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Abstract: Principal component analysis (PCA) is the tool of choice for summarising multivariate and high-dimensional data
as features in a lower-dimensional space. PCA works well for Gaussian data, but may not do so well for high-dimensional,
skewed or heavy-tailed data or data with outliers as encountered in practice. The availability of complex data has enhanced
these shortcomings and increased the demand for PC approaches that perform well for such data. The purpose of this paper is
to critically appraise a class of interpretable PC candidates which can respond to this demand and to compare their performance
to that of standard PCA. Among the large variety of nonlinear PCA, we concentrate on the subclass that is based on spherical
covariance matrices. This subclass includes the spatial sign, spatial rank, and Kendall’s τ covariance matrix. We focus on three
key aspects: population concepts and their properties; sample-based estimators; and actual practice based on the analysis of
real and simulated data. At the population level we consider relationships between the standard covariance matrix and spherical
covariance matrices. For the random sample we consider natural estimators of the population eigenvectors, look at appropriate
distributional models, highlight relationships between different estimators and relate properties of estimators and their population
analogues. We complement the theory we present with new analyses of multivariate and high-dimensional real data as well as
simulated data from diverse distributions which elucidates behaviour patterns of spherical PCA for elliptic and non-elliptic
distributions. The latter are not captured in the theoretical framework, and their inclusion therefore offers fresh insight into the
performance of spherical PCA. The combination of the theory and the new analysis evidence that PCA of rank-based covariances
severely outperforms that based on the potentially unstable spatial sign covariance matrix. Further, the overall good performance
of rank-based PCA and its superior properties for data for which the sample covariance matrix has been known to perform poorly
make rank-based PCA not only a desirable addition to standard PCA, but render it a serious competitor for dimension reduction
and feature selection while retaining features valued in PCA.

Keywords: Multivariate Ranks, Multivariate Spatial Signs, Nonlinear Covariance Matrices, Performance of Nonlinear PCA,
Spherical PCA

1. Introduction

Statistics deals with the population, the random sample and
observed data, the interplay and interaction between them and
their synthesis. At the population level, we consider models

and distributional assumptions. For the random sample we
construct estimators of population quantities and examine their
performance. In the context of principal component analyiss
(PCA), we investigate the performance of dimension reduction
methods and their suitability for the analysis of complex high-
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dimensional data, including data with fewer observations than
variables. Distributional assumptions of the observed data may
not agree with the theoretical models and this leads to new
challenges that do not typically fit into the classical Gaussian
framework of available theory. In this paper the emphasis is on
finding lower-dimensional structure in multivariate and high-
dimensional data and we explore how the population models
and results compare with the reality of data from a variety of
distributions which go beyond those of the theoretical models.

We present pertinent results without delving into proofs; the
interested reader can find the proofs in the references. We
go beyond standard PCA and the sample covariance matrix;
we include a subset of nonlinear PC approaches based on
spherical covariance matrices, as proposed in robust statistics
a few decades ago. These PC approaches stand out among the
nonlinear approaches by being intuitive, easy to construct and
interpretable.

Principal component analysis has undoubtedly become one
of the most commonly used methods for dimension reduction
and feature selection and often represents a first step in a more
in-depth analysis. Its success rests on a number of different
properties including maximisation of the variance in the PCA
directions—the eigenvectors of the covariance matrix—which
are also called factor loadings. Variance calculations rely on
the Euclidean norm which fits naturally with the Gaussian
likelihood. This is one of the reasons why PCA is particularly
successful at and suitable for finding high variance directions
in Gaussian data.

With increasing dimension and complexity of data,
dimension reduction and feature selection have gained more
importance. New and exciting developments in PCA began
during the last few decades of the 20th century in response
to demands from these new data: high-dimensional and high-
dimension low sample size (HDLSS) data led to new models
and theory including sparse PCA and their sparse eigenvectors.
In robust statistics the existence of outliers and skewed or
heavy-tailed data and the recognition of the sensitivity of the
sample covariance matrix to such observations required PCA-
like approaches that can handle such data more appropriately.
To address some of these issues, J. I. Marden [1] proposed
two covariance-related concepts, based on multivariate signs
and multivariate ranks which are now regarded as part of the
collection of robust covariance matrices and robust PCA.

At first glance, Marden’s results [1] for the population may
seem surprising, but they are taken almost as folklore by
researchers in the field. To give the reader some insight into
the relationships between the different covariance matrices, we
present pertinent results. As we will see, different patterns
emerge for the eigenvectors and eigenvalues of the various
covariance matrices. We explore these further in simulations.

In addition to the population sign and rank covariance
matrices, which we define in (3) and (4), J. I. Marden
[1] defined analogous sample quantities. We regard these
sample matrices and their eigenvectors as estimators of
the relevant population quantities; we describe consistency
properties and highlight relationships between the sample
covariance matrices. The properties and relationships reveal

that the population-based intuition may not be reflected in
the behaviour of the sample quantities. In particular, the
spatial sign sample covariance matrix, which seems to be
natural for observations from elliptic distributions, does not
always possess the ‘desirable’ properties of its population
counterpart. From the random sample we progress to data and
the challenges data present as they deviate from the population
assumptions or grow in complexity and dimension. Such
challenges include the treatment of HDLSS data which abound
and may pose computational challenges. We will consider
high-dimensional data with outliers and simulated data from a
range of distributions in the context of PCA based on different
covariance matrices. Our simulations are informed by the
theoretical results and the analyses of real data. Comparing
different estimators and different distributions leads to new
insight which enables us to make statements regarding pros
and cons of different PC-based estimators.

This paper is organised as follows. Section 2 provides
definitions and properties of the population quantities.
Section 3 outlines relationships between sample quantities and
their population equivalents, Section 4 looks at real data and
highlights differences betweeen the various projections for
HDLSS data and for data with a moderate number of variables.
Section 5 focusses on simulated data; we consider a variety of
models and families of elliptic and non-elliptic distributions
which occur in practice. We vary the sample sizes and
dimensions of the generated data and we relate the simulation
results back to the theoretical models and theorems presented
in Sections 2 and 3. A summary and some recommendations
are given in Section 6. Our Appendix provides further detail
of the data analyses presented in Sections 4 and 5 in the form
of additional tables and figures.

We conclude this section with notation used in this paper.
Notation. X ∼ F or X ∼ F (µ,Σ) d-dimensional

random vector from a distribution F with mean µ and
covariance matrix Σ;
X = [X1, . . . , Xn] random sample of size n from F with

Xi ∈ Rd;
Σss = ΓssΛssΓ

T
ss population covariance matrix and

spectral decomposition;
(λss,j , ηss.j) jth eigenvalue/eigenvector pair pertaining

to Σss;
Sss = Γ̂ssΛ̂ssΓ̂

T
ss sample covariance matrix and spectral

decomposition;
(λ̂ss.j , η̂ss,j) jth eigenvalue/eigenvector pair pertaining

to Sss;
S(d−1) d-dimensional unit sphere;
Sd set of spherically symmetric random vectors in Rd;
Ed(µ,Σ) set of elliptically symmetric random vectors in

Rd with location parameter µ and and covariance matrix Σ;
‖X‖ Euclidean norm of the vector X;
‖A‖F =

[
tr(ATA)

]1/2
Frobenius norm of the matrix A;

‖A‖sup = sup‖v‖=1 |vTAv| the sup-norm or spectral
norm of the matrix A;
X
D
= Y equality in distribution of the random vectors X

and Y .
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The subscript ss in the notation above represents a place
holder for the different covariance matrices.

For notational convenience we will refer to the different
matrices as covariance matrices and only make distinctions
if necessary. We refer to the canonical or natural covariance
matrix as the standard covariance matrix, as this is the
‘standard’ we compare the others to. We use the subscript-
free notation Σ and S for the population and sample standard
covariance matrices. Here S contains the factor (n − 1)−1

where n is the sample size.

2. Population Covariance Matrices for
the Direction Vector

2.1. Definitions for the Population

Let X ∼ F (µ,Σ) be a d-dimensional random vector from a
distribution F with expected value µ and covariance matrix Σ.
As in J. I. Marden [1], the multivariate or spatial sign or the
direction (vector) dir(X) of X is

dir(X) =

{
X/‖X‖ if X 6= 0,

0 if X = 0, (1)

and the spatial rank or centred rank of Y ∈ Rd with respect to
F is

Rsp(Y, F ) = E [dir(Y −X)] for X ∼ F . (2)

The definition dir(X) is a multivariate generalisation of the
sgn-function; the direction of each vector remains unchanged,
since X = ‖X‖dir(X) is a multiple of its direction. We
may think of dir(X) as the random vector mapped onto the d-
dimensional unit sphere. The spatial rank of Y is the expected
value of dir(Y − X) with respect to F ; it represents the
expected deviation on the d-dimensional unit sphere of Y from
a given distribution.

Centring random vectors prior to applying the transform of
(1) is common. In the robust statistics literature a ‘location
parameter’ can mean different quantities including a centring
parameter. Because of this ambiguity, in this paper the term
‘centring parameter’ refers specifically to centring of random
vectors. Typically the centring parameter refers to the expected
value or the sample mean, but the choice is not restricted
to these. For a centring parameter θ and X 6= θ, we call
dir(X−θ) = (X−θ)/‖X−θ‖ the centred direction (vector).

We begin with the two covariance matrices which J. I.
Marden [1] defines for direction vectors and spatial ranks.

The (spatial) sign covariance matrix Σsptl of X with respect
to a centring parameter X̃ ∈ Rd, and the (spatial) rank
covariance matrix Σrank of X are

Σsptl(X̃) = E
[
dir(X − X̃) dir(X − X̃)T

]
and (3)

Σrank = E
[
Rsp(X,F )Rsp(X,F )T

]
. (4)

If X̃ in (3) is the expected value of X , we write Σsptl instead
of Σsptl(µ) and note that Σsptl is a natural candidate for the
covariance matrix of centred direction vectors.

In the robust statistics literature, two further covariance
matrices are considered: For Xi ∼ F and i = 1, 2, 3 Kendall’s
τ covariance matrix Στ and Spearman’s rank covariance
matrix Σspear are

Στ = E
[
dir(X1 −X2) dir(X1 −X2)T

]
and (5)

Σspear = E
[
dir(X1 −X2) dir(X1 −X3)T

]
. (6)

S. Taskinen, I. Koch, and H. Oja [2] called Kendall’s τ
covariance matrix the symmetrised spatial sign covariance
matrix. They regard Kendall’s τ covariance matrix as a
substitute for the spatial covariance matrix when dealing with
data. We will return to this point throughout this paper.

Remark. The construction of the covariance matrices in
(3)–(6) include a nonlinear transformation, the mapping of
the original vectors to direction vectors. For this reason,
we may like to think of these covariance matrices and the
resulting PCA as nonlinear covariance matrices and nonlinear
PCA. In the literature nonlinear PCA typically includes kernel-
based approaches, but we shall not be concerned with such
approaches here. Some authors refer to PCA based on the
covariance matrices in (3)–(6) as spherical PCA.

The definitions (3)–(6) given here agree with those
commonly used in the literature. Some authors, including
S.Visuri, V. Koivunen, and H. Oja [3] and A. Dürre, D. Vogel,
and R. Fried [4] restrict their definition of the covariance
matrix (3) to the spatial median. Following D. Gervini [5] the
spatial median µsptl of X ∼ F is

µsptl(X) = argmin
Y

E (‖X − Y ‖ − ‖X‖) . (7)

The spatial median is also called the `2-median.
From D. Gervini [5], the spatial median satisfies
E [dir(X − µsptl)] = 0. Because of this property, the spatial
median may be regarded as a ‘natural’ centring parameter for
direction vectors. Depending on the underlying distribution,
the spatial median may not be given by an algebraic expression
and, as we shall see, this renders the spatial median less
amenable in real data analysis.

2.2. Properties and Relationships of Population
Covariance Matrices

We begin with a property that applies to two covariance
matrices and which does not depend on the distribution of X .

Theorem 2.1 Let X be a random vector from a distribution
F with covariance matrix Σ. The rank covariance matrix Σrank
and Spearman’s rank covariance matrix Σspear satisfy

Σrank = Σspear. (8)

The proof involves a straightforward calculation based on
evaluating expectations. Although the population quantities
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are the same, we will see in Section 3 that different sample
estimators exist for these population quantities—quite likely
this is due to the two ideas having different origins.

For X from an elliptic distribution, we summarise pertinent
results relating to Σ and the covariance matrices Σsptl and Σrank
and give references to proofs.

Theorem 2.2 Assume the random vector X has an elliptic
distribution Ed(µ,Σ), and write Σ = ΓΛΓT for the spectral
decomposition of Σ. Let Σsptl be the sign covariance matrix
based on the centring parameter µ, and let Σrank and Στ be the
rank and Kendall’s τ covariance matrices of X respectively.
The following hold.

1. The expected value µ equals the spatial median µsptl.
2. Σsptl and Στ satisfy

Στ = Σsptl. (9)

3. The eigenvectors of Σ, Σsptl and Σrank agree and give
rise to the spectral decompositions

Σsptl = ΓΛsptlΓ
T and Σrank = ΓΛrankΓT . (10)

Part 2 of the theorem tells us that under the elliptic model
Σsptl and Στ agree. Part 3 of the theorem tells us that the
eigenvectors of Σ, Σsptl and Σrank are the same under the
elliptic model. This equality, however, does not extend to the
eigenvalues of the three matrices, as the subscript notation in
part 3 shows. We will present some results concerning the
eigenvalues in the next theorem.

In Section 3 we will study estimators of the population
eigenvectors and will come across a number of different

estimators for these population quantities. Their performance
will inform which one to choose for different distributions in
principal component-based dimension reduction, subspace or
feature selection. We will return to this choice at the end of the
paper.

Part 1 of Theorem 2.2 is taken from A. Dürre, D. Vogel and
R. Fried [4] and uses the symmetry inherent in elliptic random
vectors X which can be written as X = EY + b, where E
is an orthogonal matrix, Y has a symmetric distribution and b
is the centring parameter. Part 1 may not hold for non-elliptic
distributions. Part 2 is shown in S. Taskinen, I. Koch, and H.
Oja [2]. The proof of part 3 is given in J. I. Marden [1] and
relies on the same decomposition X = EY + b as used in part
1. The orthogonal matrix E transforms the spatial rank of X
into another spatial rank, and similarly for spatial signs. This
leads to the desired result. For more general matrix transforms
and non-elliptic distributions this equality may not hold.

Theorems 2.1 and 2.2 provide information about identical
pairs of covariance matrices and equality of eigenvectors, but
they do not answer the question of the relationship between
the eigenvalues of the spherical covariance matrices and Σ.
Our next result summarises pertinent results relating to the
eigenvalues of Σsptl and hence also of Στ .

Theorem 2.3 Assume the random vector X has an elliptic
distribution Ed(µ,Σ). Write Σ = ΓΛΓT for the spectral
decomposition of Σ and put V = ΓT (X − µ). Let Σsptl be
the sign covariance matrix based on the centring parameter µ,
and let Στ be Kendall’s τ covariance matrix of X . Denote the
common diagonal matrix of eigenvalues of Σsptl and Στ by Λs.
The following hold.

1. The matrix Λs is given by

Λs = E
[
V V T

‖V ‖2

]
= ΓTE

[
(X − µ)(X − µ)T

‖X − µ‖2

]
Γ, and λs,j = E

[
λjY

2
j∑

`≤d λ`Y
2
`

]
, (11)

with Y = (Y1, . . . , Yd) ∈ N (0, Id) and Id the d× d identity matrix.
2. Pairs of eigenvalues of Λs and Λ satisfy

λs,`
λs,j

≤ λ`
λj

for ` < j provided λj > 0

and, if λ` > λj , then the inequality is strict.
3. For j ≤ d the eigenvalues λs,j and λj or Λs and Λ are related by

λs,j ≥
λj

tr(Σ) + 4‖Σ‖F
√

log d+ 8‖Σ‖sup log d

[
1−
√

3

d2

]
and, provided tr(Σ) > 4‖Σ‖F

√
log d,

λs,j ≤
λj

tr(Σ)− 4‖Σ‖F
√

log d
+ d−4. (12)

The theorem provides expressions for the eigenvalues of
Σsptl and, by Theorem 2.2, also for Στ . It might be helpful
to express to write V = rΛ1/2U with r = ‖Λ−1/2V ‖, U =
Λ−1/2V/‖Λ−1/2V ‖, and note that U ∈ S(d−1), the d-
dimensional unit sphere, and that r and U are independent.

From part 2 we glean that the eigenpairs (λs,j , ηj) of Σsptl
are given in the same order as those of Σ under the elliptic
model. The bounds shown in part 3 may lead to useful
information on the relationship between the eigenvalues of Σ
and Στ . For example, if the eigenvalues of Σ decrease with



126 Inge Koch et al.: Principal Component Analysis of Standard and Spherical Covariances from the Population and
Random Samples to Real and Simulated Data

the index j as aj with 0.98 ≤ a < 1 and d sufficiently large,
then tr(Σ) > 4‖Σ‖F

√
log d. Such conditions will be difficult

to check in practice unless one substitutes S for Σ.
Part 1 is shown in C. Croux, E. Ollila, and H. Oja [6], S.

Taskinen, I. Koch, and H. Oja [2] and F. Han and H. Liu [7].
We have presented the expression given in F. Han and H. Liu
[7]. S. Taskinen, I. Koch, and H. Oja [2] state their expression
in terms of vectors on the unit sphere. A. Dürre, D. E. Tyler,
and D. Vogel [8] show the inequality in part 2, and proofs for
part 3 can be found in F. Han and H. Liu [7].

S. Taskinen, I. Koch, and H. Oja [2] propose to exploit
the equality of the two population matrices Σsptl and Στ for

the sample and to employ an estimator of Στ as an estimator
of Σsptl. This substitution avoids having to find or calculate
(iteratively) the sample spatial median for data. We will
compare the ‘closeness’ of the natural sample-based estimators
for Στ and Σsptl in the simulations of Section 5.

We summaries the results of this section in diagram (13)
which shows the conditions under which the relationships
hold. In the diagram Ed refers to the elliptic distribution with
mean and covariance matrix (µ,Σ). The use of a common
symbol Γ for all matrices in (13) indicates equality of the
eigenvectors, and the ‘=’ sign next to downwards arrows refers
to equality of the quantities above and below the ‘=’-sign.

Σ = ΓΛΓT

Ed

vv

Ed

((
Σsptl = ΓΛsptlΓ

T

Ed =

��

Σrank = ΓΛrankΓT

= any F
��

Στ = ΓΛsptlΓ
T Σspear = ΓΛrankΓT

(13)

In this section we considered population covariance
matrices of the raw random vector. Many PCA users scale their
data prior to a PCA. Scaling clearly does not affect the validity
of Theorems 2.2–2.2. As robust statistics typically deals with
raw, rather than the scaled vectors, we will not consider scaled
vectors or data here.

3. Sample Covariance Matrices for
Direction Vectors

3.1. Definitions for the Sample

In this section we survey and appraise sample covariance
matrices corresponding to the covariance matrices of
Section 2. We regard relationships of the sample
covariance matrices and their population counterparts and also
present relationships between the spherical sample covariance
matrices.

The existing definitions are not unique. We aim to present
the now accepted definitions, but we will indicate variations

that are used.
For the sample, the definition of a direction vector is the

same as for the population, however, the definition of the
sample spatial rank requires some modification.

Let X be a sample of n random vectors Xi from the
distribution F with sample mean X and sample covariance
matrix S. Following J. I. Marden [1], the sample spatial rank
or sample centred rank of a non-zero random vector Y with
respect to a random sample X is

ranksp(Y,X) =
1

n#

∑
i≤n

dir(Y −Xi), (14)

where n# refers to the number of non-zero terms. If there is no
ambiguity regarding the random sample, we write ranksp(Y )
for the spatial rank of Y . Equipped with the notion of
the sample spatial rank we consider covariance matrices for
these random vectors. Consider a random sample X =
[X1, . . . , Xn]. The sample (spatial) sign covariance matrix
Ssptl of X with respect to a centring parameter X̃ ∈ Rd, and
the sample (spatial) rank covariance matrix Srank of X are

Ssptl(X, X̃) =
1

n

∑
i≤n

dir(Xi − X̃) dir(Xi − X̃)T and (15)

Srank(X) =
1

n

∑
i≤n

ranksp(Xi) ranksp(Xi)
T =

1

n

∑
i≤n

 1

n− 1

∑
j 6=i

dir(Xi −Xj)

  1

n− 1

∑
j 6=i

dir(Xi −Xj)
T

 . (16)

For X the sample version Sτ of Kendall’s τ and Sspear of Spearman’s rank covariance matrix are

Sτ (X) =
1

n(n− 1)

∑
i,j

dir(Xi −Xj) dir(Xi −Xj)
T and (17)

Sspear(X) =
1

n(n− 1)(n− 2)

∑
i,j,k;j 6=k

dir(Xi −Xj) dir(Xi −Xk)T . (18)
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J. I. Marden [1] uses the factor [(n−1)n2]−1 in his definition
of the sample rank covariance matrix Srank, while later authors
including K. Yu, X. Dang, and Y. Chen [9] mostly use the
number of non-zero entries [(n− 1)2n] in (16).

Some authors, including K. Yu, X. Dang, and Y. Chen
[9] and A. Dürre, D. Vogel, and R. Fried [4], restrict their
definitions of the sample sign covariance matrix (15) to the
mean X and the spatial median Xsptl as centring parameters.
As in the population case, we explicitly include the centring
parameter unless it is the sample mean. We define the sample
spatial median or the `2-median Xsptl of X as in S. Visuri, V.
Koivunen, and H. Oja [3] and put

Xsptl = argmin
X̃

∑
i≤n

‖X̃ −Xi‖, Xi 6= X̃, (19)

see also Section 6.3 of P. J. Huber [10] and N.
Locantore “et al.” [11]. The latter authors show that∑
i≤n dir(Xi − Xsptl) = 0. This equality also follows

from D. Gervini [5]. A comparison with (14) shows that
ranksp(Xsptl) = 0, that is, the (sample) spatial median has
(sample) spatial rank 0.

Note that subtle differences exist between the sample
quantities Sτ and Sspear: the former is defined as products
of the vectors dir(Xi − Xj), while Sspear uses products of
dir(Xi−Xj) and dir(Xi−Xk), withXj 6= Xk. In Sections 4
and 5 we explore differences between the first eigenvectors of
these two quantities for real and simulated datasets.

3.2. Consistency of Sample Covariance Matrices

Section 2.2 dealt with results pertaining to relationships
between different population covariance matrices. In
this section we collect and investigate results relating to
population/sample pairs in order to gain some insight into
which sample covariance matrices yield good estimators for
the population eigenvectors. As in Section 2.2 most of the
results in the literature are for the elliptic model. In some cases,
results hold for more general settings; we will indicate when
this is the case.

We will primarily focus on the relationship between the
sample and population eigenvectors. Some results contain
explicit expression for the asymptotic mean and covariance of
the eigenvectors. We will provide references to these results
for the interested reader.

We write Σss = ΓΛssΓ
T and Sss = Γ̂ssΛ̂ssΓ̂

T
ss for pairs of

population and sample covariance matrices as in the Notation
at the end of Section 1. In the next theorem ‘ss’ refers to the
spatial sign (sptl) or rank.

Theorem 3.1 Let X be a random sample of size n from
the elliptic distribution Ed(µ,Σ). For the pair (Σss, Sss)
of population and sample covariance matrices, consider their
jth eigenvalue/eigenvector pairs (λss,j , ηj) and (λ̂ss,j , η̂ss,j)
respectively.

1. For the pair (Σsptl, Ssptl), based on the expected value
and sample mean respectively, the following hold

η̂sptl,j → ηj as n→∞,

and, ’under general assumptions’,
√
n(η̂sptl,j − ηj) has

a multivariate normal distribution for sufficiently large
n.

2. Assume that the eigenvalues of Σrank are distinct, then
the following hold

η̂rank,j
P→ ηj and λ̂rank,j

P→ λrank,j as n→∞,

and the limiting distributions of
√
n(Γ̂rank − Γ) and√

n(Λ̂rank − Λrank) are multivariate normal with mean
zero.

Part 1 is given in Proposition 4.1 of C. Croux, E. Ollila,
and H. Oja [6]. The authors do not specify what the ’general
assumptions’ in the theorem are beyond requiring ellipticity.
Part 2 follows from Theorem 6 of S. Visuri, E. Ollila, V.
Koivunen, J. Möttoönen, and H. Oja [12]. The authors
assume a slightly more general multivariate location-scale
model which includes the elliptic model.

So far we considered the sign and the rank covariance
matrices and the behaviour of the sample eigenvectors as the
sample size increases. Our next result, which is shown in F.
Han and H. Liu [7], deals with Kendall’s τ covariance matrix.
Han and Liu look at the sine of the angle between vectors as a
means of measuring convergence. We denote the angle of two
vectors, say ξ1 and ξ2, by ∠(ξ1, ξ2).

Theorem 3.2 Let X be a random sample of size n from the
elliptic distribution Ed(µ,Σ). Consider the pair of Kendall’s τ
covariance matrices (Στ , Sτ ) for the population and sample
respectively. Write λτ,j for the eigenvalues of Στ , given
in decreasing order, and let ητ,j and η̂τ,j denote the jth
eigenvector of Στ and Sτ respectively. The sine of the angle
∠(ητ,1, η̂τ,1) satisfies

| sin(∠(ητ,1, η̂τ,1))| ≤ 2

λτ,1 − λτ,2
‖Sτ − Στ‖sup, (20)

and the difference between the first m eigenvectors Γm of Στ
and Γ̂τ,m of Sτ is bounded by

‖Γ̂τ,m − Γτ,m‖F ≤
2
√

2m

λτ,m − λτ,m+1
‖Sτ − Στ‖sup. (21)

For 0 < β < 1, put

κ =
16

3

[
tr(Στ )

λτ,1
+ 1

]
[log d+ log(1/β)] .

If n is large enough and satisfies n ≥ κ, then, with
probability exceeding (1− β),

‖Sτ − Στ‖sup ≤ ‖Στ‖sup
√
κ/n.

Theorems 3.1 and 3.2 tell us that, under the elliptic model,
the eigenvectors of the sample covariance matrices Ssptl, Srank
and Sτ converge to the corresponding eigenvectors of Σ. This
implies that the eigenvectors of any of these matrices may be
regarded as estimators of the population eigenvectors.

The proof of (21) follows from the Davis-Kahan inequality,
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see the reference in F. Han and H. Liu [7]. A variation of the
David-Kahan inequality leads to an estimate for the error of
the first m eigenvectors.

For fixed dimension d, the term κ/n will eventually become
small. However when d increases, the rate of growth of d/n
will drive the process. In this case, spiked models with one
large eigenvalue are candidates for establishing consistency
provided (log d)/n → 0 as d increases. F. Han and H. Liu
[7] provide consistency results for high-dimensional data with
sparse eigenvectors. These scenarios are beyond the scope of
this paper, and we will therefore not present the results here.

In the next two sections we study the behaviour of the
sample eigenvectors for data from elliptic and non-elliptic
distributions and assess the performance of these eigenvectors
as estimators of the population eigenvectors. Before we turn
to data, we briefly return to the sign covariance matrices and
their dependence on centring parameters.

From Theorem 2.2 the spatial median is the expected
value for the elliptic distribution. However, for non-elliptic
models, this may not hold and the particular choice of centring
parameter may matter. The next result by A. Dürre, D. Vogel,
and D. E. Tyler [13] establishes conditions under which the
sample sign covariance matrix is a consistent estimator for the
population quantity.

Theorem 3.3 Let X be a random sample of size n, and X a
random vector, both from a distribution F . Consider the sign
covariance matrices Σsptl of X and Ssptl of X. For a random
vector Y assume there is β ≥ 0 such that

E
(
‖X − Y ‖−1/(1+β)

)
<∞.

Take Y as a centring parameter for Σsptl and assume that
there is a sequence Yn of random vectors which satisfies

nβ‖Yn − Y ‖ ≤ tn a.s.,

with tn a sequence of random variables that converges a.s. for
β > 0, and which converge a.s. to 0 for β = 0, then

Ssptl(Yn)
a.s.→ Σsptl(Y ). (22)

Theorem 3.3 taken from A. Dürre, D. Vogel, and D. E.
Tyler [13], tells us that the eigenvectors of the sample sign
covariance matrix converge to those of the population if
a centring parameter for the population covariance matrix
is chosen that is not too far away from the distribution
F and if the sample centring parameters lie in a suitably
small neighbourhood of this population centring parameter.
Theorem 3.2 indicates that the eigenvectors of Σsptl(Y ) may
vary with the centring parameter Y . Further, the eigenvectors
are likely to depend on the underlying distribution of the data.
We will not pursue this avenue here but will look at different
centring parameters for Ssptl in Section 4.

In their paper A. Dürre, D. Vogel, and D. E. Tyler
[13] establish conditions for in probability convergence
of the sample sign covariance matrix and prove results

on the asymptotic normality of the vectorised form of
Ssptl(Yn) − Σsptl(Y ), which A. Dürre, D. Vogel and R. Fried
[4] strengthen further.

In this section we presented results for the three covariance
matrices sign, rank and Kendall’s τ which relate the sample
eigenvectors and the population eigenvectors. We have not
presented results pertaining to Spearman’s rank covariance
matrix, primarily because Σspear = Σrank. A quick glance
back to (18) shows that the sample version of Spearman’s rank
covariance matrix differs from that of (16). In the next section
we examine this difference more closely and then explore all
four estimators for real data.

3.3. Relationships Between Sample Covariance Matrices

From diagram (13) in Section 2.2 we know that the sign and
Kendall’s τ covariance matrices agree under the elliptic model.
Further, the rank and Spearman’s rank covariance matrices
agree for any distribution, that is,

Σsptl = Στ for X ∈ Ed(µ,Σ) and location parameter µ,
Σrank = Σspear for any F . (23)

The eigenvectors of all four population matrices agree, and it
is therefore natural to examine whether the same relationships
hold for the corresponding sample covariance matrices.

Relationships between Srank, Sτ and Sspear do not seem to
have been considered in the literature. However, using (16) –
(18) one can show that for a random sample X from any
distribution the three covariance matrices satisfy

Srank(X) =

[
1− 1

n− 1

]
Sspear(X) +

1

n− 1
Sτ (X). (24)

Equation (24) shows that Srank and Sspear converge to the
same quantity as the sample size increases. This is expected
since their population covariance matrices are the same. For a
finite sample, Sτ can be interpreted as a correction term whose
effect decreases with increasing sample size.

If we had used the parametrisation of J. I. Marden [1] in the
definition of Srank including Marden’s factor [n2(n−1)]−1 and
corresponding factors for the other two covariances matrices,
(24) would be replaced by a similar equation with the same
asymptotic behaviour.

Returning to the first equality of (23), which is shown in S.
Taskinen, I. Koch, and H. Oja [2], we note that the authors
desired a population quantity that equals the sign covariance
matrix, but does not depend on the spatial median. This
suggests that the sample analogue of Στ could be regarded as
an estimator of Σsptl. The latter would avoid having to calculate
the spatial median or another quantity for the sample such as
the sequence of Yn of Theorem 3.2. We explore some of these
ideas in in Section 4.

In the remaining part of the paper we restrict attention to
real and simulated data, and explore the degree of similarity of
the eigenvectors of the covariance matrices in order to gain
insight into their behaviour of data from elliptic and non-
elliptic distributions.
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4. Covariance Matrices and Their
Eigen-analysis for Real Data

4.1. Behaviour of Projections Based on the Eigenvectors
for Real Data

The first few eigenvectors of the sample covariance matrix
S are standard tools for projecting data into lower-dimensional
subspaces and for determining interesting features. PCA is
driven by variance and based on the Euclidean distance. These
properties make PCA projections particularly suitable for data
from the Gaussian distribution. For data with outliers, heavy-
tailed or skewed data, however, the eigenvectors of the sample
covariance matrix can be ‘distorted’, for example into the
direction of the outliers, and may not adequately reflect the
performance of the main point clouds.

In this section we consider PC score plots arising from
the first two eigenvectors of the standard and the other four
sample covariance matrices for three datasets: the HDLSS
breast tumour data of L. J. van’t Veer “et al.” [14], the 12-
dimensional athletes data of R. D. Cook and S. Weisberg [15]
and the 13-dimensional wine recognition data of S. Aeberhard,
D. Coomans, and O. de Vel [16].

Unless otherwise stated, we only work with raw data and
assume that these data are centred. We calculate the jth PC
scores, PCj , as the projections of the centred raw data onto
the jth eigenvector of the covariance matrices we consider:
the standard covariance matrix S and the covariance matrices
Ssptl, Srank, Sτ and Sspear. Typically we will state which
covariance matrix is used to obtain the PC scores. The
PC1/PC2 score plots refer to the scatterplots of the PC1/PC2

scores. Since we only consider the first two PCs, we often
refer to their score plots simply as PC score plots.

The purpose of the PC score plots is to gain insight into
differences that arise when we project data onto different
sample eigenvectors and to attempt to gain some understanding
of why they occur or what causes the differences. We
complement the visual displays with tables showing angles
between the eigenvectors of the different covariance matrices.

An integral part of any principal component analysis is
the contribution to total variance of each component or
direction. We consider eigenvalues of the standard and
spherical covariance matrices. We extend the common
definition of contribution to total variance—also known as
the proportion of total variance— to the spherical covariance
matrices, namely the proportion of each eigenvalue to the trace
of the respective covariance matrix. We compare the ratios
λj/ tr(Σ) with the analogous parts of the different (sample)
covariance matrices. For notational convenience we will often
refer to these proportions as eigenvalue ratios.

4.2. High-dimensional Real Data

The breast tumour data of L. J. van’t Veer “et al.” [14]
consist of 78 subjects with breast tumour and 4751 gene
expressions given as log10-transformed expression levels of
genes. Of the 78 patients 44 had tumours which did not

metastasise within the critical five years. We use this
information only in the presentation of Figure 1, which shows
the two groups in different colours.

Figure 1. PC score plots of the breast tumour data from S in the top row, and Srank in the
bottom row. Middle panels: zoomed-in grey parts of left panels; right panels:PC score
plots from S and Srank without the outlier at about (-30, -40) in the top left panel.

We calculate PC1/PC2 scores using the standard covariance
matrix and the rank covariance matrix, and we show the
resulting PC score plots in Figure 1. The PC scores derived
from the first two eigenvectors of the other three covariance
matrices look similar to those derived from Srank and are
therefore not shown. Table 1 provides more quantitative details
relating to the angles of pairs of vectors.

The top row in Figure 1 refers to PC1/PC2 score plots of the
standard covariance matrix S and the bottom row shows the
corresponding plots for the rank covariance matrix Srank. The
breast tumour data contain an outlier, observation 54, which is
clearly visible in the PC score plot of S, but which is hardly
noticeable as an outlier in the plot below.
Table 1. Angles of pairs of first eigenvectors of the breast tumour data from different
sample covariance matrices; numbers on the diagonal refer to angles of pairs of
eigenvectors of the ‘same type of’ covariance matrices but calculated with and without
observation 54. All other comparisons are based on all data.

S Ssptl Srank Sτ Sspear

S 20.3 23.2 18.4 18.4 18.4

Ssptl 23.2 0.5 6.3 6.4 6.3

Srank 18.4 6.3 3.0 0.2 0

Sτ 18.4 6.4 0.2 3.0 0.2

Sspear 18.4 6.3 0 0.2 3.0

The two middle panels show the zoomed-in dark grey
sections from the left panels respectively and the right panels
show plots of PC1/PC2 scores obtained from the updated
covariance matrices after removal of the outlying observation
54. The middle panels are clearly very different from each
other, while the score plots on the right look much more
similar.

The middle and right panels of the Srank-plots are basically
the same, while the S-related plots look very different
indicating the change in the eigenvectors with and without the
outlier, and the effect of the outlier on the standard covariance
matrix and its eigenvectors. The score plots confirm that Srank
handles the outlier well while S is sensitive to outliers.
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Table 1 complements the information provided in Figure 1,
showing angles in degrees between first eigenvectors of
the different covariance matrices. The numbers on the
diagonal show the angles of the eigenvectors for the same
two covariance matrices but calculated with and without the
outlying observation 54. So for the pair (Srank, Srank we obtain
an angle of 3 degrees. These numbers tell us that for all
covariance matrices other than S this angle, and hence the
change in the eigenvectors, is very small.

The table highlights that the eigenvectors of the standard
covariance matrix differ considerably form those of the other
matrices. The eigenvectors of Srank and Sspear are identical,
and the eigenvectors of Sτ are also very similar to the other
two spherical approaches. The eigenvectors of Ssptl are distinct
from the other three spherical covariance matrices, and share
the largest angle with S.

The left panel of Figure 2 shows the eigenvalue ratios—
the contributions to total variance—of the breast tumour data.
These eigenvalue plots, with the index on the x-axis, are based
on S, shown in dark blue, and Srank in light blue. The dashed
lines show the corresponding plots of the data after removal of
the outlying observation 54 again in dark and light blue. The
light blue dashed line is almost invisible, as it agrees well with
the solid line.

Figure 2. Eigenvalue ratios of first 8 eigenvalues for the breast tumour data (left) and the
athletes data (right). Left panel: all data with S dark blue, with Srank light blue, without
observation 54 shown as dashed –dark for S, light for Srank; right panel: S black, Srank
light blue, Ssptl dark blue, Sτ red.

Observe that the first three eigenvalue ratios of S are larger
than those of Srank. Of interest is the dark blue dashed line
corresponding to S without observation 54: its first eigenvalue
ratio is the same as that obtained from all data, but the next two
eigenvalue ratios are more similar to those arising from Srank.
As we have noticed in the PC score plots in Figure 1, those
arising from S of the reduced data are more similar to those of
Srank with or without the outlier.

The panel on the right corresponds to the athletes data which
we will discuss in the next section.

The analysis of the breast tumour data highlights the big
difference in the eigenvectors of the standard and the other
sample covariance matrices in the presence of an outlier. It
shows that by using Srank in addition to S, we may gain
valuable information about and insights in the data.

4.3. Classical Real Data

The athletes data were collected at the Australian Institute
of Sport by Richard Telford and Ross Cunningham, see R. D.

Cook and S. Weisberg [15]. For 100 female and 102 male
athletes 12 variables consisting of physical as well as blood-
related quantities are compared.

We calculate PC1/PC2 scores for a range of covariance
matrices and show the resulting plots in Figure 3 with different
colours for male and female athletes. From left to right the
score plots are those obtained from S, Srank, Sτ and Ssptl. The
score plot obtained from Sspear is not shown here, as it looks
identical to that of Srank. The score plots of the first three
panels from the left look almost identical, the score plot of Ssptl
shows a slightly different distribution of some observations
that are further away from the centre of the point cloud but
the difference is not large.

The angles between pairs of first and pairs of second
eigenvectors from different covariance matrices are shown in
Table 2, with odd rows corresponding to first eigenvectors, and
even rows to second eigenvectors. The mostly small angles
shown in the table agree well with the similarity between the
score plots. Table 2 includes three results for spatial sign
covariance matrices Ssptl: they are based on the sample mean,
the spatial or `2-median (called Ssptl,2) and the `1-median
(called Ssptl,1) respectively as centring parameters. The `1-
median is defined similarly to the `2-median, but uses the `1-
norm.

It may be surprising to see that the eigenvectors of the
athletes data corresponding to the three spatial covariance
matrices appear to be more similar to each other, but, as a
group, differ more from all others. The largest angles arise
from the eigenvectors of the spatial sign covariance matrix
Ssptl,2, the ‘natural’ covariance matrix for direction vectors,
when compared to S and the other ‘non spatial sign’ matrices.
We will not examine reasons for this disprecency.

Table 2 also shows that the eigenvectors of S differ more
from the spatial sign covariances matrices than from those of
Srank, Sspear and Sτ . The latter three covariance matrices have
almost identical eigenvectors. A more detailed table, which
extends the information in this table, is shown in Table A1 in
the Appendix.

Figure 3. PC score plots of the athletes data with S, Srank, Sτ , and Ssptl.

Table 2. Athletes data: angles of first eigenvectors (rows 1,3,5) and second eigenvectors
(rows 2,4,6) of sample covariance matrices.

Ssptl Srank Sτ Sspear Ssptl,1 Ssptl,2

S 7.46 4.13 3.61 4.13 8.80 10.16

8.63 2.99 2.34 3.00 8.42 10.26

Ssptl 3.35 3.86 3.34 1.52 3.00

6.22 6.97 6.21 0.84 2.91

Srank 3.35 0.55 0 4.74 6.06

6.22 0.78 0 5.86 7.42
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Regarding eigenvalue ratios pertaining to the athletes data,
the right panel of Figure 2 shows these ratios of the first 8
eigenvalues corresponding to S in black, Srank in light blue,
Ssptl in dark blue, and Sτ in red. The last essentially coincides
with the light blue one corresponding to Srank and hence is
barely visible. Note that the red Sτ graph differs from that
of Ssptl mostly for the second and third ratio. This behaviour
is of interest in light of the statement of Theorem 2.2 that the
two population matrices agree under the elliptic model.

For all three spherical covariance matrices the first
eigenvalue ratio is much smaller than that of S, while
eigenvalue ratios 2 to 4 exceed those of S.

The aim of the analysis of the athletes data is to illustrate
how the various covariance matrices, their eigenvalues and
eigenvectors are related in practice.

Our second classical dataset is the wine recognition data of
S. Aeberhard, D. Coomans, and O. de Vel [16] which are the
results of a chemical analysis of three cultivars of wine grown
in the same region in Italy. The data consist of measurements
of 13 variables and 178 observations.

Figure 4. PC1/PC2 score plots of the raw wine data from the standard (left), the rank
(middle), and Kendall’s τ (right) covariances in the top row and from spatial covariance
matrices with centring parameters mean, `1-median and spatial median in the bottom
row.

Figure 4 shows the PC1/PC2 score plots relating to the
standard, rank and Kendall’s τ covariance matrices in the top
row, and to sign covariances matrices in the bottom row which
use, from left to right, the sample mean, the `1-median and the
spatial median as centring parameter. The three cultivars are
shown in contrasting colours but play no other role in these
plots. We complement Figure 4 with Tables 3 and 4 in this
section and with a Table A2 and Figure A1 in the Appendix.
Table 3 shows angles between pairs of eigenvectors in the
same format as in Table 2, and Table 4 lists the correlation
coefficients of the first two PCs for each sample covariance
matrix. Table A2 is a more comprehensive version of Table 3;
and Figure A1 displays eigenvalue ratios for the wine data, it
is similar in style to the panels of Figure 2.

The much larger angles arising from the second eigenvector
pairs and shown in the even rows in Table 3 are worth noting.
Indeed, angles with the second eigenvector of Ssptl,2 exceed 70
degrees and the Ssptl,2-PC scores, displayed in the bottom right
panel of Figure 4, have the very high (negative) correlation of

-0.97, which is listed in Table 4. Recall that population PC
scores are uncorrelated.

Table 3. Wine data: angles of first eigenvectors (odd rows 1,3,5) and second eigenvectors
(even rows 2,4,6) of the sample covariance matrices from a range of covariance matrices.

Ssptl Srank Sτ Sspear Ssptl,1 Ssptl,2

S 1.49 0.39 0.42 0.39 1.65 3.14

3.54 1.09 1.42 1.08 7.08 71.11

Ssptl 1.13 1.11 1.13 0.37 2.51

3.67 3.93 3.66 7.32 71.60

Srank 1.13 0.04 0 1.30 2.94

3.67 0.43 0.01 6.60 71.02

Table 4. Wine data: correlation coefficients of PC scores for each covariance matrix.

S Ssptl Srank Sτ Sspear Ssptl,1 Ssptl,2

0 -0.53 -0.16 -0.17 -0.16 -0.56 -0.97

Table 4 shows the correlation coefficients arising from the
PC scores. The correlation coefficients of the S-based PC
scores are, of course, zero, and those arising from Srank, Sspear
and Sτ are small. At first glance it may be counterintuitive
to see non-zero or even large correlations for some of the PC
scores.

A moment’s thought reveals that the PC scores are obtained
as projections of the raw data onto the eigenvectors of the
different covariance matrices, resulting in uncorrelated scores
for the eigenvectors of S. It is worth noting that, as the
angles in pairs of eigenvectors between S and those of a
spherical covariance matrix increase, so does the strength of
the correlation pertaining to that spherical covariance matrix.
We may interpret the increase in angle between an eigenvector
of S and the corresponding one of spherical covariance matrix
as the latter ‘rotating away from the uncorrelated position’.
Tables 3 and 4 confirm this interpretation.

All three Ssptl-based PC scores are more correlated and
their eigenvectors have much larger angles with those of
S. Regarding Ssptl,2, its second eigenvector is much closer
to being orthogonal to all other second eigenvectors than
to being aligned with them and this almost orthogonality is
complemented by the almost maximal correlation of the PC
scores of Ssptl,2.

There could be a number of reasons for this ‘behaviour’
of Ssptl,2; these could include the large discrepancy between
the centring parameters which might affect the direction
of the eigenvectors and the high correlation of the scores.
Irrespective of the actual reason which we can only conjecture,
the analysis shows clearly that Ssptl is sensitive to the choice of
centring parameter.

Figure A1 in the Appendix shows that the overall behaviour
of the eigenvalue ratios of the wine data is similar to that of
the athletes data: the first eigenvalue ratios of the spherical
covariance matrices are smaller than that of S, but the next
three are larger.

Of interest here is that Sτ and Ssptl almost agree on the first
few eigenvalue ratios, while those corresponding to Ssptl,1 and
Ssptl,2 are lower for the first ratio and higher for the second to
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forth ratios. In the athletes data we observe that the eigenvalue
ratios of Sτ are closer to those of Srank than to those of Ssptl.
So again, the similarity of population quantities Σsptl and Στ
is not reflected in Ssptl and Sτ .

It is beyond the scope of this paper to examine potential
reasons for the discrepancy of the eigenvectors and score plots
arising from Ssptl,2. Our aim is to draw attention to this
surprising behaviour in order to showcase unexpected results
that can occur for different centring parameters of the sign
covariance matrix and to recommend that care be taken when
employing a sign covariance matrix in dimension reduction or
other PC-related analyses.

5. Simulations
This section presents new results showcasing the

performance of the PCA methods we presented on simulated
data. Our simulation results include the performance of
standard and spherical PCA on non-elliptic scenarios which
are not covered by the theoretical framework, but are common
in applications, thereby enhancing and complementing the
previous sections.

5.1. The Families of Distributions

We simulate data from elliptic and non-elliptic families of
distributions and we relate the simulation results back to the
theorems in Sections 2.2 and 3.2. Our families of distributions
consist of two classes of elliptic distributions, followed by two
classes of non-elliptic distributions:

1. MVN: multivariate normal distributions;
2. MVT-ν: multivariate t-distributions in ν degrees of

freedom;
3. BMN: bimodal mixtures of two multivariate normal

distributions, and;

4. MSN-ρ: multivariate skew normal distributions with
skewness parameter ρ.

We start with the parameters for the multivariate normal
distribution and then describe how we select the parameters
in the other distributions so that the covariance matrices of the
simulated data are comparable.

5.1.1. Multivariate Normals [MVN]
Let N (µ,Σ) be the multivariate normal distribution. In the

simulations we put

µ = 0, the zero vector with entries µj , j ≤ d, and

Σ = diag(σj) with σj = 21−j for j ≤ d. (25)

This results in a model with exponentially decreasing
eigenvalues. We have picked this model as it reflects many
datasets and results in distinct eigenvalues.

Other models, eg, spiked models with one or a small number
of large eigenvalues and all other eigenvalues almost constant,
could also be of interest especially for HDLSS data. The latter
is not the main concern of this paper which primarily focusses
on moderate dimensions and increasing sample sizes.

5.1.2. Multivariate t-distributions in ν Degrees of
Freedom [MVT-ν]

Let tν(µ,Σ0) be the multivariate t-distributions and observe
that for ν > 2 the covariance matrix is the scaled matrix
ν
ν−2Σ0. In our case, Σ = ν

ν−2Σ0, with µ and Σ as defined
in (25).

5.1.3. Bimodal Mixture of Normals [BMN]
We use a mixture of two multivariate normal distributions
N (µ[k],Σ[k]) with k = 1, 2 and parameters

µ[1] =0, Σ[1] diagonal with σ[1]
1 = 2−1, σ

[1]
2 = 1, σ

[1]
j = 21−j if j > 2, and

µ
[2]
1 =

20

7
, µ

[2]
j = 0 if j ≥ 2, Σ[2] diagonal with σ[2]

j = 2−j for j ≤ d.

For X [k] ∈ N (µ[k],Σ[k]) let C be a random variable from the Bernoulli distribution with success probability p = 13
20 and put

Z =CX [1] + (1− C)X [2], with components Z = {zj : j ≤ d} and

X ={xj} with x1 =

√
14

33
(zj − 1), x2 =

√
40

59
z2, and xj =

√
40

33
zj , if j > 2.

An easy calculation shows that X has the mean µ and
covariance matrix Σ as in (25).

5.1.4. Multivariate Skew Mormal Distributions with
Skewness Parameter ρ [MSN-ρ]

To generate random vectors from the multivariate skew
normal distributions we follow A. Azzalini and A. Capitanio
[17]. Their starting point for a skew distribution is a non-zero

mean, which we take to be

µsn = [µ1, 0, . . . , 0] with µ1 6= 0 and then put

Ω = Σ + µsnµ
T
sn, (26)

with Σ as in (25).
A. Azzalini and A. Capitanio [17] phrase their proposal in

terms of the pair (Ω, α), with Ω as in (26) and α a skewness
parameter which is related to a vector δ by

α =

(
1√

1− δTΩ−1δ

)
Ω−1δ, (27)
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and δ is further related to the population mean, which, in our

case, leads to µsn =
√

2
π δ. From (26) it follows that only the

first entry δ1 of δ is non-zero.
The definition of α imposes the restriction δTΩ−1δ < 1.

For Σ and Ω as in (25) and (26) respectively this implies
that δ1 <

√
π
π−2 . Instead of using δ1, we reparametrise the

multivariate skew normal using a parameter ρ defined by

ρ = δ1

√
π − 2

π
× 100. (28)

Our final step includes centring of the skew normal random
vectors in order to make them comparable with our other
models.

5.2. Evaluating Estimators of the Population Eigenvector
as n Grows

For the families of distributions described in Section 5.1
we study the asymptotic behaviour of the first eigenvector of
the different sample covariance matrices S, Ssptl, Srank, Sτ and
Sspear as estimators of the first population eigenvector as the
sample size increases. For the calculation of Ssptl we use the
sample mean as centring parameter unless otherwise specified.
These results relate to Theorems 3.1 and 3.2.

We measure convergence of the estimators by the
angle between the population eigenvector and each sample
eigenvector, as done in Theorem 3.2. Algorithm 1
summarises the calculations relating to the eigenvectors and
their contributions to total variance. In this and Algorithm 2
we consider the following six distributions, denoted by Fκ in
the algorithms:

1. multivariate normal distribution, referred to as N ,
2. t-distributions MVT-4, MVT-10, referred to as t4 and
t10,

3. bimodal mixture distribution, referred to as B, and,
4. skew normal distributions MSN-95 and MSN-99,

referred to as S95 and S99 in the tables and figures.
Algorithm 1. Estimators of population eigenvectors.
1. Fix the dimension d.

For the population parameters (λj , ηj), qj , Σ of (25),
and tr(Σ), calculate (λj , ηj) and qj = λj/ tr(Σ) for
j ≤ d.

2. Fix the distribution Fκ for κ ∈ {1, . . . , 6}.
3. For sample parameters (λ̂j , η̂j) and qss,.,j , fix n =

10`, ` ∈ {2, 2.1, 2.2, . . . , 3.7}.
4. For k ≤ 100 generate Xk, each of size n.
5. For ss ≤ 5 calculate Sss,k, tr(Sss,k), (λ̂ss,k,j η̂ss,k,j)

and qss,k,j = λ̂ss,k,j/ tr(Sss,k) for j ≤ d.
6. Compare population and estimators: for j ≤ d do
q̄ss,.,j ←

∑
k qss,k,j/100

γss,k,j ← ∠(ηj , η̂ss,k,j) for k ≤ 100
γ̄ss,j ←

∑
k γss,k,j/100.

7. Return to 2 if κ < 6.
We carried out the calculations of Algorithm 1 for d =

5, 10, 20 and 50. For d = 20 we used all values ` in the Step 3
and a subset of values ` for the other dimensions. The results

for different dimensions are similar. For this reason we only
present results obtained for d = 20. In this section we look
at the eigenvectors regarded as estimators of the population
quantities, and Section 5.3 focusses on relationships between
population and sample eigenvalues.

In the figures and discussion below we restrict attention to
the first eigenvector, that is, the case j = 1 in Steps 5 and 6, and
we show the results obtained from the three sample covariance
matrices S, Ssptl and Srank. As we shall see in Section 5.4,
Srank, Sspear and Sτ are very similar and we therefore use Srank
as a representative for these three. We will comment on the
results of these comparisons in relation to (24) in Section 5.5.

Figure 5 depicts graphs of the mean angles γ̄ss,j of Step 6
in Algorithm 1 for the first eigenvectors as a function of ` and
hence of the sample size. The graphs corresponding to the
different covariance matrices are shown in blue for S, in red
for Ssptl and in light blue for Srank. In addition to the mean
angles, we also show the angles between the population and
sample eigenvector for each of the 100 datasets. The latter
are shown in the form of boxplots – in the same colours as the
three means and separated in the horizontal direction for easier
visibility.

Figure 5. Mean angles of first eigenvectors with d = 20 of Algorithm 1, based on Σ
and S (in blue), Srank (in light blue) and Ssptl (in red) as ` increases (and n = 10`);
with N (µ,Σ) (top left), t10 and t4 (middle and bottom left), bimodal (top right), and
multivariate skew normal S95 and S99 (middle and bottom right).

Table 5. Mean angles corresponding to Figure 5.

n Sss N t10 t4 B S95 S99

100 S 12.05 14.10 23.91 12.31 12.95 11.81

Ssptl 15.31 15.89 16.12 13.79 16.36 15.22

Srank 12.63 13.39 14.87 12.33 13.94 13.80

5011 S 1.53 1.81 3.65 1.68 1.53 1.67

Ssptl 1.88 1.87 1.89 1.82 1.97 2.00

Srank 1.57 1.66 1.78 1.69 1.64 1.80

Each figure panel focusses on a different underlying
distribution for the data generating process; the left panels
feature elliptic distributions: the multivariate normal and the
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multivariate t-distribution in 10 and 4 degrees of freedom,
and the right panels feature non-elliptic distributions: the
bimodal mixture distribution and the multivariate skew normal
distribution with ρ = 0.95 and 0.99.

For n = 100 and 5011, the values shown in the graphs for
the corresponding ` = 2 and ` = 3.7 are listed in Table 5.
Table A3 in the Appendix also contains results for n = 501
and 1000. From Figure 5 and Table 5 we find that the mean
angles of all three Sss, and all six distributions converge to
zero. However, the decrease in the angle with increasing
n depends on the distribution and the particular covariance
matrix: the light blue curve arising from Srank is on par with
S for all but the heavy-tailed t4-distribution shown in the
bottom left panel, for which S performs considerably worse
and appears to converge much more slowly than the other two.
The graph of Ssptl is slowest to converge in all cases other than
in the bottom left panel (t4), where it is comparable to Srank, as
n becomes large. In Section 5.5 we link the results from this
simulation to Theorems 2.2 and 3.1.

Overall the first eigenvector of Srank appears to be
an excellent estimator of the first population eigenvector
irrespective of the underlying distribution. The mean angles
decrease almost monotonically for each of the six distributions
from just below 15 degrees at n = 100 (shown as the x-value
2) to below 2 degrees when n = 103.7 ∼ 5011.

5.3. Evaluations of Population and Sample Contributions
to Variance

The trace of spherical covariances typically differs from that
of the standard covariance matrix, and it therefore makes more
sense to compare eigenvalue ratios. Here we normalise the
eigenvalues with the trace of their matrix and then compare
the individual contributions to total variance, as mentioned in
Section 4.1.

In the Step 1 of Algorithm 1 we calculate the population
ratios qj = λj/ tr(Σ). Steps 2 to 5 contain analogous
calculations for the sample covariance matrices.

Using the same figure panel arrangement of distributions
as in Figure 5 with the elliptic distributions on the left and
the non-elliptic ones on the right, Figure 6 shows the first
eigenvalue ratios of Σ in black, S in dark blue, Srank in light
blue and Ssptl in red. For the three sample cases, the boxplots
summarise the spread of ratios over 100 simulations. As in
the previous figure, ` is given on the x-axis, with n = 10` the
sample size.

Figure 6 tells us that the blue S is centred around the black
line arising from Σ, the latter being independent of n, as it
represents the population value. As n increases the range
of the boxplots decreases and the ratios converge. In the
case of S this ratio converges to the eigenvalue ratio of Σ
with the exception the non-elliptic multivariate skew normal
distribution t4. For Srank and Ssptl the first eigenvalue ratios
also converge with increasing n, but they do not converge to
λ1/ tr(Σ). Indeed, with the exception of Ssptl in the binomial
case, shown in the top right panel, the first contribution of Srank
and Ssptl is considerably smaller than that of Σ.

Figure 6. First eigenvalue ratios as n increases: from Σ (in black), S (in blue), Srank (in
light blue), and Ssptl (in red); with N (µ,Σ) (top left), t10 and t4 (middle and bottom
left), bimodal (top right), and multivariate skew normalS95 andS99 (middle and bottom
right).

Figure 7. Contribution of the first eight eigenvalues to total variance for n = 100 with
the index of the eigenvalue on the x-axis: from Σ (in black), S (in blue), Srank (in light
blue), and Ssptl (in red); with N (µ,Σ) (top left), t10 and t4 (middle and bottom left),
bimodal (top right), and multivariate skew normal S95 and S99 (middle and bottom
right).

Analogous graphs for the second and third eigenvalue ratios
can be found in Figure A2 in the Appendix. These figure
panels reveal that for all six distributions the mean ratios of the
second and third contributions from the spherical covariances
are larger than those of S and Σ. Recall that we noticed a
similar pattern for the real data: the first spherical eigenvalue
ratios as smaller than that of S, but the second and third ones
are larger. As for the first eigenvalue ratios, the second and
third ratios converge as n increases but not to the population
value – with the exception of the values arising from S.

It may be of interest to see the pattern arising from smaller
eigenvalues. Figure 7 shows these contributions with the
eigenvalue index on the x-axis, here for n = 100. Similar
graphs arise for larger values of n with the main difference
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that the ranges of the boxplots decrease with increasing value
of n.

Figure 7 provides a clear picture of the contributions to
variance arising from the three sample covariances S, Srank
and Ssptl. For all six distributions the first contribution of
Srank and Ssptl are smaller than those of Σ, while the second
and all later ones exceed those of Σ. Analogous results for
Sspear and Sτ reveal that they are very similar to those of Srank
and are therefore not shown. We observe that Srank and Ssptl
show different eigenvalue ratios for the bimodal distribution.
Because of the similarity of the eigenvalue patterns of Sτ and
Srank we may conclude that Sτ behaves more like Srank and
may not be a good approximation to Ssptl especially for non-
elliptic models.

Our calculations and figures indicate that the normalised
contributions to variance of S converge to those of Σ, while
those of the spherical covariance matrices start smaller but then
exceed those of Σ. Figure 2 and Figure A1 in the Appendix,
tell us that the pattern for these three real datasets is similar to
what we have seen for the simulated data: the first contribution
to variance of spherical covariances is smaller than that of Σ.

5.4. Comparisons of Sample Eigenvectors as n Grows

For the real datasets of Section 4 we compared the first
few eigenvectors and their PC scores calculated from different
sample covariance matrices. In this section we look at similar
comparisons for simulated datasets.

We focus on the six distributions listed before Algorithm
1 in Section 5.2 and, as n grows, compare mean angles of
pairs of sample eigenvectors from two different covariance
matrices in order to study their variability across different
distributions and sample covariances. Algorithm 2 describes
the calculations which share some of the steps of Algorithm
1, however, Algorithm 2 only focusses on eigenvectors, since
results relating to eigenvalues are covered in Section 5.3.

Algorithm 2. Estimators of population eigenvectors.
1. Fix the dimension d.
2. Fix the distribution Fκ for κ ∈ {1, . . . , 6}.

For sample parameters (λ̂j , η̂j) and qss,.,j , fix n =
10`, ` ∈ {2, 2.1, 2.2, . . . , 3.7}

3. For k ≤ 100 generate Xk, each of size n.
4. For ss ≤ 5 calculate Sss,k and η̂ss,k,j for j ≤ d.
5. Compare pairs of estimators: for j ≤ d do
6. For pairs (s′, s′′) from ss = 1, . . . , 5
γ̂(s′,s′′,k,j) ← ∠(η̂s′,k,j , η̂s′′,k,j) for k ≤ 100
¯̄γ(s′,s′′,j) ←

∑
k γ̂(s′,s′′,k,j)/100.

7. Return to 2 if κ < 6.
We carry out the calculations of Algorithm 2 for d =

5, 10, 20 and 50, and ` with n = 10` as in Algorithm 1. The
calculations show that the results are very similar across the
different dimensions, and we therefore present and discuss the
results pertaining to d = 20 only.

For the population scenario in the previous section we
focussed on the sample covariance matrices S, Ssptl and Srank.
We now look at convergence of eigenvectors from pairs of

these sample matrices. This will provide complementary
insight to that of the population results.

For n = 100 and 5011, the values shown in the graphs are
listed in Table 6. The more detailed Table A4, which also
shows results for n = 501 and 1000, can be found in the
Appendix.

Figure 8 shows the graphs of the pairwise comparisons.
Angles pertaining to (S, Srank) are shown in light blue, those
of (S, Ssptl) in red, and those of (Srank, Ssptl) in blue. The
arrangement of the panels of distributions is the same as in
Figure 5. Vertical boxplots show the variation of the 100
simulations in the same colours as the mean angles.

Note that for all values of n, the angles between eigenvectors
of Ssptl and S, and between Srank and S are smaller than
the corresponding angles are between these two matrices and
Σ, as shown in Figure 5. The largest angles between S
and the spherical matrices Ssptl and Srank occurred for the t4
distribution. The main reason for this bigger discrepancy is
that S is expected to perform poorly for t4 data. Apart from
the t4 results, the eigenvectors of S and Srank form smaller
angle than either of these does with Ssptl. This suggests that
Ssptl is not as good a substitute for S as Srank.

Figure 8. Mean angles of Step 6, Algorithm 2, for (S, Srank) (light blue), (S, Ssptl) (red)
and (Srank, Ssptl) (blue) as functions of n; withN (µ,Σ) (top left), t10 and t4 (middle
and bottom left), bimodal (top right), and multivariate skew normalS95 andS99 (middle
and bottom right).

Table 6. Mean angles corresponding to Figure 8.

n Sss1, Sss2 N t10 t4 B S95 S99

100 S, Ssptl 8.85 11.64 22.46 6.87 8.42 8.99

S, Srank 3.36 5.98 17.30 2.98 3.86 4.23

Srank, Ssptl 6.22 7.13 7.70 5.00 5.59 6.24

5011 S, Ssptl 1.18 1.46 3.48 1.01 1.25 1.13

S, Srank 0.47 0.85 3.00 0.43 0.53 0.51

Srank, Ssptl 0.80 0.84 0.96 0.67 0.83 0.75

Our last comparison looks at mean angles of the
eigenvectors of Srank, Sspear and Sτ . In Section 5.2 we only
considered the convergence of Srank to the population quantity.
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If the eigenvectors of the three pairs of covariance are all very
similar, then this step is justified, and Srank can indeed be
regarded as a good representative of all three.

Figure 9 shows graphs of mean angles of eigenvectors from
pairs of covariance matrices as a function of n: (Srank, Sspear)
in light blue, (Srank, Sτ ) in red, and (Sspear, Sτ ) in blue. Note
that the red line is barely visible as it is directly below the
blue line. The left panels feature the multivariate normal and
the multivariate t-distributions in 10 and 4 degrees of freedom,
and the right panels feature the bimodal mixture distribution
and the multivariate skew normal distributions with ρ = 0.95
and 0.99.

For n = 100 and 5011, the values shown in the graphs are
listed in Table 7. The more detailed Table A5, which also
contains results for n = 501 and 1000, can be found in the
Appendix.

Figure 9. Mean angles of Step 6, Algorithm 2, from (Srank, Sspear) (light blue),
(Srank, Sτ ) (red), and (Sspear, Sτ ) (blue) as functions of n; with N (µ,Σ) (top left),
t10 and t4 (middle and bottom left), bimodal (top right), and multivariate skew normal
S95 and S99 (middle and bottom right).

Table 7. Mean angles corresponding to Figure 9.

n Sss N t10 t4 BMN S95 S99

100 Srank, Sspear 0.00 0.00 0.01 0.01 0.00 0.00

Srank, Sτ 0.31 0.25 0.40 0.52 0.30 0.33

Sspear, Sτ 0.32 0.26 0.41 0.53 0.31 0.33

5011 Srank, Sspear 0.00 0.00 0.00 0.00 0.00 0.00

Srank, Sτ 0.03 0.02 0.04 0.06 0.03 0.03

Sspear, Sτ 0.03 0.02 0.04 0.06 0.03 0.03

Observe that the largest mean angle at n = 100, so ` = 2
in the graphs, is 0.53 degrees and occurs between Sspear and
Sτ . This angle is comparable to the smallest mean angle of S
and Srank which occurs for n = 5011, see Table 6. Note that
this angle is about one third of the smallest angles between the
eigenvectors of Srank and the population eigenvectors as can be
seen in Table 5. Further, as n increases, the angles between the
spherical covariances considered in Table 7 decrease quickly
from their values at n = 100.

For all six distributions the difference in the angles between
Srank and Sspear is noticeably smaller than that of Sτ with either
of these two. Indeed, for n ≥ 500, the mean angle of the
eigenvectors of Srank and Sspear is basically zero. We will return
to this point in the next section.

5.5. Comparisons of Simulation Results and Theory

The simulations of Section 5.2 compare the first population
eigenvector with the first eigenvector of the different Sss as n
increases. The results presented in Figure 5 and Table 5 show
that for all six distributions and the three different covariances
matrices S, Ssptl, Srank, the mean angles of the population
and sample eigenvectors converge to zero as n increases. The
largest decrease in the angles occurs between 100 ≤ n ≤ 500
across all six distributions, after which the angles decrease
more slowly.

For the three elliptic distributions displayed in the left
panels of Figure 5, Theorem 2.2 tells us that the population
eigenvectors of the three covariance matrices Σ,Σsptl and Σrank
agree and hence, by Theorem 3.1, their sample eigenvectors
converge to those of Σ. Our simulations confirm this
convergence result for all three Sss, however, convergence
of the first eigenvector of S is much slower for t4. This
behaviour of S agrees with knowledge that S is sensitive
to outliers and heavy-tailed data. It may be encouraging to
observe that, for Srank, convergence of the sample eigenvectors
to the eigenvector of Σ is almost as good for the non-elliptic
distributions as for the elliptic ones. This suggests that the
corresponding theoretical results may also hold for (at least
some) non-elliptic distributions.

Based on the simulation results, the eigenvectors of Srank are
better estimators for those of Σ than the eigenvectors based
on any of the other covariance matrices, including S. For the
distributions we considered here, Srank-based PCA seems to
perform equally well for elliptic and non-elliptic distributions.

The results on eigenvalues are not as easily interpretable.
Theorem 2.3 relates the eigenvalues of Σsptl and Στ to those
of Σ, and provides bounds for the population eigenvalues
under the elliptic model. For the exponentially decreasing
eigenvalues we used in the simulations, part 3 of Theorem 2.3
does not yield useful bounds, so is not directly relevant.

Our simulation results relating to the eigenvalues of Srank
strongly suggest that its eigenvalues converge as the sample
size increases, and one would expect that they converge to the
population value. To prove such a result is beyond the scope of
this paper, but would be interesting to examine in more detail.

Returning to Theorem 2.2, we know that Σsptl = Στ
for elliptic distributions. The simulation results of Figure 6
and the comments following Figure 6 tell us that for the
three elliptic models the sample eigenvalues are essentially
the same, however, for the non-elliptic bimodal model, the
eigenvalues of the two sample covariance matrices clearly
differ. These examples indicate that care is required when one
wants to use Sτ as an estimator of Σsptl as S. Taskinen, I. Koch,
and H. Oja [2] suggest.

The theoretical developments of spherical covariance
matrices and spherical PCA have focussed more on Ssptl than
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on the other Sss, most likely because Ssptl is the ‘natural’
covariance matrix for spatial signed or directional data. Here
we want to draw the reader’s attention to one of the potential
pitfalls in working with this natural covariance matrix Ssptl.
By Theorem 2.2 and (19), the (sample) spatial median agrees
with the (sample) mean under the elliptic model. For non-
elliptic data the sample mean can differ from the sample spatial
median. We have used the sample mean in all simulations
with Ssptl. Our results show that this possibly ‘incorrect’
centring quantity does not have a serious adverse effect on
the asymptotic behaviour of the eigenvectors of Ssptl: the first
sample eigenvector of Ssptl converges across the elliptic and
non-elliptic distributions to that of Σ at about the same rate.
However, caution in the choice of the centring parameter may
be required as the calculations of the wine data of Section 4.3
show. The graphs and angles presented in Figure 8 and Table 6
are consistent with the population results: For the elliptic
distributions—with the exception of t4—the sample estimators
derived from S and Srank converge quickly to each other and,
indeed, more quickly than the individual estimators converge
to the population eigenvectors. The eigenvector of S and Srank
are closer to each other than either of them to Ssptl. This
suggests that Srank is a better substitute for S than Ssptl, and a
replacement in the presence of distributions or data for which
S is known to behave poorly.

Surprisingly, for the three non-elliptic distributions the
convergence of the eigenvector of S and Srank to each other is
even faster than for the elliptic distributions. We do not claim
that this result holds in general; our results are based on the
bimodal and multivariate skew normal distributions for up to
50 dimensions and sample sizes up to n = 103.7, and it is
beyond the scope of this paper to make more general claims.
However, the convergence results of these eigenvectors for
elliptic and non-elliptic distributions lend support to regarding
Srank as a serious contender to S in PCA, both in terms of
eigenvector directions and feature selection.

Our final comments relate to the sample covariances
Srank, Sspear and Sτ and (24). This equation shows that,
asymptotically, Srank and Sspear are the same and their
difference is of order (1/n). A comparison with the
results presented in Figure 9 and Table 7 confirms that the
eigenvectors of these covariance matrices are basically the
same for all six distributions. The results also confirm that
the eigenvectors of Sτ converge to either of these quickly as
n grows. Furthermore, the analysis of the real and simulated
data shows that the contributions to variance of these three
matrices are essentially the same. For practical consideration
this therefore suggests that it suffices to work with Srank.

6. Conclusion
We considered nonlinear covariance matrices, and more

specifically spherical covariance matrices which arise from
spatial sign or direction vectors, and we compared their
eigenvalues, eigenvectors, and resulting PC scores to those of
the standard covariance matrix. These spherical covariance
matrices give rise to nonlinear principal component analysis

based on natural concepts with interesting and interpretable
properties. Seen through the different lenses of the population,
the random sample and the data, the rank covariance matrix
can be regarded as a serious contender to the standard
covariance matrix: Under the elliptic model the eigenvectors
of Σrank agree with those of Σ and for the random sample, the
eigenvectors of Srank are asymptotically consistent estimators.

As we deviate from the elliptic model, our findings, based
on contrasting real data and simulated datasets from a variety
of distributions, show that the rank covariance matrix leads to
eigenvectors that are often similar to those of S. However,
where S is known to perform poorly, the rank covariance
matrix continues to perform well; this includes data with
outliers, and data from heavy-tailed distributions. Regarded
as estimators, the eigenvectors of the rank covariance matrix
appear to converge at similar rates for elliptic and non-elliptic
distributions and, as n increases, these eigenvectors show fast
convergence to the population quantities.

We have focussed more on eigenvectors than eigenvalues
of Srank (or any of the other spherical Sss we included in
this paper), since the eigenvectors of Srank appear to be good
estimators of those of Σ. The same is not true for the
eigenvalues of Srank. Indeed, our results indicate that the
first or first few percentage contributions to total variance of
Srank are smaller than those of S or Σ. To use Srank as a
substitute for S in PCA, it would be valuable to evaluate
the contribution of each eigenvalue to total variance and to
examine the asymptotic behaviour of the eigenvalues in more
detail. This will have to be a the topic of future research.

Returning to eigenvectors, the results show that Sspear and
Srank are essentially the same, and Kendall’s τ covariance
matrix Sτ is similar to Srank, but the latter is conceptually easier
and seems to enjoy better performance as an estimator.

Theoretical results and calculations based on the ‘natural’
covariance matrix for direction vectors, the spatial sign
covariance matrix, establish that its population eigenvectors
agree with those of Σ under the elliptic model. This can be
traced back to the fact that the sample mean agrees with the
sample spatial median for these distributions. Our simulations,
however, show that convergence of these sample eigenvectors
to the population eigenvectors is slower than similar results
based on the standard or the rank covariance matrices—even
for elliptic models. Our results suggest that a good choice of
the centring parameter for non-elliptic data may be difficult,
and the sign covariance matrix may result in unstable or
unpredictable eigenvectors with, at times, highly correlated
principal component scores. These features detract from its
use and usefulness for real data.

In summary, the rank covariance matrix Srank has emerged
as a valuable tool for estimating population quantities and
for calculating principal components and features in data.
Its performance is very similar to that of S when the latter
works well, and it continues to lead to good results when
S is not suitable. Its use in the analysis of HDLSS data is
likely to highlight its superior performance over S further and
could render the rank covariance matrix an essential tool for
dimension reduction and feature selection.
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Appendix

Appendix 1. Additional Tables and Figure for the Athletes
and Wine Data

Tables A1 and A2 contain and extend information provided
in tables in Section 4.3. Figure A1 complements the
information in Table A2.

Figure A1. Eigenvalue ratios of the first 4 eigenvalues for the wine data using different
covariance matrices: S red, Srank olive, Sτ violet, Ssptl green, Ssptl,1 blue-green and
Ssptl,2 blue corresponding to Table 3 in Section 4.3.

Table A1. Athletes data: angles of first and second eigenvectors of sample covariance
matrices in odd and even rows respectively–extending Table 2 in Section 4.3.

Ssptl Srank Sτ Sspear Ssptl,1 Ssptl,2

S 7.46 4.13 3.61 4.13 8.80 10.16
8.63 2.99 2.34 3.00 8.42 10.26

Ssptl 3.35 3.86 3.34 1.52 3.00
6.22 6.97 6.21 0.84 2.91

Srank .35 0.55 0 4.74 6.06
6.22 0.78 0 5.86 7.42

Sτ 3.86 0.55 0.55 5.21 6.60
6.97 0.78 0.79 6.63 8.20

Sspear 3.34 0 0.55 4.73 6.06
6.21 0 0.79 5.85 7.41

Ssptl,1 1.52 4.74 5.21 4.73 2.49
0.84 5.86 6.63 5.85 8.42

Table A2. Wine data: angles of first and second eigenvectors of sample covariance
matrices in odd and even rows respectively–extending Table 3 in Section 4.3.

Ssptl Srank Sτ Sspear Ssptl,1 Ssptl,2

S 1.49 0.39 0.42 0.39 1.65 3.14
3.54 1.09 1.42 1.08 7.08 71.11

Ssptl 1.13 1.11 1.13 0.37 2.51
3.67 3.93 3.66 7.32 71.60

Srank 1.13 0.04 0 1.30 2.94
3.67 0.43 0.01 6.60 71.02

Sτ 1.11 0.04 0.04 1.28 2.93
3.93 0.43 0.44 6.56 70.92

Sspear! 1.13 0 0.04 1.30 2.94
3.66 0.01 0.44 6.56 71.03

Ssptl,1 0.37 1.30 1.28 1.30 2.51
7.32 6.60 6.60 6.56 70.75

Appendix 2. Additional Tables and Figures for the
Simulations

Tables A3, A4 and A5 contain and extend information
provided in tables in Sections 5. Figure A2 complements the
first eigenvalue plots shown in Figure 6.

Figure A2. Contribution of second eigenvalues (upper six) and third eigenvalues (lower
six) to total variance as n increases: from Σ (in black), S (in blue), Srank (in light blue),
and Ssptl (in red); withN (µ,Σ) (top left), t10 and t4 (middle and bottom left), bimodal
(top right), and multivariate skew normal S95 and S99 (middle and bottom right).

Table A3. Mean angles of first eigenvectors shown in Figure 5–extending Table 5 in
Section 5.2.

n Sss N t10 t4 BMN MSN95 MSN99

100 S 12.05 14.10 23.91 12.31 12.95 11.81
Ssptl 15.31 15.89 16.12 13.79 16.36 15.22
Srank 12.63 13.39 14.87 12.33 13.94 13.80

501 S 5.13 6.03 9.70 5.11 5.19 5.96
Ssptl 6.28 6.16 6.29 5.48 5.94 6.94
Srank 5.25 5.58 5.87 5.23 5.42 6.40

1000 S 3.67 3.85 7.64 3.43 3.33 3.57
Ssptl 4.39 4.28 5.02 3.77 3.97 4.18
Srank 3.74 3.62 4.51 3.46 3.52 3.82

5011 S 1.53 1.81 3.65 1.68 1.53 1.67
Ssptl 1.88 1.87 1.89 1.82 1.97 2.00
Srank! 1.57 1.66 1.78 1.69 1.64 1.80
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Table A4. Mean angles of first eigenvectors shown in Figure 8–extending Table 6 in
Section 5.4. In column 2, Ss and Sr refer to Ssptl and Srank.

n S1, S2 N t10 t4 BMN MSN95 MSN99

100 S, Ss 8.85 11.64 22.46 6.87 8.42 8.99
S, Sr 3.36 5.98 17.30 2.98 3.86 4.23
Sr, Ss 6.22 7.13 7.70 5.00 5.59 6.24

501 S, Ss 3.71 4.73 8.91 3.14 3.36 3.61
S, Sr 1.46 2.60 7.45 1.42 1.44 1.78
Sr, Ss 2.53 2.73 2.95 2.02 2.33 2.47

1000 S, Ss 2.73 3.14 6.61 2.06 2.41 2.62
S, Sr 1.03 1.65 5.57 0.89 1.08 1.26
Sr, Ss 1.88 1.79 2.14 1.38 1.64 1.71

5011 S, Ss 1.18 1.46 3.48 1.01 1.25 1.13
S, Sr 0.47 0.85 3.00 0.43 0.53 0.51
Sr, Ss 0.80 0.84 0.96 0.67 0.83 0.75

Table A5. Mean angles of first eigenvectors shown in Figure 9–extending Table 7 in
Section 5.4. In column 2, Sr and Ss refer to Srank and Sspear.

n S1, S2 N t10 t4 BMN MSN95 MSN99

n S1, S2 N t10 t4 BMN MSN95 MSN99

100 Sr, Ss 0.00 0.00 0.01 0.01 0.00 0.00
Sr, Sτ 0.31 0.25 0.40 0.52 0.30 0.33
Ss, Sτ 0.32 0.26 0.41 0.53 0.31 0.33

501 Sr, Ss 0.00 0.00 0.00 0.00 0.00 0.00
Sr, Sτ 0.09 0.07 0.14 0.20 0.10 0.14
Ss, Sτ 0.09 0.07 0.14 0.20 0.10 0.14

1000 Sr, Ss 0.00 0.00 0.00 0.00 0.00 0.00
Sr, Sτ 0.07 0.05 0.09 0.14 0.07 0.08
Ss, Sτ 0.07 0.05 0.09 0.14 0.07 0.08

5011 Srank, Ss 0.00 0.00 0.00 0.00 0.00 0.00
Sr, Sτ 0.03 0.02 0.04 0.06 0.03 0.03
Ss, Sτ 0.03 0.02 0.04 0.06 0.03 0.03
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