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Abstract: In statistical books for the analysis of designed experiments one can finds sometimes also the computation of the 
number of replications for balanced one-factor and two-factors designs. Later there were papers published concerning the 
computation of the number of replications of at most three-factors crossed or nested balanced designs. In 2011 the book 
“Optimal experimental design with R” was published; further a special R- program OPDOE was made to do the computation 
for these designs and the OPDOE program was used in this book. In this paper an extension of the determination of the 
minimum number of replications for balanced designs is given for four-factor crossed designs. The balanced cross 
classification of the four-way analysis of variance of the following models are investigated: Model 1 The factors A, B, C and D 

are all fixed; Model 2 D is random A, B and C are fixed; Model 3 C and D are random, A and B are fixed; Model 4 B, C and D 

are random, A is fixed. For these models small R-programs are given to compute the minimal number of the replications for 
testing the fixed effects using the non-centrality parameter λ of the non-central F- distribution F(df1, df2, λ). Further balanced 
Split-Plot design with one or two fixed factors in the main-plots are considered. The Blocks are denoted with B. The F 
statistics for testing the significance of the fixed factors are described and small R-programs for the determination of the 
minimal number of replications are given using the non-centrality parameter λ of the non-central F- distribution F(df1, df2, λ). 

Keywords: Balanced Four-way ANOVA, Cross Classification, Split-plot Designs,  
Non-centrality Parameter λ of the Non-central, F-distribution F(df1, df2, λ), Minimal Number of Replications 

 

1. Introduction 

In experiments and surveys often the influence of several 
factors on a character y modelled by a random variable y are 
investigated. Each of the factors has at least two levels. There 
are several possibilities how factors can be combined. Let us 
consider two factors A, B with levels ��, … , ��, � � 2, and 
	�, … , 	
 , � � 2 respectively. If each level of A can occur 
together with each level of B, A and B are cross classified – 
symbol AxB and we may have ab sub-classes in the 
experiment. Such	 an	 experiment	 is	 called	 balanced	
�orthogonal!	 if	 in	 the	 cross	 classification	 all	 ab factor 
combinations occur in the experiment with equal sub-class 
numbers n. 

The determination of the minimal number of replications 
in balanced designs for testing fixed effects has already a 

long history for one-factor or two-factor studies. This was 
made possible by the publication of Tang [16] with the 
distribution of the non-central F-distribution. The charts of 
Tang were later also published by Owen [5] and Pearson and 
Hartley [6]. Kuehl [1] gives in section 2.14 “How many 
replications for the F-test (of one-factor)” and in section 6.8 : 
“How many replications to test factor effects (for two-
factors)” using the table on pp. 616-625 of charts of the 
power function of the F-test. Also Ott and Longnecker [4] 
described in section 14.6 “Determining the Number of 
Replications (of one-factor)” using the table on pp. 1123-
1126 with charts of the Power of the analysis of variance test. 
In Kutner et al. [2] is given in section 16.10 “Planning 
sample sizes with power approach (for one-factor study)” and 
in section 19.11 “Planning of sample sizes for two-factor 
studies”, using the table on pp. 1337-1341 “Power Values for 
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Analysis of Variance (fixed effects)”. In Wang et al. [17] and 
Rasch and Verdooren [13] the determination of the size for 
three-factors studies in a balanced experiment for mixed 
ANOVA is given. In Rasch et al. [11] an overview of the 
determination of the minimal number in balanced cross-
classifications and nested-classifications of fixed and mixed 
models for two-factors and three-factors is given together 
with an R-program package OPDOE (Optimal Design of 
Experiments). See also Rasch et al. [12, 13] and Spangl et al. 
[15] for a balanced three-way ANOVA classification to 
determine the minimal number of replications. 

In this paper is treated the four cross-classified factors A, 

B, C, D in balanced (orthogonal) experiments. In Example 7 
below a clinical study is given : a factor A of a=3 Covid 19 
vaccines Biontech ( �� ), Astra Seneca ( �# ) and 
Johnson&Johnson (�$); a factor B of female �	�! and male 
�	#!	patients and a factor C with an age below 60 years (%�) 
and 60 years and older (%#). Because as well the number of 
levels as also the levels are fixed independently from the 
experimenter, we call the factors fixed. The survey should be 

executed with the random factor D in d=4 hospitals selected 
randomly from a huge number of hospitals in a country. 

Further are considered two balanced Split-Plot Designs. 
The first one is the fixed factor A used in the main-plots of 
the factor B of blocks; further the fixed factor C and D are 

used in the Split-Plots. The second one are the fixed factors A 

and C used in the Main-plots of the factor B of blocks; 
further the fixed factor D is used in the Split-Plots. 

Tests for testing the significance of fixed main or 
interaction effects in models of the balanced four-way cross 
classified analysis of variance with at least one fixed factor is 
then treated. The four factors are denoted by A, B, C, and D. 
Random factors as well as random variables in the models 
are bold printed. The symbol x between factors means cross 
classification. 

The four-way cross classification Model 1 is based on the 
model (1) (with all interactions) here written for the case 
where all factors are fixed. 

&'()*+ = - + �' + �( + /) + 0* + ���!'( + ��/!')+��0!'* + ��/!() + ��0!(* + �/0!)* + ���/!'() + ���0!'(* + ��/0!')* +
��/0!()* + ���/0!'()*+123456                                                                          (1) 

i = 1, …, a, j= 1, …, b, k = 1, …, c, l= 1, …, d, m = 1,…, n ≥ 2. 

Assumed are that all fixed effects in Model 1 sum up to 
zero, when summation is done over at least one of the 
superscripts of the effect. For instance ∑ ��/0!()*
)8� =0. The 
random effects 123456	are all independent from each other 
and are normally distributed with expected value zero and 
variance σ2. 

2. The ANOVA – Table, Expected Mean 

Squares and F Statistics 

Here are investigated four models with four, three, two 
factors fixed and also only one factor fixed. 

Table 1. Analysis of Variance Table of a Four-way Cross-Classification with equal Subclass Numbers n, SS is Sum of Squares and df are the degrees of 

freedom. 

Source of Variation SS df 

Between A-levels 99: = �

;<=∑>'….# − �

A >…...#   1−a  

Between B- levels 99B = �
�;<=∑>.(…# − �

A >…...#   1−b  

Between C- levels 99C = �
�
<=∑>..)..# − �

A>…...#   1−c  

Between D- levels 99D = �
�
;=∑>…*.# − �

A >…...#   1−d  

Interaction ×A B  99:B = �
;<=∑>'(...# 	− �


;<=∑>'….# − �
�;<=∑>.(…# + �

A >…...#   ( ) ( )1 1− −a b  

Interaction ×A C  99:C = �

<=∑>'.)..# 	− �


;<=∑>'….# − �
�
<=∑>..)..# + �

A >…...#   ( )( )1 1− −a c  

Interaction ×A D  99:D = �

;=∑>'..*.# 	−

�

;<=∑>'….# − �

�
;=∑>...*..# + �
A >…...#   ( ) ( )1 1− −a d  

Interaction ×B C  99BC = �
�<=∑>.()..# 	− �

�;<=∑>.(…# − �
�
<=∑>..)..# + �

A >…...#   ( )( )1 1− −b c  

Interaction ×B D  99BD = �
�;=∑>.(.*.*.

# 	− �
�;<=∑>.(…# − �

�
;=∑>…*.# + �
A >…...#   ( )( )1 1− −b d  

Interaction ×C D  99CD = �
�
=∑>..)*..# 	− �

�
<=∑>..)..# − �
�
;=∑>…*.# + �

A >…...#   ( )( )1 1− −c d  

Interaction × ×A B C  

99:BC 2
..

, ,

1
Y= ∑ ijk

i j k
dn

2
....

1
Y+ ∑ i

i
bcdn

2
. ...

1
Y+ ∑ j

j
acdn

2
.. ..

1
Y+ ∑ k

k
abdn

2
...

,

1
Y− ∑ ij

i j
cdn

2
.. .

,

1
Y− ∑ jk

j k
adn

2
. ..

,k

1
Y− ∑ i k

i
bdn

2
......Y−
N

 

( )( ) ( )1 1 1− − −a b c  

Interaction × ×A B D  

99:BD = �
;=∑ >'(.*.#',(,* 2

....
1

Y+ ∑ i
i

bcdn
2

. ...
1

Y+ ∑ j
j

acdn

2
... .

1
Y+ ∑ l

l
abcn

2
...

,

1
Y− ∑ ij

i j
cdn

2
.. .

,

1
Y− ∑ jl

j l
acn

2
.. .

,

1
Y− ∑ i l

i l
bcn

2
......Y−
N

 

( )( )( )1 1 1− − −a b d  
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Source of Variation SS df 

Interaction × ×A C D  

99:CD 2
. .

, ,

1
Y= ∑ i kl

i k l
bn

2
....

1
Y+ ∑ i

i
bcdn

2
.. ..

1
Y+ ∑ k

k
abdn

2
.. .

1
Y+ ∑ l

l
abcn

2
. ..

,

1
Y− ∑ i k

i k
bdn

2
.. , .

,

1
Y− ∑ k l

k l
abn

2
.. .

,

1
Y− ∑ i l

i l
bcn

2
......Y−
N

 

( )( )( )1 1 1− − −a c d  

Interaction B C D× ×  

99BCD 2
. .

, ,

1
Y= ∑ jkl

j k l
an

2
. ...

1
Y+ ∑ j

j
acdn

2
.. ..

1
Y+ ∑ k

k
abdn

2
.. .

1
Y+ ∑ l

l
abcn

2
. ..

,

1
Y− ∑ jk

j k
adn

2
.. .

,

1
Y− ∑ jl

j l
acn

2
. ..

,

1
Y− ∑ kl

k l
abn

2
......Y−
N

 

( )( )( )1 1 1− − −b c d  

Interaction A B Cx D× ×  99E − 99: − 99B − 99C − 99D−99:B − 99:C − 99:D − 99BC − 99BD − 99CD − 99:BC −
99:BD − 99BCD−99FGH- 

( )( )( )1 1 1 ( 1)− − − −a b c d  

Within the Classes 
(residual) 99FGH = ∑&'()*+# -

∑IJKLM.N

=  ( )1abcd n −  

Corrected Total 99E = O>'()*.# − >…..#
P  N-1 

N = abcdn with n ≥ 2. 

Table 2. Mean Squares, Expectations for Model 1 and F –Statistics. 

Mean Squares Expected Mean Squares F -Statistic 

Q9: = RRS
�T�  U# + �/0V

� − 1O�'# X: = �
;<�=T�!
�T�

RRS
RRYZ[  

Q9B = RR\

T�  

22

1 j

acdn
b

b
σ +

− ∑  XB = ( ) B

s

1 SS

1 SSre

abcd n

b

−
−  

 

Q9C = RR]
;T�  

22

1 k

abdn
c

c
σ +

− ∑  XC = ( ) C

s

1 SS

1 SSre

abcd n

c

−
−  

 

Q9D = RR^
<T�  

22

1 l

abcn
d

d
σ +

− ∑  XD = �
;<�=T�!
<T�

RR^
RRYZ[  

Q9:B = RRS\
��T�!�
T�!  U# + ;<=

��T�!�
T�!∑���!'(#   X:B = �
;<�=T�!
��T�!�
T�!

RRS\
RRYZ[  

Q9:C = RRS]
��T�!�;T�!  U# + 
<=

��T�!�;T�!∑��/!')#   X:C = �
;<�=T�!
��T�!�;T�!

RRS]
RRYZ[  

Q9:D = RRS^
��T�!�<T�!  U# + 
;=

��T�!�<T�!∑��0!'*#   X:D = �
;<�=T�!
��T�!�<T�!

RR^S
RRYZ[  

Q9BC = RR\]
�
T�!�;T�!  U# + �<=

�
T�!�;T�!∑��/!()#   XBC = �
;<�=T�!
�
T�!�;T�!

RR\]
RRYZ[  

Q9BD = RR\^
�
T�!�<T�!  U# + �;=

�
T�!�<T�!∑��0!(*#   XBD = �
;<�=T�!
�
T�!�<T�!

RR\^
RRYZ[  

Q9CD = RR]^
�;T�!�<T�!  U# + �
=

�;T�!�<T�!∑�/0!)*#   XCD = �
;<�=T�!
�;T�!�<T�!

RR]^
RRYZ[  

Q9:BC = RRS\]
��T�!�
T�!�;T�!  U# + <=

��T�!�
T�!�;T�!∑���/!'()#   X:BC =
( )

( )( )( )
ABC

s

1 SS

1 1 1 SSre

abcd n

a b c

−
− − −

 

 

Q9:BD = RRS\^
��T�!�
T�!�<T�!  U# + ;=

��T�!�
T�!�<T�!∑���0!'(*#   X:BD =
( )

( )( )( )
ABD

s

1 SS

1 1 1 SSre

abcd n

a b d

−
− − −

 

 

Q9:CD = RRS]^
��T�!�;T�!�<T�!  U# + 
=

��T�!�;T�!�<T�!∑��/0!')*#   X:CD =
( )

( )( )( )
ACD

s

1 SS

1 1 1 SSre

abcd n

a c d

−
− − −

 

 

Q9BCD = RR\]^
�
T�!�;T�!�<T�!  U# + �=

�
T�!�;T�!�<T�!∑��/0!()*#   XBCD =
( )

( )( )
BCD

s

1 SS

1 1 ( 1) SSre

abcd n

b c d

−
− − −

 

 

Q9:BCD = RRS\]^
��T�!�
T�!�;T�!�<T�!  U# + =

��T�!�
T�!�;T�!�<T�!∑���/0!'()*#   X:BCD =
( )

( ) ( )( )
ABCD

s

1 SS

1 1 1 ( 1) SSre

abcd n

a b c d

−
− − − −

 

 

( )
2 sSS

MS
1

re
res

abcd n
= =

−
s

 

 2σ   

 

2.1. Model 1 Cross Classification with All Factors Fixed 

A model with four fixed factors A, B, C, D: AxBxCxD is 
called Model 1. The ANOVA – table given above is 
independent of the model and will be used for all four models. 
The expected Mean Squares E(MS) depend on the models. 

2.2. Model 2, 3 and 4 for Cross Classification with Three, 

Two and One Fixed Factor(s) 

A model with three fixed factors A, B, C: AxBxCxD is 
called Model 2. If another factor in place of D is random, the 
factors are rearranged without loss of generality. 
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The Table with Mean Squares and their expectations is 
given in Table 2. How to derive the Expected Mean Squares 
for all four and other models is described in Rasch and Schott 

([8], [9, Section 7.2]). 
The model equation for Model 2 is given by 

&'()*+ = - + �' + �( + /) + _* + ���!'( + ��/!')+�`_!'* + ��/!() + �a_!(* + �b_!(* + ���/!'() + �`a_!'(* + �`b_!')* +
�ab_!()* + �`ab_!'()*+1'()*+                                                                       (2) 

i = 1, …, a, j= 1, …, b, k = 1, …, c, l= 1, …, d, m = 1,…, n ≥ 2. 

The side conditions for the fixed effects are as in Model 1. 
If some of the factors or factor combinations are random, 
assumed is that the corresponding main and interaction 
effects are independent, normally distributed and have 
expectation zero and variances with small subscripts equal to 

the capital letters of the factors.  
A model with two fixed factors A and B: AxBxCxD is 

called Model 3. 
The model equation for Model 3 is given by 

&'()*+ = - + �' + �( + b4 + _* + ���!'( + 	�`b!') +	�`_!') + �ab!() + �a_!(* + �`ab!'() + �`a_!'(* + �`b_!')* +
�ab_!()* + �`ab_!'()*+1'()*+                                                                                   (3) 

i = 1, …, a, j= 1, …, b, k = 1, …, c, l= 1, …, d, m = 1,…, n ≥ 2. 

The side conditions for the fixed effects are as in Model 1, 
the random effects are assumed to be independent with 
expectation zero, normally distributed and have expectation 
zero and variances with small subscripts equal to the capital 

letters of the factors. 
A model with one fixed factor A: AxBxCxD is called 

Model 4. 

The model equation for Model 4 is given by 

&'()*+ = - + �' + a3 + b4 + _* + �`a!'( + �`b!') + �`_!'* + �ab!() + �a_!(* + �`ab!'() + �`a_!'(* + ��b_!')* +
�ab_!()* + �`ab_!'()*+1'()*+                                                                        (4) 

i = 1, …, a, j= 1, …, b, k = 1, …, c, l= 1, …, d, m = 1,…, n ≥ 2. 

The side conditions for the fixed effects are as in Model 1, 
the random effects are assumed to be independent with 
expectation zero, normally distributed and have expectation 
zero and variances with small subscripts equal to the capital 
letters of the factors. 

Because the F statistics for fixed effects of Model 2, 3 and 
4 are identical with those in Table 2, a Table of Expected 
Mean Squares and F –Statistics for Model 2, 3, and 4 is not 
presented. As already mentioned the reader may derive them 
by using the algorithm described in Rasch and Schott [8, 9]. 

3. Determination of the Minimum 

Number of Replications for Testing 

Fixed Effects 

In the four models considered in this paper the minimum 
number of replications for testing fixed effects depends not 
on the model. 

The random error term eijklm, containing independent 
observational errors with E(eijklm) = 0, var(eijklm) =	U#, is the 
same for all observations. For testing null-hypothesis of the 
effects we assume that the eijklm are normally distributed. 

In the ANOVA tables the E(MS) (Expected MS) is given. 
The non-centrality parameter λ can be obtained by the 
general formula given in Lindman ([3], p. 151), 

λ = 
<cd[f�gRd!	T	f�gRN!]

i�gRN!                             (5) 

where E(Q9�) and E(Q9#) = σ2, are the expected mean sum 

of squares of the numerator and denominator of the F-test 
statistic with degrees of freedom 0j� and 0j#, respectively. 

If the fixed factor has at least three levels the minimum 
experimental size depends on the values of its factor levels. 
As described in Rasch and Verdooren [13] and Rasch et al. 
[10-12] we calculate the minimum experimental size for the 
least favourable (maximin size) and the most favourable 
(minimin size) case of the location of the values of the factor 
levels of A. We first describe what we mean by the minimum 
of the minimal experimental size and the maximum of the 
minimal experimental size as given by Rasch et al. [7] and 
Rasch et al. [14]. The relation 

X� j�, j#, 0 ∣∣ 1 − α ! = 	X� j�, j#, λ ∣∣ β !,            (6) 

is used, where j�	and	j#  are the degrees of freedom of the 
numerator and the and the denominator, respectively. Further α 
and β are the two risks of the first and second kind of the 
corresponding F-test respectively, and λ is the non-centrality 
parameter of the non-central F-distribution. Equation (6) plays 
an important role in all other sections of this paper. Beside	j�, j#, 
α and β the difference δ between the largest and the smallest 
effect (main effect or in the following sections also interaction 
effect) of the fixed factor A, to be tested against zero, belongs to 
the precision requirements. The solution λ in (6) we denote by 

1 2( , , , )f fλ λ α β= . 

Let m+'= and m+�nbe the minimum and the maximum of q 
real effects E1, E2, …., Eq of a fixed factor E or of interaction 
effects. 
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The minimal size of the experiment depends on λ according to 
the exact position of all q effects. But this is unknown before the 
experiment starts. We consider two extreme cases, the most 
favourable (resulting in the smallest minimal size minn ) and the 

least favourable (resulting in the largest minimal size maxn ) 

case. The least favourable case leads to the smallest non-
centrality parameter o+'= and by this to the so-called maximin 
size maxn . This occurs if the effects m+'= = m� =
−m	and	m+�n = mp = m and the q − 2 non-extreme effects are 

equal to M = max min

2

E E+
. For 2 2

1

0, ( ) 2
q

i

i

E E E E

=

= − =∑  

this is shown in the following scheme. 

 
For the general case of this configuration with mr = M we 

have 

mr = M and Eq = (Emax - M) = 
	fstu	T	fsJv

# , E1 = (Emin - M) = − 	fstu	T	fsJv
# 	and 2

1

( )
q

i

i

E E

=

−∑ = 2wx#y
#
= 
xN
#  

with δ = 	m+�n 	− 	m+'=. 
The most favourable case for even q=2m occurs if m of the

iE equal minE = - E and the m other iE  equal maxE = E. For 

odd q=2m + 1 again m of the iE should equal minE  and m 

other iE  should equal maxE , and the remaining effect should 

be equal to one of the two extremes minE  or maxE . For 

2 2

1

0, ( )
q

i

i

E E E qE

=

= − =∑  this is shown for even q in the 

following scheme. 

 

Hence for the general case of this configuration we have mr 
= M, 

Eq = (Emax - M) = 
	fstu	T	fsJv

#  and E1 = (Emin - M) = - (Emax - Emin)/2 

and 

2

1

( )
q

i

i

E E

=

−∑ = q(δ/2)2 = qδ2/4. 

and 

o+'=	= δ2/(2σ2) and o+�n 	= qδ2/(4σ2) with δ = (Emax - Emin)                                                  (7) 

This derivation is also given in Rasch and Verdooren [13]. 
In the following sections the formulae and R-programs for 

V+'= and V+�n for the Models 1, 2, 3 and 4 are given. 

3.1. Experimental Size for Model 1 

The calculation of the sample size minimin and maximin 
for the test of the factor A of the Null hypothesis: z{:	�� =
�# = ⋯ .= �� is demonstrated. 

Under the side condition ∑i ai = 0 the null hypothesis can 
also be formulated as z{:	�� = �# = ⋯ .= �� = 0. 

F –statistic:
res

MS
F=

MS
A , with df (A) = (a-1) and df (res) = 

abcd(n-1). 

Non-centrality parameter o: =	
;<=∑ �JNtJ~d
�N . 

For o: =	
;<=∑ �JNtJ~d
�N  we have o:	+�n  =	�
;<=xN��N  and o:	+'=  = 


;<=xN
#�N  with max mina a δ− ≥ . 

For the non-centrality parameter o:	we use in the R–
program delta = δ/σ. 

A program in R which gives the solution of formula for the 

sample size maximin of the fixed effect A is: 
> maximinA = function( p, a, b, c, d, delta , beta) 
{ 
 f = function(n, p, a, b, c, d, delta , beta ) 
 { 
 A = qf(p, a-1, a*b*c*d*(n-1), 0) 
 B = qf( beta, a-1, a*b*c*d*(n-1), delta*delta*n 

*a*b*c*d/4) 
 C = A-B 
 } 
 k = uniroot(f, c(2, 10000 ), p=p, a=a, b=b, c=c, d=d, 

delta=delta, beta=beta) $root 
 k0 = ceiling(k) 
 print (paste(" maximinA sample number: n = ", k0), 

quote=F) 
} 
Example 1 

where p = 1 – α : 
> maximinA( p=0.95, a=3, b = 2, c = 2, d= 0.5, delta = 1, 

beta = 0.05) 
[1] maximinA sample number: n = 11 
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A program in R which gives the solution of formula (6) for 
the sample size minimin of the fixed effect A is: 

> miniminA = function( p, a, b, c, d, delta , beta) 
{ 
 f = function(n, p, a, b, c, d, delta , beta ) 
 { 
 A = qf(p, a-1, a*b*c*d*(n-1), 0) 
 B = qf( beta, a-1, a*b*c*d*(n-1), 0.5* 

delta*delta*n*b*c*d) 
 C = A-B 
 } 
 k = uniroot(f, c(2, 10000), p=p, a=a, b=b, c= c, d=d, 

delta=delta, beta=beta) $root 
 k0 = ceiling(k) 
 print (paste(" miniminA sample number: n = ", k0), 

quote=F) 
 } 
 
Example 2 

where p = 1 – α : 
> miniminA( p=0.95, a=3, b = 2, c = 2, d= 2, delta = 0.5, 

beta = 0.05) 
[1] miniminA sample number: n = 16 
 
To give an impression over the variation of the sizes we 

give minimin and maximin sizes for α = 0.05; β = 0.1 and δ = 
0.2 U for some values of a, b, c, d in Table 3. Note that when 
a is larger than 2 minimin and maximin are different. 

Table 3. Minimum sub-class numbers (upper entry minimin; lower entry 

maximin) for test of fixed factors A in the four-way cross classification 

Model 1 with α = 0.05, β = 0.1 and δ = 0.2 U. 

a b 
c=2 c=3 

d=3 d=10 d=3 d=10 

2 
2 

44 14 30 9 
44 14 30 9 

3 
30 9 20 6 
30 9 20 6 

3 
2 

53 16 36 11 
36 11 24 8 

3 
36 11 24 8 
24 8 16 5 

5 
2 

65 20 43 13 
26 8 18 6 

3 
43 13 29 9 
18 6 14 4 

Remark 

If the values of a, b, c, d are such that the total number of 
observations N =abcdn for n =2 is already quite large, the R- 
program gives no value for the minimin and maximin. In this 
case we can use the value n = 2 for the minimal number of 
replications. This is demonstrated in the Examples 3 and 4. 

Example 3 

where p = 1 – α : 
> miniminA( p=0.95, a=10, b = 3, c = 4, d= 5, delta = 1, 

beta = 0.05) 
Error in uniroot(f, c(2, 10000), p = p, a = a, b = b, c = c, d 

= d, delta = delta, : 
f() values at end points not of opposite sign 

 
We calculate now the power directly for miniminA with n 

=2: 
> Fpvalue = qf(0.95, 10-1, 10*3*4*5*(2-1), 0) 
> Fpvalue 
[1] 1.895472 
> powerminiminA = 1- pf(Fpvalue, 10-1,10*3*4*5*(2-1), 

1*1*2*3*4*5/2) 
> powerminiminA 
[1] 0.9999908 
Example 4 

where p = 1 – α : 
> maximinA( p=0.95, a=10, b= 3, c= 4, d=5, delta = 1, 

beta = 0.05) 
Error in uniroot(f, c(2, 10000), p = p, a = a, b = b, c = c, d 

= d, delta = delta, : 
f() values at end points not of opposite sign 
In addition: There were 14 warnings (use warnings() to see 

them) 
 
We calculate now the power directly for maximinA with n 

=2: 
> Fpvalue = qf(0.95, 10-1, 10*3*4*5*(2-1), 0) 
> Fpvalue 
[1] 1.895472 
> powermaximinA = 1- pf(Fpvalue, 10-1,10*3*4*5*(2-1), 

1*1*2*10*3*4*5/4) 
> powermaximinA 
[1] 1 
 
For the other tests of the fixed effects a change must be 

done analogously in the R program according to the non-
centrality parameter λ derived from the E(MS) column of the 
ANOVA-table and in the R-program; used is delta = δ/σ. 

For example now the calculation is demonstrated of the 
sample size minimin and maximin for the test of the fixed 
interaction effect AB of the effects A and B with the side 
condition in (1) as : 

Null hypothesis: z{:	���!'( = 0, for all i,j. 
F –statistic: F = MSAB / MSRes with df (AB) = (a-1)(b-1) 

and df(res) = abcd(n-1). 

Non-centrality parameter o:B =	;<=	� ∑ ��
!JKNt�JK~d
�N . 

For o:B  = 	;<=	� ∑ ��
!	JKNt�JK~d
�N  we have o:B	+�n  = 	�
;<=xN��N  and 

o:B	+'= =	;<=xN#�N  

with max mina a δ− ≥ . 

For the non-centrality parameter o:B 	in the R –program 
delta = δ/σ is used. 

A program in R which gives the solution of formula (6) for 
the sample size maximin for the interaction AB is: 

> maximinAB = function( p, a, b, c, d, delta , beta) 
{ 
 f = function(n, p, a, b, c, d, delta , beta ) 
 { 
 A = qf(p, (a-1)*(b-1), a*b*c*d*(n-1), 0) 
 B = qf( beta, (a-1)*(b-1), a*b*c*d*(n-1), delta*delta*n 
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*a*b*c*d/4) 
 C = A-B 
 } 
 k = uniroot(f, c(2, 10000 ), p=p, a=a, b=b, c=c, d=d, 

delta=delta, beta=beta) $root 
 k0 = ceiling(k) 
 print (paste(" maximinAB sample number: n = ", k0), 

quote=F) 
} 
 
Example 5 

where p = 1 – α : 
> maximinAB( p=0.95, a=3, b = 2, c = 2, d= 2, delta = 1, 

beta = 0.05) 
[1] maximinAB sample number: n = 3 
 
A program in R which gives the solution of formula (6) for 

the sample size minimin for AB is: 
> miniminAB = function( p, a, b, c, d, delta , beta) 
{ 
 f = function(n, p, a, b, c, d, delta , beta ) 
 { 
 A = qf(p, (a-1)*(b-1), a*b*c*d*(n-1), 0) 
 B = qf( beta, (a-1)*(b-1), a*b*c*d*(n-1), 0.5* 

delta*delta*n*c*d) 
C = A-B  
 } 
 k = uniroot(f, c(2, 10000), p=p, a=a, b=b, c= c, d=d, 

delta=delta, beta=beta) $root 
 k0 = ceiling(k) 
 print (paste(" miniminAB sample number: n = ", k0), 

quote=F) 
} 
 
Example 6 

where p = 1 – α : 
> miniminAB( p=0.95, a=3, b= 2, c= 2, d=2, delta = 1, 

beta = 0.05) 
[1] miniminAB sample number: n = 8 

3.2. Experimental Size for the Models 2, 3 and 4 

For the fixed effects the determination of the minimin and 
maximin one can use the same R programs as given in 
section 3.1. 

Example 7 

Problem: We consider a fixed factor A of COVID 19 
survey including three vaccines Biontech (��), Astra Seneca 

(�# ) and Johnson (�$ ) (levels of A), a fixed factor B of 
female �	�! and male �	#!	patients and a fixed factor C with 
an age below 60 years (%�) and 60 years and older (%#). The 
survey should be executed with the random factor D in four 
hospitals randomly selected from a huge number of hospitals 
in a country. This is a Model 2 with factors A, B, C fixed and 
factor D random. 

How many patients of each of the 48 groups (3 ∗ 2 ∗ 2 ∗
4 = 48) are needed, when we like to test the null hypothesis 
that all three vaccines have the same effectiveness? 

Use α = 0.01, β = 0.05 and δ = 0.5 σ for calculating the 
maximin size and the minimin size of the patients. 

. 
Solution 

where p = 1 – α 
> maximinA( p=0.99, a=3, b= 2, c= 2, d=4, delta = 0.5, 

beta = 0.05) 
[1] maximinA sample number: n = 7 
> miniminA( p=0.99, a=3, b= 2, c= 2, d=4, delta = 0.5, 

beta = 0.05) 
[1] miniminA sample number: n = 11 

4. Minimum Number of Replications for 

Testing in Split-Plot Designs with A at 

the Main-plots 

Consider the design that the fixed factor A has been 
randomized laid down with an Main-plots in a balanced 
randomized block design with the factor B as Blocks with an 
Main-plots per Block. Each Main-plot is split into cdn Split-
plots. The fixed factors C and D are randomized laid down 
on the cdn Split-plots in the Main-plots. The fixed factors A, 
C and D have equal sizes of n ≥ 2 replications. 

The four-way cross classification is based on the model 
(with all interactions) here written for the case where the 
factor B denotes the Blocks and the factors A, C and D are 
fixed; the Main-plots have a random Main-plot error p. The 
factor A with n replications is randomized laid down on the 
Main-plots of the Blocks B, otherwise stated A is nested in B, 

the notation B≻A denotes that A is nested in B; the factor 
combinations of CxD with n replications are randomized laid 
down on the Split-plots of the Main-plots, otherwise stated 
CxD is nested in A, A≻CxD; the Split-plots have a random 
Split-plot error e. Such a design is called a Split-Plot design 
with Factor A on Main-plots in Blocks and factor C and D on 
Split-plots. 

&'()*+ = - +	�( 	+�'�(! + 	�+�'(! + /)�'(! + 0*�'(! + ��/!')�'(!+��0!'*�'(! + ��/0!')*�'(! + 	16�2345! (8) 

i = 1, …, a, j= 1, …, b, k = 1, …, c, l= 1, …, d, m = 1,…, n ≥ 2. 

The first part of (8) are the Main-plot effects and the 
second part of (8) are the Split-plot effects. 

Assumed is that all fixed effects in sum up to zero, when 
summation is done over at least one of the superscripts of the 
effect. For instance ∑ ��/0!')*
)8� =0. The random effects 
�+�'(!	and	1+�'()*!	 are assumed to be independent and 

normally distributed with expectation zero and with 
variances respectively σ2

1 and σ2
. 

The ANOVA – table and the expected Mean Squares 
E(MS) are given below in Table 4 and Table 5 respectively. 
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Table 4. Analysis of Variance Table of a Split-Plot design with factor A at the Main-plots in Blocks B and equal Split-plot numbers n ≥ 2. 

Source of Variation SS df 

Between B- levels 99B = 1
�/0VO>.(…# − 1

P>…...
#  1b −  

Between A-levels 99: = 1
�/0V O >'….# − 1

P >…...#  1a −  

Residual p of Main-Plots = Res1 99�GH� = �
;<= ∑ >'(...# − �

A >…...#  -SSB - SSA df Res1 = abn – b – a +1. 

Between C- levels 99C = 1
��0V O >..)..# − 1

P >…...#  c - 1 

Between D- levels 99D = 1
��/V O >…*.# − 1

P >…...#  d - 1 

Interaction A C×  99:C = 1
�0V O >'.)..#  − 1

�/0V O >'….# − 1
��0V O >..)..# + 1

P >…...#  ( )( )1 1a c− −  

Interaction A D×  99:D = 1
�/V O >'..*.#  − 1

�/0V O >'….# − 1
��/V O >...*..# + 1

P >…...#  (a - 1)(d - 1) 

Interaction C D×  99CD = 1
��V O >..)*..

#  − 1
��0V O >..)..# − 1

��/V O >…*.# + 1
P >…...#  ( )( )1 1c d− −  

Interaction A C D× ×  

99:CD = 1
�V O >'.)*.# − 1

�0V >'.)..#  

− 1
�/V >'..*.# − 1

��V >..)*.#  

+ 1
�/0V O >'….# + 1

��0V O >..)..# + 1
��/V O >…*..

# − 1
P >…..#  

( )( ) ( )1 1 1a c d− − −  

Residual of split-plots = Res 
99�GH =  99E – 99: – 99B –99�GH� – 99C  - 99D-  99:C − 99:D  - 
99CD - 99:CD 

dfRes =N-1 –abn –acd+a +1 

Corrected Total 99E = O >'()*.# − >…..#

P  N-1 

N = abcdn with n ≥ 2. 

Table 5. Mean Squares, Expectations for the Split-plot Model with factor A on the Main-plots in Blocks B and F –Statistics. 

Mean Squares Expected Mean Squares F -Statistic 

Q9: = 99:
� − 1 U# + /0V U�# + �/0V

� − 1 O �'# X: = (� − 1)(� − 1)
(� − 1)

99:
99�GH�

 

Q9B = 99B
� − 1   

Q9�GH� = 99���1
0j���1 U# + /0V U#

1  

Q9C = 99C
/ − 1 22

1 k

abdn
c

c
σ +

− ∑  XC = 0j���
(/ − 1

99;
)99FGH

 

Q9D = 99D
0 − 1 22

1 l

abcn
d

d
σ +

− ∑  XD = 0j���
(0 − 1)

99D
99FGH

 

Q9:C = 99:C
(� − 1)(/ − 1) U# + �0V

(� − 1)(/ − 1) O(�/)')#  X:C = 0j���
(� − 1)(/ − 1)

99:C
99FGH

 

Q9:D = 99:D
(� − 1)(0 − 1) U# + �/V

(� − 1)(0 − 1) O(�0)'*#  X:D = 0j���
(� − 1)(0 − 1)

99:D
99FGH

 

Q9CD = 99CD
(/ − 1)(0 − 1) U# + ��V

(/ − 1)(0 − 1) O(/0))*#  XCD = 0j���
(� − 1)(0 − 1)

99CD
99FGH

 

Q9:CD = 99:CD
(� − 1)(/ − 1)(0 − 1) U# + �V

(� − 1)(/ − 1)(0 − 1) O(�/0)')*#  X:CD = 0j���
(� − 1)(0 − 1)

99:CD
99FGH

 

MSRes = SSRes / dfRes 2σ   
 

The calculation is demonstrated of the sample size 
minimin and maximin for the test of the factor A on the 
Main-plots of the Null hypothesis: 

z{: �� = �# = ⋯ . = �� . 

Under the side condition ∑i ai = 0 the null hypothesis can 
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also be formulated as 

z{:	�� = �# = ⋯ .= �� = 0. 

F–statistic: X: = 0j���1
��T�!

RRS
RR�Z[d , with df (A) = (a-1) and dfRes1 

= abn – b – a +1. 

Non-centrality parameter o: =	
;<=∑ �JNtJ~d
U2+/0V	U21  . 

For o: =	
;<=∑ �JNtJ~d
U2+/0V	U21  we have o:	+�n  =	 
;<=xN

��U2+/0V	U21)	and o:	+'=  

=	 
;<xN
2(U2+/0V	U21) with max mina a δ− ≥ . 

For the non-centrality parameter o:	we use in the R–
program  

delta = δ/√(σ2 + cdnσ2
1). 

A program in R which gives the solution of formula for the 
sample size minimin of the fixed effect A on the Main-plots 
is: 

> miniminMP1A = function( p, a, b, c, d, delta , beta) 
 { 
 f = function(n, p, a, b, c, d, delta , beta ) 
 { 
 A = qf(p, a-1, a*b*n-b-a+1, 0) 
 B = qf( beta, a-1, a*b*n-b-a+1, delta*delta*b*c*d/2) 
 C = A-B 
 } 
 k = uniroot(f, c(2, 10000 ), p=p, a=a, b=b, c=c, d=d, 

delta=delta, beta=beta) $root 
 k0 = ceiling(k) 
 print (paste(" miniminMP1A sample number: n = ", k0), 

quote=F) 
 } 
Example 8 

where p = 1 – α : 
> miniminMP1A( p=0.95, a=3, b = 2, c = 2, d= 2, delta = 

2, beta = 0.05) 
[1] miniminMP1A sample number: n = 15 
 
A program in R which gives the solution of formula (6) for 

the sample size maximin of the fixed effect A on the Main-
plots is: 

> maximinMP1A = function( p, a, b, c, d, delta , beta) 
{ 
 f = function(n, p, a, b, c, d, delta , beta ) 
 { 
 A = qf(p, a-1, a*b*n-b-a+1, 0) 
 B = qf( beta, a-1, a*b*n-b-a+1, delta*delta*n*b*c*d/4) 
 C = A-B 
 } 
 k = uniroot(f, c(2, 10000 ), p=p, a=a, b=b, c=c, d=d, 

delta=delta, beta=beta) $root 
 k0 = ceiling(k) 
 print (paste(" maximinMP1A sample number: n = ", k0), 

quote=F) 
} 
Example 9 

where p = 1 – α : 

> maximinMP1A( p=0.95, a=3, b= 2, c= 2, d=2, delta = 2, 
beta = 0.05) 

[1] maximinMP1A sample number: n = 3 
 
The calculation is demonstrated of the sample size 

minimin and maximin for the test of the factor C on the Split-
plots of the Null hypothesis:		

z{:	/� = /# = ⋯ .= /; . 

Under the side condition ∑i ci = 0 the null hypothesis can 
also be formulated as 

z{:	/� = /# = ⋯ .= /; = 0. 

F –statistic: XC = <c�GH
�;T�

��]
!���Z[with df (C) = (c-1) and 

dfRes = abcdn-1-abn-acd+a+1 . 

Non-centrality parameter oC  =	�
<= ∑ ;JN�J~d
�N  . 

For oC  =	�
<= ∑ ;JN�J~d
�N  we have oC	+�n =	�
<=xN��N  and oC	+'= 

=	�
<xN#�N  with 

cmax - cmin ≥ δ . 

For the non-centrality parameter oC 	in the R–program is 
used delta = δ/σ. 

A program in R which gives the solution of formula for the 
sample size minimin of the fixed effect C on the Split-plots 

is: 
> miniminSP1C = function( p, a, b, c, d, delta , beta) 
{ 
 f = function(n, p, a, b, c, d, delta , beta ) 
 { 
 dfRes = a*b*c*d*n-1- a*b*n-a*c*d+a+1 
 A = qf(p, c-1, dfRes, 0) 
 B = qf( beta, c-1, dfRes, delta*delta *a*b*d/2) 
 C = A-B 
 } 
 k = uniroot(f, c(2, 10000 ), p=p, a=a, b=b, c=c, d=d, 

delta=delta, beta=beta) $root 
 k0 = ceiling(k) 
 print (paste(" miniminSP1C sample number: n = ", k0), 

quote=F) 
} 
Example 10 

where p = 1 – α : 
> miniminSP1C( p=0.95, a=3, b = 2, c = 2, d= 2, delta = 

1.5, beta = 0.05) 
[1] miniminSP1C sample number: n = 4 
 
A program in R which gives the solution of formula (6) for 

the sample size maximin of the fixed effect C on the Split-
plots is: 

> maximinSP1C = function( p, a, b, c, d, delta , beta) 
{ 
 f = function(n, p, a, b, c, d, delta , beta ) 
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 { 
 dfRes = a*b*c*d*n-1-a*b*n-a*c*d+a+1 
 A = qf(p, c-1, dfRes, 0) 
 B = qf( beta, c-1, dfRes, delta*delta*n*a*b*d/4) 
 C = A-B 
 } 
 k = uniroot(f, c(2, 10000), p=p, a=a, b=b, c= c, d=d, 

delta=delta, beta=beta) $root 
 k0 = ceiling(k) 
 print (paste(" maximinSP1C sample number: n = ", k0), 

quote=F) 
 } 
 
Example 11 

where p = 1 – α : 
> maximinSP1C( p=0.95, a=3, b= 2, c= 2, d=2, delta = 1, 

beta = 0.05) 
[1] maximinSP1C sample number: n = 5 
 
For the test of the factor D on the Split-plots a change must 

done analogously in the R program according to the non-
centrality parameter λ derived from the E(MS) column of the 

ANOVA-table and in the R-program is used delta = δ/σ. 

5. Minimum Number of Replications for 

Testing in Split-plot Designs with A 

and C at the Main-plots 

Consider the case that the fixed factors A and C has been 
laid down on Main-plots in a balanced randomized block 
design with the factor B as Blocks with acn Main-plots. The 
fixed factor D sizes n ≥ 2 is laid down in the Split-plots of the 
Main-plots. 

The four-way cross classification is based on the model 
(with all interactions) here written for the case where the 
factors A, C and D are fixed and the factor B as Blocks; the 
factors A and C are laid down on the Main-plots of the 
Blocks B: otherwise stated AxC is nested in B, hence 

B≻AxC; the factor D is laid down on the Split-plots of the 
Main-plots of the Split-Plot design, hence AxC≻D. 

The fixed factors A, C and D have equal sizes of n ≥ 2 
replications. 

&'()*+ = - + �( 	+ 	�'�(! + /)�(! + ��/!')�(! + 	�6�234! +	0*�'()!+��0!'*�'()!	+	�/0!)*�'()! + ��/0!')*�'()! + 	16�2345!	    (9) 

i = 1, …, a, j= 1, …, b, k = 1, …, c, l= 1, …, d, m = 1,…, n ≥ 2. 

The first part of (9) are the Main-plot effects and the 
second part of (9) are the Split-plot effects. 

Assumed is that all fixed effects in model 1 sum up to 
zero, when summation is done over at least one of the 
superscripts of the effect. For instance ∑ ��/0!')*
)8� =0. The 
random effects for Main-plot  
error 	�6�234!	and	random	effects	for	Split −

plot	error	1+�'()*!	 are assumed to be independent and 
normally distributed with expectation zero and with 
variances respectively σ2

1 and σ2
. 

The ANOVA – table and the expected Mean Squares 
E(MS) are given below in Table 6 and Table 7 respectively. 

Table 6. Analysis of Variance Table of a Split-plot design with factor A and C on Main-plots in Blocks B and equal Split-plot Numbers n ≥ 2. 

Source of Variation SS df 

Between B- levels 99B = 1
�/0VO>.(…# − 1

P >…...# 	 1b −  

Between A-levels 99: = 1
�/0VO>'….# − 1

P >…...# 	 1a −  

Between C- levels 99C = 1
��0VO>..)..# − 1

P>…...#  1c −  

Interaction AxC 99:C = 1
�0V O >'.)..# 	− 1

�/0VO>'….# − 1
��0V O >..)..# + 1

P >…...# 	 ( )( )1 1a c− −  

Residual p of Main-Plots = Res1 99�GH� = �
�;=∑ >'(...# 	− �

A >…...# − 99B-SSA-SSC-SSAC	 dfRes1= abcn-ac-b+1 

Between D- levels 99D = 1
��/VO>…+.# − 1

P >…...# 	 1−d  

Interaction AxD 99:D = 1
�/VO>'..*.# 	− 1

�/0VO>'….# − 1
��/V O >...*..# + 1

P >…...# 	 ( )( )1 1− −a d  

Interaction CxD 99CD = 1
��VO>..)(.

*.
# 	− 1

��0VO>..)..# − 1
��/VO>…*.# + 1

P >…...# 	 ( )( )1 1c d− −  

Interaction AxCxD 
99:CD = 1

�V	O>'.)*.# − 1
�0V>'.)..# 	

− 1
�/V >'..*.# − 1

��V >..)*.# 	
( )( ) ( )1 1 1a c d− − −  
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Source of Variation SS df 

+ 1
�/0VO>'….# + 1

��0V O >..)..# + 1
��/V O >…*..

# − 1
P >…..#  

Residual of split-plots = Res 
99�GH =  99E – 99: – 99B – 99C −  99:C −  99�GH� - 99D  − 99:D  - 
99CD - 99:CD 
 

dfRes = N- 1 - abcn - acd + ac+1 

Corrected Total 99E = O >'()*.# − >…..#

P  N-1 

N = abcdn with n ≥ 2. 

Table 7. Mean Squares, Expectations for the Split-Plot Model with factor A and C on the Main-Plots and F –Statistics. 

Mean Squares Expected Mean Squares  F -Statistic 

Q9: = 99:
� − 1 U# + /0V U�# + �/0V

� − 1 O �'# X: = 0j���1
� − 1

99:
99�GH�

 

Q9B = 99B
� − 1   

Q9C = 99C
/ − 1 U# + /0V U�# + ��0V

/ − 1 O /)# XC = 0j���1
/ − 1

99C
99�GH�

 

Q9�GH� = 99GH�
0j���1 U# + /0V U�#  

Q9D = 99D
0 − 1 
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1
+

− ∑ l

abcn
d

d
σ  XD = 0j���

0 − 1
99D

99FGH
 

Q9:C = 99:C
(� − 1)(/ − 1) U# + �0V

(� − 1)(/ − 1) O(�/)')#  X:C = 0j���
(� − 1)(/ − 1)

99:C
99FGH

 

�Q9:D = 99:D
(� − 1)(0 − 1) U# + �/V

(� − 1)(0 − 1) O(�0)'*#  X:D = 0j���
(� − 1)(0 − 1)

99D:
99FGH

 

Q9CD = 99CD
(/ − 1)(0 − 1) U# + ��V

(/ − 1)(0 − 1) O(/0))*#  XCD = 0j���
(/ − 1)(0 − 1)

99CD
99FGH

 

Q9:CD = 99:CD
(� − 1)(/ − 1)(0 − 1) U# + �V

(� − 1)(/ − 1)(0 − 1) O(�/0)')*#  X:CD = 0j���
(� − 1)(/ − 1)(0 − 1)

99:CD
99FGH

 

MSRes = SSRes / dfRes 2σ   
 

The calculation is demonstrated of the sample size 
minimin and maximin for the test of the factor A on the 
Main-plots of the Null hypothesis: z{: �� = �# = ⋯ . = ��. 

Under the side condition ∑i ai = 0 the null hypothesis can 
also be formulated as z{: �� = �# = ⋯ . = �� = 0. 

F–statistic: X: = <c�GH�
(�T�)

��S
���1��

, with df (A) = (a-1) and  

dfRes1= abcn-ac-b+1. 

Non-centrality parameter o: = 
;<= ∑ �JNtJ~d
�N�;<= �N� . 

For o:  =  
;<= ∑ �JNtJ~d
�N�;<= �N�  we have o: +�n  =  
;<=xN

�(�N�;<= �N�) and 

o: +'=  = 
;<xN
#(�N�;<= �N�) with max mina a δ− ≥ . 

For the non-centrality parameter o: is used in the R–
program delta = δ/√(σ2 + cdnσ2

1). 
A program in R which gives the solution of formula for the 

sample size minimin of the fixed effect A on the Main-plots 
is: 

> miniminMP2A = function( p, a, b, c, d, delta , beta) 
{ 
 f = function(n, p, a, b, c, d, delta , beta ) 
 { A = qf(p, a-1, a*b*c*n-a*c-b+1 , 0) 
 B = qf( beta, a-1, a*b*c*n-a*c-b+1, delta*delta*b*c*d/2) 
 C = A-B 
 } 

 k = uniroot(f, c(2, 10000 ), p=p, a=a, b=b, c=c, d=d, 
delta=delta, beta=beta) $root 

 k0 = ceiling(k) 
 print (paste(" miniminMP2A sample number: n = ", k0), 

quote=F) 
} 
 

Example 12 

where p = 1 – α : 
> miniminMP2A( p=0.95, a=3, b = 2, c = 2, d= 2, delta = 

2, beta = 0.05) 
[1] miniminMP2A sample number: n = 8 
 
A program in R which gives the solution of formula (6) for 

the sample size maximin of the fixed effect A on the Main-
plots is: 

> maximinMP2A = function( p, a, b, c, d, delta , beta) 
{ 
 f = function(n, p, a, b, c, d, delta , beta ) 
 { 
 A = qf(p, a-1, a*b*c*n-a*c-b+1, 0) 
 B = qf( beta, a-1, a*b*c*n-a*c-b+1, 

delta*delta*n*b*c*d/4) 
 C = A-B 
 } 
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 k = uniroot(f, c(2, 10000), p=p, a=a, b=b, c= c, d=d, 
delta=delta, beta=beta) $root 

 k0 = ceiling(k) 
 print (paste(" maximinMP2A sample number: n = ", k0), 

quote=F) 
 } 
 
Example 13 

where p = 1 – α : 
> maximinMP2A( p=0.95, a=3, b= 2, c= 2, d=2, delta = 2, 

beta = 0.05) 
[1] maximinMP2A sample number: n = 3 
For the test of the factor C on the Main-plots we must change 

analogously the R program according to the non-centrality 
parameter λ derived from the E(MS) column of the ANOVA-
table and in the R-program we use delta = δ/√(σ2 + cdnσ2

1). 
Now the calculation is demonstrated of the sample size 

minimin and maximin for the test of the factor D on the Split-
plots of the Null hypothesis: 

z{:	0� = 0# = ⋯ .= 0<. 
Under the side condition ∑i di = 0 the null hypothesis can 

also be formulated as z{:	0� = 0# = ⋯ .= 0< = 0. 

F –statistic: XD = <c�GH
�<T�

RR^
!RRYZ[with df (D) = (d-1) and df 

(Res) = abcdn -1-abcn-acd+ac+1. 

Non-centrality parameter oD =	�
;=∑ <JN�J~d
�N . 

For oD  = 	�
;=∑ <JNĴ~d
�N  we have oD	+�n  = 	�
;=xN��N  and oD	+'= 

=	�
;=xN#�N  with dmax - dmin ≥ δ. 

For the non-centrality parameter oD  is used in the R–
program delta = δ/σ. 

A program in R which gives the solution of formula for the 
sample size minimin of the fixed effect D on the Split-plots is: 

> miniminSP2D = function( p, a, b, c, d, delta , beta) 
{ 
 f = function(n, p, a, b, c, d, delta , beta ) 
 { 
 A = qf(p, d-1, a*b*c*d*n-1-a*b*c*n-a*c*d + a*c +1, 0) 
 B = qf( beta, d-1, a*b*c*d*n-1-a*b*c*n-a*c*d + a*c +1 ,  
 delta*delta*n *a*b*d/4) 
 C = A-B 
 } 
 k = uniroot(f, c(2, 10000 ), p=p, a=a, b=b, c=c, d=d, 

delta=delta, beta=beta) $root 
 k0 = ceiling(k) 
 print (paste(" miniminSP2D sample number: n = ", k0), 

quote=F) 
} 
 

Example 14 

where p = 1 – α : 
> miniminSP2D( p=0.95, a=3, b = 2, c = 2, d= 2, delta = 1, 

beta = 0.05) 
[1] miniminSP2D sample number: n = 5 
 
A program in R which gives the solution of formula (6) for 

the sample size maximin of the fixed effect D on the Split-

plots is: 
> maximinSP2D = function( p, a, b, c, d, delta , beta) 
{ 
 f = function(n, p, a, b, c, d, delta , beta ) 
 { 
 A = qf(p, d-1, a*b*c*d*n-1-a*b*c*n-a*c*d + a*c +1 , 0) 
 B = qf( beta, d-1, a*b*c*d*n-1-a*b*c*n-a*c*d + a*c +1,  
 0.5* delta*delta*n*a*b*d) 
 C = A-B 
 } 
 k = uniroot(f, c(2, 10000), p=p, a=a, b=b, c= c, d=d, 

delta=delta, beta=beta) $root 
 k0 = ceiling(k) 
 print (paste(" maximinSP2D sample number: n = ", k0), 

quote=F) 
 } 
 
Example 15 

where p = 1 – α : 
> maximinSP2D( p=0.95, a=3, b= 2, c= 2, d=2, delta = 1, 

beta = 0.05) 
[1] maximinSP2D sample number: n = 3 

6. Conclusion 

This paper gives an extension of the literature about 
balanced cross-classification. Till now the maximum of three 
factors were considered in balanced designs to calculate the 
minimum number of replications for a fixed factor. Now for 
the four factor balanced crossed design and split-plot design 
the minimum number of replications can be calculated with 
provided small R-programs. This means that there is now an 
extension of the R-package OPDOE for calculating the 
minimum size of a fixed factor for testing with a certain power. 
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