 62]. The secondary structure, as well as the 

primary sequence, of mRNA is also a critical determinant of 

its specificity to cognate mRNAs. Although miRNAs and 

ARE-binding proteins are the most prominent examples of 

post-transcriptional regulation as mentioned above, a 

stem-loop structure that differed from the complementary 

sequence to any known miRNA and ARE was found in the 

3ʹ-UTR of TNFα and named the conserved decay element [63, 

64]. We will describe the findings obtained from mice 

deficient in RBPs involved in development, reproduction, the 

immune system, and neural function. 

3.1. Tristetraprolin Family 

Tristetraprolin (TTP) is encoded by Zfp36 and composed of 

two CCCH-type zinc finger domains. Although TTP has been 

considered a DNA-binding transcription factor, later studies 

demonstrated that TTP binds directly to mRNA, especially to 

AREs [65]. Mice deficient in TTP appear normal after birth, 

but they show spontaneously severe myeloid hyperplasia, 

arthritis with bone erosion, dermatitis, conjunctivitis, 

glomerular mesangial thickening, high titers of anti-nuclear 

antibodies, and cachexia due to elevated production of TNFα 

by macrophages and neutrophils [66]. These 

inflammation-associated phenotypes are prevented by 

injection of a monoclonal antibody against TNFα. Consistent 

with this, mice lacking an ARE in the 3ʹ-UTR of TNFα show 

an auto-inflammatory phenotype resembling that of 

TTP-deficient mice [67]. These findings strongly suggested 

that TTP-mediated suppression of TNFα production is crucial 

for maintaining immune homeostasis in vivo. BRF1 and BRF2 

are close homologues of TTP that possess CCCH-type zinc 

fingers that are very similar to that of TTP but differ in their N- 

and C-terminal ends. Unlike TTP-deficient mice, mice lacking 

BRF1 die at embryonic day 11 because of failure of 

chorioallantoic fusion [68]. Although BRF2-deficient mice 

are born at the expected Mendelian ratio, cells that originate 

from hematopoietic stem cells, including white and red blood 

cells and platelets, are greatly reduced, resulting in death 

within 2 weeks after birth [69]. Interestingly, it was reported 

that mice that lacked BRF1 and BRF2 during thymopoiesis 

developed a T cell acute lymphoblastic leukemia dependent 

on the oncogenic transcription factor Notch1. Thus, 

tristetraprolin families prevent the pathogenesis of 

autoimmune diseases and leukemia [70]. 

3.2. AUF1 

AUF1 (also known as HNRNPD) binds to mRNAs 

containing an ARE and suppresses translational initiation by 

replacing translational initiation factor eIF4G and poly (A) 

binding protein [71]. AUF1-deficient mice have a higher 

susceptibility to endotoxin shock and die earlier compared to 

WT mice [72]. These differences were due to the excessive 

production of TNFα and IL-1β by macrophages. 

AUF1-deficient mice were shown to have a reduced number 

of splenocytes and develop spontaneously pruritic 

inflammatory skin disease with elevated serum IgE levels and 

T-cell hyper-proliferation, indicating that AUF1 is also 

involved in adaptive immune responses as well as in innate 

immunity [73]. Interestingly, AUF1 is also involved in 

maintainance of telomere length, and decreased survival and 

increased markers of aging are observed in late-generation 

AUF1 deficient mice [74]. 

3.3. TIA-1/TIAL-1 

TIA-1 and TIAL-1 have well-defined RNA-recognition 

motifs that bind to AREs with high affinity and suppress 

mRNA translation through the formation of a 48S* 

pre-initiation complex, which is a translationally stalled 

complex, in processing body [11]. TIA-1-deficient mice 

spontaneously develop arthritis and die earlier of endotoxin 

shock compared to WT mice [75]. Macrophages derived from 

TIA-1-deficient mice produce higher amounts of TNFα and 

IL-1β, but not IL-6. Sucrose gradient analysis revealed that 

TNFα mRNAs had a higher degree of association with 

polysomes, which represent actively translating ribosomes, in 

TIA-1-deficient macrophages compared to normal 

macrophages. These results indicated that the translational 

suppression of inflammatory cytokines such as TNFα by 

TIA-1 is crucial for maintaining immune homeostasis in vivo. 

Similar to TIA-1 deficiency, partial lethality was also 

observed in mice lacking TIAL-1. In contrast to 

TIA-1-deficient mice, both male and female TIAL-1-deficient 

mice are sterile because they lack spermatogonia and oogonia, 

resulting from a primordial germ cell development defect [76]. 

These results indicated that the two related proteins, TIA-1 

and TIAL-1, are involved in both the immune system and 

reproduction. 
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3.4. CUGBP1 

CUGBP1, also known as CELF1, is a multifaceted RBP 

involved in the regulation of alternative splicing, stimulation 

of translation via the 5ʹ-UTR of cognate mRNAs, and mRNA 

decay by binding to guanine- and uridine-rich elements found 

in the 3ʹ-UTR of mRNA [11, 77, 78]. Mice deficient in 

CUGBP-1 are viable, but they display growth retardation [79]. 

Like TIAL-1 deficiency in mice, CUGBP-1 deficiency leads 

to impaired fertility in both male and female mice. 

3.5. Hu Family 

The Hu family is composed of four related genes: HuB, 

HuC, HuD, and HuR. The Hu family has three RRM domains 

and stimulates translation through binding to both AREs and 

polyA tails in the 3ʹ-UTR of mRNA [80-82]. On the other 

hand, cross-linked RNA immunoprecipitation with 

high-throughput sequence analyses revealed that Hu proteins 

also bind to intronic sequences of RNA and regulate 

alternative splicing [83, 84]. The expression of HuB, HuC, 

and HuD is restricted to neural cells, whereas HuR is 

expressed ubiquitously. It was reported that HuC- or 

HuD-deficient mice showed poor rotarod performance and 

seizure, suggesting that neural Hu proteins are indispensable 

for normal neuron functioning [84, 85]. In contrast to neural 

Hu proteins, HuR-deficient embryos exhibit a stage 

retardation phenotype and fail to survive beyond 

mid-gestation [86]. T-cell-specific deletion of HuR leads to 

resistance to experimental autoimmune encephalomyelitis 

(EAE), an experimental model of human multiple sclerosis, 

via lower levels of T-cell proliferation and IL-17 production 

[87]. Floxed HuR mice harboring lysozyme-driven Cre 

expression show higher susceptibility to endotoxin shock, 

inflammatory bowel disease, and colitis-associated cancer 

with excessive production of inflammatory cytokines and 

chemokines, indicating that HuR expression in myeloid cells, 

including macrophages and neutrophils, is indispensable for 

maintaining immune homeostasis [88]. These results 

indicated that the Hu family of proteins is required during 

embryonic and adult stages of life. 

3.6. Regnase-1 

Regnase-1 is encoded by Zc3h12a and induced 

immediately after exposure to ligands for Toll-like receptors. 

Regnase-1 has a CCCH-type zinc finger domain that has 

ribonuclease activity and binds to stem-loop structures found 

in a set of inflammatory genes, including IL-6 and IL-12p40 

[89]. Interestingly, Regnase-1 specifically cleaves and 

degrades translationally active mRNAs and is dependent on 

UPF1, an essential component of nonsense-mediated decay 

[90]. Regnase-1-deficient mice spontaneously suffer from 

severe anemia and fetal autoimmune diseases and die within 

12 weeks [89]. An increased number of activated and/or 

memory phenotype T-cells, which are CD44 positive and 

CD62L negative, were observed in the spleen and lymph 

nodes of mice lacking Regnase-1. Plasma cells, which are 

known to be antibody-secreting cells, were dramatically 

increased in the spleen, leading to the excessive production of 

antibodies against nuclear contents and dsDNA. 

T-cell-specific deletion of Regnase-1 also results in fetal 

autoimmune diseases and autoantibody production, as seen in 

Regnase-1-deficient mice [91]. CD4
+
 T-cells lacking 

Regnase-1 produce large amount of IFNγ, IL-4, and IL-17, 

which are representative cytokines for Th1, Th2, and Th17 

cells, respectively. Severe autoimmune phenotypes observed 

in T-cell-specific Regnase-1 deficiency are partially 

dependent on the expression of c-Rel, a transcription factor 

composed of NF-κB and a target of Regnase-1, because mice 

deficient in both Regnase-1 and c-Rel exhibit a reduced 

number of plasma cells and activated T-cells. Therefore, 

Regnase-1 expression is indispensable for the maintenance of 

immune homeostasis. 

3.7. Roquin 

The sanroque mouse strain, which exhibits a severe 

autoimmune disease, was established by 

ethylnitrosourea-induced mutagenesis [92]. This mutant strain 

harbors a point mutation in which Met 199 is replaced with 

Arg within the ROQ domain of Roquin, and the mice exhibit a 

lupus-like pathology with higher amounts of anti-nuclear and 

dsDNA autoantibodies due to elevated expression of ICOS, 

which is a co-stimulatory receptor that facilitates follicular 

helper T-cell differentiation [93, 94]. This mutant strain also 

has increased susceptibility to endotoxin shock and 

autoantibody-induced arthritis [95]. Roquin (Roquin-1) and 

its homologue Roquin-2 have a ROQ domain that binds to the 

stem-loop structure of mRNAs found in the 3ʹ-UTR of ICOS, 

TNFα, and IL-6 and degrades target mRNA via localization to 

P-bodies, followed by Caf-1-dependent deadenylation and 

degradation [64, 90, 93, 95, 96]. Although the complete loss 

of Roquin-1 or Roquin-2 in mice leads to perinatal lethality, 

lupus-like symptoms as seen in sanroque mutants are not 

observed in Roquin-1- or Roquin-2-deficient mice [97, 98]. 

However, mice lacking both Roquin-1 and Roquin-2 in T-cells 

exhibit an increased number of follicular helper T-cells and 

germinal center B cells, and develop lung inflammation and 

gastritis, indicating that Roquin-1 and Roquin-2 have 

redundant roles in the regulation of autoantibody production 

in a T-cell autonomous manner [98, 99]. 

3.8. ARID5a 

The AT-rich interaction domain (ARID) is an ancient 

DNA-binding domain that is well conserved throughout 

evolution [100]. Interestingly, ARID5a also binds to 

single-strand RNAs and stabilizes a set of mRNAs such as 

IL-6 and STAT3 to facilitate their expression. As in the case of 

Regnase-1, ARID5a recognizes stem-loop structures via the 

ARID domain and prevents the binding of Regnase-1 to 

protect against the degradation of cognate mRNAs [101]. 

ARID5a is highly expressed in LPS-activated macrophages 

and Th17 cells, which are IL-17-secreting CD4
+
 T-cells 

involved in autoimmune diseases. Mice deficient in ARID5a 

show resistance to EAE, indicating that ARID5a is crucial for 
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Th17-mediated immunopathology to stabilize IL-6 and 

STAT3 [102]. 

4. Conclusion 

The findings described above highlight the importance of 

post-transcriptional regulation by miRNAs and RBPs in the 

pathogenesis of autoimmune diseases and cancer as well as in 

normal development. miR-16 is required for the rapid 

degradation of TNFα mRNA dependent on TTP, indicating 

that miRNAs and RBPs cooperatively regulate identical target 

mRNAs [103]. Recently, small compounds that regulate the 

alternative splicing of SMN2, the gene responsible for spinal 

muscular atrophy (SMA), were developed, and administrating 

them to ∆7 mice, a model of severe SMA, improved motor 

neuron function by increasing the expression of SMN protein 

and extending its life span [104]. Therefore, elucidating the 

mechanisms underlying post-transcriptional gene expression 

will provide new insights into novel therapeutic approaches 

for treating congenital diseases, autoimmune diseases, and 

cancer. 
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