

Advances in Wireless Communications and Networks
2019; 5(1): 1-12

http://www.sciencepublishinggroup.com/j/awcn

doi: 10.11648/j.awcn.20190501.11

ISSN: 2575-5951 (Print); ISSN: 2575-596X (Online)

A Proposed Combinatorial System Design for Ubiquitous
Transaction Processing Systems

Patience Spencer

Department of Computer Science, Ignatius Ajuru University of Education, Rumuolumeni, Port Harcourt, Nigeria

Email address:

To cite this article:
Patience Spencer. A Proposed Combinatorial System Design for Ubiquitous Transaction Processing Systems. Advances in Wireless

Communications and Networks. Vol. 5, No. 1, 2019, pp. 1-12. doi: 10.11648/j.awcn.20190501.11

Received: June 24, 2019; Accepted: July 27, 2019; Published: September 3, 2019

Abstract: As computing paradigm shift from a computing paradigm involving one-computer-many people to that involving

one-person-one computer and eventually to the one involving one-person-many computers, the need for effective transaction

management model for this advancement has also increased. This is because, new transaction management challenges are

introduced. These challenges include increased mobile user bank, hybrid of mobile devices and transaction processing

architecture related issues. This paper presents a Combinatorial System Design of Transaction Processing Elements for

Ubiquitous Computing with the aim of justifying the choice of deploying Mobile-3PC Protocol on Three-tier transaction

processing system architecture as the appropriate combinatorial system design for ubiquitous transaction processing systems.

To achieve this aim, existing transaction processing systems are critically analysed and Compared against standards that

influence transaction processing throughput and response time positively. A systematic analytical approach is used in

analyzing the organizational structure of two-tier and three-tier system architectures. Subsequently, 2 Phase Commit and 3

Phase Commit communication protocols are analyzed and deployed on the three-tier system architecture to ascertain which

one of the combinational transaction processing system design support ubiquitous computing effectively. The study shows that

the Mobile-3 Phase Commit Protocol on Three-Tier system architecture displayed proactive management skill to curb process

failures. This signifies higher transaction throughput. The inherent load balancing capability of the three-tier system

architecture also shows support for improved response time. It is therefore recommended that the Mobile-3PC Protocol-on-

Three-Tier system architecture be adopted as the combinatorial system design for ubiquitous transaction processing systems.

Keywords: Ubiquitous Computing, Combinatorial, Architectural Design, Two-Tier System, Three-Tier System,

Mobile 2-Phase Commit Protocol, Mobile 3-Phase Commit Protocol

1. Introduction

The implementation of ubiquitous computing [1] systems

without a careful selection of transaction management

models is detrimental. This is owed to the fact that the

advancement of this computing paradigm introduces new

challenges. It is therefore evident that a proactive ubiquitous

transaction processing model capable of addressing new

challenges associated with huge bank of mobile users, hybrid

of mobile devices and transaction processing architectures is

required. This paper presents a combinatorial system design

of transaction processing elements for ubiquitous computing

with the aim of justifying the choice of deploying Mobile-3-

Phase Commit (3PC) Protocol [2] on a Three-Tier system

architecture [3] to achieve a proactive transaction processing

system model for ubiquitous computing environment. To

achieve this aim, existing transaction processing architectures

are identified, critically analysed and compared against

standards that influence transaction processing throughput

and response time positively. A systematic analytical

approach is used in analysing the organisational structure of

two-tier [3] and three-tier system architectures [3].

Subsequently, the Mobile 2-Phase Commit [2] and 3-Phase

Commit [2] communication protocols are analysed and

deployed on a 3-tier system architecture [3]. The information

provided by the study supplement transaction processing

system models providing useful information for

implementation of transaction processing elements in

ubiquitous computing environments.

2 Patience Spencer: A Proposed Combinatorial System Design for Ubiquitous Transaction Processing Systems

2. Materials and Methods

Basically, ubiquitous computing paradigm is concerned

with the ability of a user with a mobile computing device

(wearable and handheld) to be able to access information

residing in different computing systems as though the

information is in the user’s computing system [4].

A schematic diagram of ubiquitous computing

environment showing features of ubiquitous computing

environment is presented in figure 1.

Figure 1. Ubiquitous computing environment with strong interconnectivity. Adapted from http://sce2.umk.edu/csee/kumarv/mbt-seminar.ppt, by V. Kumar,

2012.

Figure 1 is a display of what ubiquitous computing

environment looks like. In this sample, two processing units

labelled processing units 1 and 2 are configured to process

requests received from hybrid of mobile devices. Mobile

users in this kind of computing environment can access their

home appliances from anywhere such as the office, a ship on

the sea, a bus, and a taxi.

Common features of ubiquitous computing environment

are changing location, mobile units, wireless infrastructure,

fixed location mobile units [4]. These features allow users to

work from anywhere using any kind of computing device.

The activities of a mobile user cause the user to move about,

and may be required to access variety of transparent

heterogeneous databases with a smart management system

(That is, having the ability to learn, collaborate, and be

autonomous). The presence of high user interaction with

transaction processing systems resulting in low throughput is

not desirable in this type of computing environment.

A transaction is defined as a collection of several

operations that form a single logical unit of work [5]. An

entire transaction that consists of sub-transactions can be

distributed across different processing units in the

environment. These processing nodes are connected to one

another through a communication network infrastructure.

Distributed transaction processing and wireless network

infrastructure form a backbone for ubiquitous computing [6].

Wireless devices and supporting programs are essential

elements of ubiquitous computing environments. This helps

mobile users to interact with processing systems within the

environment in a transparent manner. To ensure that data is

readily available and that mobile users interact with

processing systems in an optimal manner, an effective data

 Advances in Wireless Communications and Networks 2019; 5(1): 1-12 3

communication technique is required. Mobile devices

designed for ubiquitous computing can be handheld or

wearable devices and a user can carry or wear more than one

mobile device.

2.1. Transaction Processing Architectures in Ubiquitous

Computing Environment

Transaction processing architectural [3] design moved

from the centralized processing system to client/server

processing system that allows the deployment of components

of transaction processing systems to be organised in two

ways. One way is by dividing the processing system into two

operational tiers as shown in figure 2. The other way is by

dividing the processing system into three operational tiers as

shown in figures 3 and 4.

The functionality of the Two-Tier transaction processing

model in figure 2 shows that mobile users’ devices (laptop

and mobile phone) located in Tier 1 hold programs that

manage request and reports initiated by the users. The

Presentation Services, Application Services (That is, front-

end processes and back-end processes) and their management

mechanisms form the Client System. In this kind of

arrangement, fewer number of communication links are used

to establish interaction between the presentation module

(indicated as Presentation Service) and application module

(indicated as Application Server) of the Client System. This

is because the presentation module and application module

are located in the same place. The Client System prepares

users requests for execution by the Server System. The

Server System consisting of the Database management

System (DBMS) and the Database System is located in a

different computing system indicated as Tier 2 in figure 2.

Communication between Tier 1 and Tier 2 is done via

wireless communication network. Programs responsible for

Application services in Tier 1, communicate with the

Databases via Database Management Systems (DBMSs).

Specifically, the responsibilities of the Application Server

are [4]:

i. Set transaction boundaries.

ii. Implement user request as a sequence of tasks (that is,

doing the functions of a controller).

iii. Act as a router as it affects management of distributed

transactions and load balancing.

iv. Manage clients’ requests by applying multi-threading

skills.

The Two-Tier architecture allows stored procedure

interface to be created at the client’s location while the stored

procedure is stored and maintained at the server location

reducing effects of mobile unit unreliability [3]. Also, the use

of SQL statements to communicate with the server can be

avoided [4], stored procedures have better protection being

located at the server machine, network traffic is also reduced

thereby improving response time, authorization can be

implemented in the procedure, procedures can even be

created in advance. To enhancement the performance of the

client system, the Application Sever is removed from the

mobile users’ computing devices and located in a separate

computing device configured to be shared by multiple users

as shown in figure 3 and figure 4.

Figure 2. Schematic diagram of a Two-Tier transaction processing

architecture for ubiquitous computing syste.

Figure 3. Schematic of a 3-tier transaction processing system showing the

removal of the Application Services from the Mobile Users’ devices and

putting it in a separate computing device located in a shared middle tier

tagged Tier 2.

Figure 3 shows that the separated Application server

machine forms the middle tier tagged Tier 2. In so doing, the

client machine only holds the user interface and the

presentation services. In this way, different client machines

can communicate with the database server through the

application server.

Figure 4 is an illustration of a three-tier schematic where

the DBMS is relieved of matters concerning stored programs.

In this architecture, the stored procedures are removed from

the Database Server to a separate server known as

Transaction Server. The Transaction Server is directly

connected to the Database Server. The sole function of the

Transaction Server is to manage transaction segments. The

application server uses the transaction server to execute

stored procedures [3].

4 Patience Spencer: A Proposed Combinatorial System Design for Ubiquitous Transaction Processing Systems

Figure 4. Schematic of a 3-tier transaction processing system showing the application server and transaction server forming the middle tier tagged Tier 2.

2.2. Data Availability Support for Ubiquitous Computing

Making data available for mobile users in ubiquitous

computing environments can be challenging due to the

following factors:

i. Different users with different computing devices, from

different location can access different databases located

in different distributed database servers and

ii. Location data can change at runtime.

For these reasons, a transaction manager must be equipped

with the skills of processing different transactions (in what

looks like being done simultaneously) optimally by making

sure that:

i. Access is always granted to hybrid of applications’

request to a database

ii. When more than one user access same content of a

database, there should be no conflict

iii. A user should not be aware of other users of the same

database

iv. Context awareness is maintained all through the

processing stages of transactions

Data integrity must be sustained.

Mobile users can be found in different locations and places

including meetings, on the sea, in buses, on the road, and in

their homes as implied in figure 1. When ubiquitous

computing environments are faced with uncontrollable system

and connectivity related issues, they are reduced to traditional

mobile computing environments. For example, if any of the

links in figure 1 experiences issues resulting from outright

disconnection or intermittent connection or system failure, it

will be difficult to achieve ubiquitous computing. The two

processing units (Processing unit 1 and 2) in figure 1 support

different mobile units and users. For example, a mobile user in

a bus at a remote location can control or access ubiquitous

home appliance such as a refrigerator from the bus. Let us

assume that the mobile user wants to have an idea of the stock

level of a particular item in his or her refrigerator before

arriving home from work. The reason could be that so the user

could stop by a shop to get some more quantities of the item

that is of limited quantity. Accessing the refrigerator and

getting the required information from the refrigerator while in

a moving bus distance away from home is done at ease and

timely in a ubiquitous computing environment supported by

appropriate communication architecture, communication

protocol and a mature wireless infrastructure. In a situation

where there is more than one type of refrigerator in the

apartment, choosing the required refrigerator and the right

location for the item are also done at ease with the

implementation of appropriate database technology.

Generally, poor hardware (input, processing, output, and

telecommunication devices) and software (processing

instructions for transaction management, application

management, recovery management, and database

management systems) infrastructural designs are basic issues

militating against the successful implementation of ubiquitous

computing environment. This phenomenon is unacceptable as

the whole idea of invisible technology and visible impact [7]

associated with ubiquitous computing is greatly threatened.

2.3. Analysis of Transaction Commit Protocol

Implementation on a Three-Tier Transaction

Processing System Architecture

Information processing in ubiquitous computing

environment is difficult [8] due to the inherent complex nature

of distributed systems found in the environment. In this section,

the Mobile 2-Phase Commit and proposed Mobile 3-Phase

Commit data communication Protocols are critically analysed.

 Advances in Wireless Communications and Networks 2019; 5(1): 1-12 5

The combinatorial effect of implementing each of these

protocols on a 3-tier transaction processing system architecture

is also analysed. This is to ascertain the most productive

combination for transaction processing systems in ubiquitous

computing environment. It is worth noting that all transaction

processing system architectures have the same basic

transaction processing elements [9] which are identified as,

End-User Device, Front-End Program, Request Controller,

Transaction Server, and Database System.

Communication of data from a client machine to a server

machine is achieved via standard network infrastructure like

the TCP/IP network infrastructure. The communication of

transaction processes or operations (also referred to as

messages) from the client machine to the server machine is

conventionally done with the use of software structures

known as Send and Receive pairs.

2.3.1. Message Communication Algorithm in Mobile

2-Phase Commit Protocol

Figures 5 is a diagram representing the first phase of the

Mobile 2-Phase Protocol implemented on a 3-Tier

Transaction Processing System Architecture whereas figure 6

shows the second phase of the protocol. The desire to shift

from fixed processing nodes to mobile processing nodes

motivated Nouali et. al. [2] to develop a Mobile-Two Phase

Commit (M-2PC) protocol that extended the execution

framework of the conventional 2PC protocol. In their work

titled, “A Two-Phase Commit Protocol for Mobile Wireless

Environment”, the 2PC protocol principles are adopted but

the fixed nodes are replaced with mobile clients and servers

that communicate over wireless network infrastructure. Just

like in 2 Phase Commit Protocol, in Mobile-2PC Protocol,

the execution process of a transaction is divided into two

phases. The Mobile-2PC protocol aims at providing an

Atomic Commitment Protocol (ACP) with the specific

objective of globally committing fragments of mobile

transactions distributed to more than one processing node for

execution. As shown in figures 5 and 6, a Mobile User

connects to a Global Server Machine representing a Base

Station (BS) or Mobile Service Station (MSS) [10]. A Base

Station [10] is a computer augmented with a wireless

interface to communicate with mobile devices and different

Base Stations can be interconnected via wired links. Each

Base Station covers a geographical area called a cell.

A Mobile User can directly communicate with a Mobile

Service Station covering the geographical area in which the

user resides. The Mobile User may move from one cell to

another while transactions involving Distributed Database

Systems are being executed. When this happens, a handoff

process is required to keep the active process from failure.

The Mobile-2PC model puts the handoff process in the hands

of the Mobile Service Station. The first phase of transaction

execution process as shown in figure 5 occurs between the

2nd and 3rd tiers of the system architecture. The readiness of

the host of database management systems in the processing

units located in the 3rd tier of the ubiquitous computing

environment is confirmed for the commencement of the

execution process. The actual execution and commitment of

action transactions as shown in figure 6 form the 2nd phase

of the execution process. Transmission of finished

transaction to mobile users and release of resources also take

place in this phase.

It is assumed that the ubiquitous computing environment

under consideration deals with:

i. computing nodes that are stationary including the

client machine

ii. embedded wireless network infrastructure

iii. cohorts (processing nodes) of similar characteristics

that cannot be down at the same time but may operate

at low and different bandwidth.

iv. Certain fixed servers equipped with public databases

v. Certain mobile devices equipped with personal

databases.

vi. Base Stations have some processing capability such

as interpreting mobile hosts and fixed hosts request.

vii. Mobile devices initiating transactions is initiated and.

viii. Insufficient computing resources and power supply.

Problems associated with the 2PC protocol that the

Mobile-2PC protocol attempted to address include:

i. Mobile unit given the task of initiating and coordinating

the execution of a transaction

ii. Mobile unit not having sufficient computing resources

and power

iii. Mobile unit performing under low and variable

bandwidths resulting in communication latency.

iv. Mobile unit having to deal with many Up-stream

message exchanges over wireless network also resulting

in communication latency.

v. Mobile unit having to host public and private databases

posing high risk of data unavailable in the event of

failures.

vi. The Mobile unit housing the coordinator making

communication between the other participants and the

coordinator unreliable in the event of the Mobile unit

developing fault.

In minimizing the responsibility of mobile user’s device,

the coordinator (server) is removed from the Mobile user’s

device and located in the Mobile Service Station to which the

Mobile user’s device is attached. This allows free

communication between the coordinator and other cohorts

whether the mobile device is connected or not, and conserve

computing resources in the mobile device.

Considering a situation where the mobile user’s device

(the transaction initiator) moves from a network coverage

under a particular base station to another network coverage

under a different base station, there is bound to be loss of

communication between the mobile user’s device and the

coordinator attached to the mobile that mobile user’s device

if the coordinator does not move with the mobile user’s

device to the new base station (That is the MSS). The

Mobile-2 Phase Commit Protocol addressed this issue in the

following way: The Transaction initiator (Client) while under

the coverage of a particular base station tagged Home-Base

Station sends a commit-request to the coordinator in the

6 Patience Spencer: A Proposed Combinatorial System Design for Ubiquitous Transaction Processing Systems

Home-Base Station. At this point, the Home-Base Station

serves as the Current-Base Station. Since the base station

holds the coordinator, the transaction can be executed

partially or completely in the Home-Base Station.

Figure 5. A schematic representing the first phase of a Mobile 2-Phase Protocol implemented on a 3-tier transaction processing system architecture.

 Advances in Wireless Communications and Networks 2019; 5(1): 1-12 7

Figure 6. A schematic representation of the second phase of a Mobile 2-Phase Protocol implemented on a 3-tier transaction processing system architecture.

2.3.2. Proposed Combinatorial System Design for

Transaction Processing System in Ubiquitous

Computing Environment

Mobile-3 Phase Commit Protocol on a Three-Tier

Transaction Processing System Architecture is identified as

the proposed combinatorial system design for ubiquitous

transaction processing system. Figures 7, 8, and 9 illustrate

the stage-wise transaction execution process.

8 Patience Spencer: A Proposed Combinatorial System Design for Ubiquitous Transaction Processing Systems

Figure 7. Schematic of the first phase of the proposed Mobile 3-Phase commit protocol implemented on a 3-tier transaction processing system architecture.

 Advances in Wireless Communications and Networks 2019; 5(1): 1-12 9

Figure 8. A schematic diagram representing the second phase of the proposed.

The proposed system design as presented in figures 7, 8,

and 9 show that, mobile users connect to the application

server with their mobile devices. The Application Server

(AS) represents the coordinator of mobile units’ applications,

Transaction Server (TS) represents the coordinator of

database processing units’ applications, and Database

Processing Units involved in the execution of transactions are

referred to as cohorts (Participants).

The proposed system design attempts to solve the problem

of increased message overhead and latency associated with

the existing Mobile 2-Phase Commit Protocol. This is

achieved by making the mobile unit a light weight processing

device and the transaction servers proactive in managing

database transactions.

The responsibility of the mobile device application is

reduced to just request initiation and interfacing with the

Application Server through an Agent-based User Preference

Management System (UPMS) or a sensory framework. The

Transaction Server is designed to be mobile during

transaction execution. This means that it can access different

data sources at run-time without losing connection to

participating processing units.

10 Patience Spencer: A Proposed Combinatorial System Design for Ubiquitous Transaction Processing Systems

Figure 9. A schematic diagram representing the third phase of the proposed Mobile 3-Phase Protocol implemented on a 3-tier transaction processing system

architecture.

The specific functions of the proposed Application Server

and Transaction Server are listed thus:

Functions of the Application Server

i. Interface with n interface mobile agents Al within

the ubiquitous network.

ii. Keep record of n user-end context information Uc

collected from nAl.

iii. Update context information collected from nAl at

runtime

iv. Interface with Transaction Server (TS)

v. Initiate n Transaction T (by activating the send

message primitive)

vi. Feed Transaction Server with dynamic context

information collected from n interface agents nAl at

runtime

vii. Accept recovery request from transaction server

viii. Communicate recovery information to transaction

server on demand

ix. Functions of the Transaction server

x. Interface with application server

xi. Accept messages (that is transactions) from

application server

xii. Register transaction information into appropriate

logs

xiii. Schedule transaction distribution and initiate send

primitives (that is, start the execution of registered

transactions)

xiv. Keep track of dynamic state parameters of

transactions from the application server

xv. If any change in state parameter is perceived while

execution is on, register the changes and update the

transaction at runtime else just keep track of

 Advances in Wireless Communications and Networks 2019; 5(1): 1-12 11

transaction until commit state is reached

xvi. Interface with DBMS within the ubiquitous

computing environment

xvii. Interface with backend context-aware mobile agents

xviii. Synchronize register of processing nodes in the

ubiquitous environment with backend mobile agents

xix. Synchronize transaction details with backend agents

xx. Distribute sub-transactions to eligible nodes for

processing

xxi. Keep track of nodes status and events until end of

transaction

xxii. If an active node’s standard is compromised register

the state and then broadcast handover request to

neighbouring nodes

xxiii. Wait for readiness to take over from neighbouring

nodes

xxiv. Handover control to neighbouring node/nodes using

the best judgment on receiving readiness message

from neighbouring nodes.

xxv. Accept required data/instructions retrieved from

Databases

xxvi. Wait for commit message from all participating

processing nodes

xxvii. On receiving commit message from all participating

processing nodes, converge processed sub-

transactions from different processing nodes

xxviii. Save processed message and then communicate

processed message to application server.

xxix. Get acknowledgement message from application

xxx. Commit transaction and then release held down

resources

3. Result and Discussion

Figure 7 shows that the Application server interfaces

between the client machine and the Transaction Server. This

design takes care of issues associated with the mobile device

being host to both the client and the coordinator. The 3-Phase

Commit Protocol also takes care of the problem of the mobile

host (That is, the mobile device) having the responsibility of

announcing its position to a new base station. In the proposed

model, that responsibility is handed over to the Application

Server which is part of the global machine. It uses available

wireless network infrastructure to connect to the transaction

server in order to initiate transactions and other related

operations. This phase is represented as “phase 0” in figure 7.

In phase 1 of the communication algorithm as shown in

figure 7, the transaction server (specifically the operations

coordinator) sends a “request to send” message to all eligible

processing units [6]. On getting a “Ready to Receive” or

“Not Ready to Receive” message from the cohorts (That is,

eligible processing units hosting the database management

systems), the coordinator moves to phase 2 of the protocol as

shown in figure 8 where it transfers the transaction logs plus

the “prepare to commit” message to cohorts that are ready to

receive transactions for execution.

On getting this message, cohorts are expected to start the

execution process and respond to the coordinator via the

“Prepared to Commit” message when they are done with the

execution or “Not Prepared to Commit” message when they

are not done with the execution. Due to the varying system

and network parameters, it is impossible for all cohorts to

finish execution at the same time. However, all participating

cohorts are expected to complete execution of their

transaction branch within a predetermined time of one

second.

The coordinator monitors the execution process of all the

cohorts via their respective local mobile agents. If the

coordinator predicts any possible failure or unnecessary

delay in any of the cohorts, the state details of the transaction

is logged and prepared for rescheduling (that is, for migration

to a suitable processing unit)

At the expiration of one second, if all cohorts respond with

a “prepared to commit” message, the coordinator moves to

phase 3 as shown in figure 9 and sends a “commit” message

to cohorts. If any or all cohorts’ response is “not prepared to

commit”, the coordinator moves to phase 3 and sends an

“Abort” message to cohorts. Commit or Abort message

triggers the release of tied down system resources in cohorts

after which cohorts send “Acknowledgment” message plus

transaction log (That is, parameters that defines the state of

the transaction) to the coordinator. On getting this message,

the coordinator sends a decision message plus transaction log

to the application server. The application server on receiving

this message stores the transaction log received from the

transaction server and then sends an “acknowledgement”

message to the transaction server. The transaction server on

getting this acknowledgment releases all tied down resources

and then terminates the transaction.

4. Conclusion

This study presents a combinatorial system design of

transaction processing elements for ubiquitous computing. A

systematic analytical approach is used in analysing the

organisational structure of two-tier and three-tier system

architectures and subsequently the data communication

algorithm of, 2 Phase Commit and 3 Phase Commit

Protocols. A Mobile 2-Phase Commit Protocol is deployed

on a 3-tier system architecture. This is compared with a

proposed Mobile 3-Phase Commit Protocol deployed on a 3-

tier system architecture. The result of the study shows that

Mobile-3 Phase Commit Protocol on Three-Tier system

architecture displayed proactive management skill to curb

process failures which signifies higher transaction

throughput. The inherent load balancing capability of the

three-tier system architecture also shows support for

improved response time.

References

[1] Poslad, S. (2011). Ubiquitous computing: smart devices,
environments and interactions. John Wiley & Sons.

12 Patience Spencer: A Proposed Combinatorial System Design for Ubiquitous Transaction Processing Systems

[2] Nouali, Nadia, Anne Doucet, and Habiba Drias. "A two-phase
commit protocol for mobile wireless environment."
Proceedings of the 16th Australasian database conference-
Volume 39. Australian Computer Society, Inc., 2005.

[3] Kifer, M., Bernstein, A., and Lewis, M. P. Database systems:
an application-oriented approach: complete version. Pearson
Addison-Wesley, 2006.

[4] Spencer, P., and Nwachukwu. E. O. Light-weight
Client/server transaction processing architecture for
ubiquitous computing. African Journal of Computing and ICT.
8 (4), 201-208.

[5] Silberschatz, A., Korth, H. F., and Sudarshan S. Database
system Concepts. McGraw-Hill, New York, 2002.

[6] Spencer, P., and Nwachukwu E. O. (2016) Identification and
Classification of Processing Unit Eligibility for Ubiquitous
Computing Using Feature Selection Mechanism and Artificial

Neural Network. International Journal of Wireless
Communication and Mobile Computing. 4 (2), 18-24.

[7] Hooft, M. V. and Swan K. Ubiquitous Ccomputing in
Education: Invisible technology, Visible Impact. London:
Lawrence Erlbaum Associates, 2007.

[8] Puder, A., Römer, K., and Pilhofer, F. Distributed systems
architecture: a middleware approach. Elsevier Inc, 2006.

[9] Bernstein, P. A., and Newcomer, E. Principles of transaction
processing. Morgan Kaufmann, 2009.

[10] Kumar, V., Prabhu, N., Dunham, M. H., and Seydim, A. Y.
(2002). Tcot-a timeout-based mobile transaction commitment
protocol. IEEE Transactions on Computers, 51 (10), 1212-
1218.

