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Abstract: Heavy rainfall occurs twice a year in the country and lately, thousands of people are always left homeless and 

hundreds lose life due to floods and landslides where rivers, dams, lakes and sewages overflow enhancing the spread of corona 

virus in slums. Agricultural products in the farms are also destroyed by floods, affecting agricultural performance to decline as 

it the key driver of the economy growth. Therefore we used inter-crossed model which was the combination of autoregressive 

moving average and artificial neural network. Zebiak cane model was also used for selection of variables that were associated 

to physical processes and testing the network variables. Climate networks were found to be effective tool for more qualitative 

El Niño Southern Oscillation prediction, by looking at a warning of the oncoming of El Niño when a predestined network 

attribute surpasses some critical value and also feed forward artificial neural network structures were found to be the first 

performing structure in terms of normalized root mean squared error at a three month head time prediction. By adding the 

network variable, we came up with a twelve month lead time prediction with same skill to the predictions at lower set times. 
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1. Introduction 

Kenya's Drainage Basin is an area of considerable 

diversity in terms of its orology and weather systems because 

of its geographical location and tectonic history. The 

interaction of these two components gives rise to heavy 

rainfall programs which is variously defined at the moment, 

particularly with respect to its onset and stop and 

consequently its duration. The heavy rainfall regimes and 

their attribute expression have marked influence on water 

supply problems generally and on agriculture in specific. 

Rainfall is one of the most significant components that 

determine agriculture. Though when rainfall is heavy, which 

sometimes referred as El Niño is deadly. It has a high degree 

in determining the capability of an area in terms of the crops 

which can be cultivated and sequence of agricultural 

operations. According to agriculture, rainfall is crucial 

because it provides soil with wetness. Rainfall and soil 

properties depend mostly on the proportion of rain water that 

will constitute soil wetness reserve, that is, the overall 

rainfall and its statistical distribution, rainfall strength and 

length, soil depth and moisture holding properties, and the 

equilibrium between rainfall and transpiration. 

Heavy rainfall is usually seasonal. The seasonal 

occurrence of rainfall itself is the result of the main controls 

of weather and climate over Kenya. This rainfall is 

influenced mainly by the South-East and North-East Trade 

winds. In the middle part of the year, Onset of westerly winds 

in the middle months of the year mainly affects parts of Rift 

valley, Central, Eastern and Nyanza regions of Kenya with 

floods. The heavy seasonal rainfalls in the eastern regions are 

as the result of the seasonal shifts of the Inter-Tropical 

Convergence Zone (ITCZ) which is associated to the sun's 

movements. 

Secondly, Topography and exposure: The effect of 

geography and view is mainly on the amount of rainfall 

received at a place. In particular, topography of the Kenyan 

highlands, behaves to make the ITCZ preferably spread. In 

East Africa, it is best known that altitude is among the 

topographic features that has a noticeable determinant of 

rainfall frequency of an area [1]. 

Thirdly, Latitude: This ascertains the duration of the rainy 
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seasons and the timing of rainfall minimum and maximum. 

Lastly, Inland lakes: This establishes changes to the 

generalized circulation patterns. Lake Victoria in Kenya is an 

example of an inland lake. 

The existence of these changes and their consequence on 

the pattern of rainfall occurrence in western Kenya is as a 

result of heavy rainfall in Nyanza. Significant characteristic 

of the rainfall climatology of an area is the accusative 

determination of the heavy seasonal rainfall, because of the 

highly changeable nature of the atmospheric processes and 

the alterations that may happen from place to place. Although 

it is hard to give accurate limits of the beginning, length and 

halt of the rainy seasons and El Niño southern oscillation 

(ENSO), an overall figure should be given because it is 

important from the farming community's point of view [2]. 

Apart from patterns of rainfall, lately in Kenya we have 

experienced heavy rainfall that is thought to be ENSO. Late 

2019 and earlier 2020, thousands of people are always left 

homeless and hundreds lose life due to floods and landslides 

where rivers, dams and lakes overflow. Agricultural products 

in the farms are also destroyed by floods affecting 

agricultural performance to decline as it the key driver of the 

economy growth. 

Concerning this heavy rainfall, examinations from 70 

rainfall gauges stations and 17 air temperatures were 

analyzed for months of March to June for the long rains 

period of time in Kenya [3]. They used Geo- statistical 

method to estimate standard errors for predicting trends. 

Assuming that the similar ascertained trends prevail, these 

results can be prolonged to the coming years, providing acute 

modification efforts that may be needed to improve food 

security. Prolonging the examined 1960 to 2009 effects-out 

until 2025, it will be found out that large parts of Kenya will 

have experienced more than a 100 mm decline in long-period 

rainfall by that date [4]. 

The ascertained rainfall trends are considerably unlike 

from the results given in the latest 4th Inter-governmental 

Panel on Climate Change assessment [5]. Chapter eleven of 

the Intergovernmental Panel on Climate Change Workings on 

first report shows that eastern Africa will probably receive a 

moderate five to ten percent increment in June to August 

precipitation. Numerous models argue the coming lean 

towards a more El Niño equivalent climate, where in East 

Africa would be anticipated to bring about enhanced March 

to June rainfall in Kenya. Presently, there looks to be high 

observational data supporting such a shift in the country. 

Nevertheless, both in the Intergovernmental Panel on 

Climate Change modeling and in the past record of El Niño 

rains in Kenya, there appears a strong warming tendency in 

the western Indian Ocean [6], which bring about heavy 

rainfall hence hot and wet seasons and increased greenhouse 

gases. This astronomical scale circulation change seems to be 

modulating the effect of natural climate alterations [4]; recent 

El Niño March to June seasons are tending to increase 

leading to landslides and flooding in the country because of 

above normal rainfall totals followed by La Niña which is 

drier in the months June to October. 

Therefore, when the sea surface temperatures is higher 

than average in the eastern equatorial Pacific [7] is referred as 

El Niño Southern Oscillation (ENSO) and is induced by a 

large-covering ocean–atmosphere interaction between the 

equatorial Pacific and the worldwide atmosphere [8]. 

Lately, efforts have been made to better the el Niño 

Southern Oscillation prediction ability beyond the norm 

predictability boundary, for example by using machine 

learning [9] methods, also combined with artificial neural 

network techniques (ANN) [10]. ANN is an organization of 

connected neurons that reports after optimization, a 

mathematical relation from more or one input variable to the 

output variables. In general, one has to select how big and 

complex the ANN structure is. The more complex an ANN 

is, the more it will filter the crucial information from the 

attributes itself, but it will necessitate more input data and 

will be intense computationally. 

Complicated networks change out to be an effective way to 

describe spatiotemporal information in climate schemes [11] 

and can be utilized as an attribute reduction technique. These 

climate networks are generally built by connecting 

spatiotemporal placements that are importantly related with 

each other accordant to some measure. Hence climate 

networks already look to be an effective tool for more 

qualitative El Niño Southern Oscillation prediction, by 

looking at a warning of the oncoming of El Niño when a 

predestined network attribute surpasses some critical value 

[12]. 

2. Methodology 

Modern approaches in neural network (NN) modeling 

have contributed to the nonlinear theorization of principal 

component analysis and canonical correlation analysis. 

skilled seasonal prediction is settled on the assumption that 

either statistics such as continuity or multi-annual drifts or 

slow varied boundary forcing can be employed for producing 

long-range forecasting that are more exact compared to 

climatology. Slow varied boundary forcing includes ocean 

temperatures; sea ice, soil moisture, and snow cover [13]. 

El Niño cases typically induce droughts on the western 

region of the Pacific and flooding cases on the eastern region 

and hence create impact on climate worldwide. 

Approximated damages for the 1997–1998 events of El Nino 

were in the order of billions of dollars worldwide including 

Kenya [14]. Hence developing of skilled forecasts of these 

cases, preferably with a one year head time is crucial. This 

research will help policy makers to mitigate the destructive 

results of the related weather abnormalities. For example, 

farmers can be informed to employ specific types of corn in 

El Niña years and others during La Niño years or move to 

hilly places during El Niño. 

2.1. The Zebiak Cane Model 

This model is used to satisfactory predict and simulate El 

Nino Southern Oscillation behavior, and aid in the selection 

of variables that are associated to physical processes. 
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Network analyses are practical to the Zebiak Cane model so 

that to determine network attributes which could improve the 

prediction, before these system variables are premeditated in 

observation. In the Zebiak Cane model, a shallow-water 

ocean constituent is conjugated to a steadily shallow water 

Gill atmospheric state model [15]. 

2.2. Network Variables 

Here in network variables, we explain the methods used to 

compute an attribute of a climate network, which is time-

tested in the Zebiak Cane model and is then utilized in the 

inter-crossed model thus applying the Pearson correlation of 

climate variables associated to El Nino Southern Oscillation. 

The Pearson correlation is a simple, efficient method to 

specify connections between nodes. Nevertheless, other 

properties of climate networks could be established when 

using mutual selective information alternatively. 

Furthermore, the consequence of spatial length between 

nodes can be examined and corrected for [16]. 

Nodes in neural networks are models or observation 

reference grid positions k. The links are kept in a 

symmetrical contiguity matrix B, where ���=1 if node k is 

connected to node l and ���=0 otherwise. ���  Is outlined as 

��� = ��|���|−	∈� − 
�� 	                          (1) 

Where ���  the Pearson correlation between node k and l is, 

∈ is the threshold value and � is referred as the Heaviside 

function. Therefore, if the Pearson correlation surpasses the 

threshold ∈,	the two nodes will be connected. The	
�� 	is the 

Kronecker delta function, which is enforced to prevent 

connectedness of nodes with themselves. By using 

percolation theory, neural climate networks of different 

clusters increases before onset of El Niño and reduces 

afterwards [17]. 

2.3. Inter-Crossed Prediction Model 

Inter crossed model was applied because of its advanced 

stableness and rarely produces inferior prediction [18]. The 

observation ��  at time t is outlined as 

�� = �� +	��                                 (2) 

Where �� 	 is modeled by a linear process and ��  by 

artificial neural networks. Let ���  be the prediction part of �� 

using ARIMA, then �� − ���  is the residual with respect to 

the determined value. This residual will be predicted by the 

feed forward ANN: 

��� = �������,···, �����                          (3) 

Explanation of each parameter: f is a non-linear function 

of the m attributes �������,···, ����� and ���  the prediction of 

the residual �� − ���  at time t. The ARIMA ���  depends on 

history and non-linear function f does not. The final inter-

crossed model ���  is 

��� = ��� +	���                                 (4) 

In this research a training set of 85% and a test set of 15% 

of the total time series were used. 

3. Prediction Results and Conclusion 

This part constitutes the predictions of the inter-crossed 

model, in comparison with observations. The skill with 

artificial neural network structures up to three hidden layers is 

analyzed. CFSv2 prediction models and inter-crossed model 

approach to correspondent results for different hyper-

parameters and when using dissimilar training and test sets in a 

cross-validation method. The ARIMA prediction had a 

considerable residual as indicated by a low normalized root 

mean squared error hence the inclusion of artificial neural 

network improved the prediction. Comparing CFSv2 ensemble 

and inter crossed model, inter crossed model out-performs 

CFSv2 ensemble. Feed forward ANN structures are found to 

be the first performing structure in terms of normalized root 

mean squared error at a three month head time prediction. 

Comparing the three month head prediction of the CFSv2 

ensemble with the four month head prediction of the inter-

crossed model, both the amplification and the lag of the inter 

crossed model prediction are smaller. While the head time of 

the inter-crossed model is one month longer and the prediction 

skill is better in terms of normalized root mean squared error. 

The prediction skill of the inter-crossed model decreases at a 

six month head compared to the four month head time 

prediction. Thereby the amplification and lag of the CFSv2 

prediction increases. Although the inter-crossed model does 

not sustain as much from the lag, it undervalues the El Niño 

events. In terms of normalized root mean squared error, the 

inter-crossed model still acquires a better prediction skill. 

By adding the network variable (the set of nodes 

consisting of clusters of size two)	�� , we came up with a 

twelve month lead time prediction with same skill to the 

predictions at lower set times. This prediction indicates a step 

towards combating the poor heavy rainfall predictability 

mechanism. Using artificial neural network, it has the benefit 

of acknowledging the early warning signaling; �� of as either 

a false or true positive. Consequently, it can be a more 

dependable method because of its considerable information 

when the signal surpasses a destined threshold. 
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