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Abstract: In statistical books for the analysis of designed experiments one can finds sometimes also the computation of the
number of replications for balanced one-factor and two-factors designs. Later there were papers published concerning the
computation of the number of replications of at most three-factors crossed or nested balanced designs. In 2011 the book
“Optimal experimental design with R” was published; further a special R- program OPDOE was made to do the computation
for these designs and the OPDOE program was used in this book. In this paper an extension of the determination of the
minimum number of replications for balanced designs is given for four-factor crossed designs. The balanced cross
classification of the four-way analysis of variance of the following models are investigated: Model 1 The factors 4, B, C and D
are all fixed; Model 2 D is random A4, B and C are fixed; Model 3 C and D are random, 4 and B are fixed; Model 4 B, C and D
are random, 4 is fixed. For these models small R-programs are given to compute the minimal number of the replications for
testing the fixed effects using the non-centrality parameter 4 of the non-central F- distribution F(df;, df>, /). Further balanced
Split-Plot design with one or two fixed factors in the main-plots are considered. The Blocks are denoted with B. The F
statistics for testing the significance of the fixed factors are described and small R-programs for the determination of the
minimal number of replications are given using the non-centrality parameter A of the non-central F- distribution F(df;, dfs, ).

Keywords: Balanced Four-way ANOVA, Cross Classification, Split-plot Designs,
Non-centrality Parameter A of the Non-central, F-distribution F(df;, df;, 1), Minimal Number of Replications

long history for one-factor or two-factor studies. This was
made possible by the publication of Tang [16] with the
distribution of the non-central F-distribution. The charts of
Tang were later also published by Owen [5] and Pearson and
Hartley [6]. Kuehl [1] gives in section 2.14 “How many
replications for the F-test (of one-factor)” and in section 6.8 :

1. Introduction

In experiments and surveys often the influence of several
factors on a character y modelled by a random variable y are
investigated. Each of the factors has at least two levels. There
are several possibilities how factors can be combined. Let us

consider two factors 4, B with levels 4, ...,4,,a = 2, and
Bi, ..., By, b = 2 respectively. If each level of 4 can occur
together with each level of B, 4 and B are cross classified —
symbol AxB and we may have ab sub-classes in the
experiment. Such an experiment is called balanced
(orthogonal) if in the cross classification all ab factor
combinations occur in the experiment with equal sub-class
numbers 7.

The determination of the minimal number of replications
in balanced designs for testing fixed effects has already a

“How many replications to test factor effects (for two-
factors)” using the table on pp. 616-625 of charts of the
power function of the F-test. Also Ott and Longnecker [4]
described in section 14.6 “Determining the Number of
Replications (of one-factor)” using the table on pp. 1123-
1126 with charts of the Power of the analysis of variance test.
In Kutner et al. [2] is given in section 16.10 “Planning
sample sizes with power approach (for one-factor study)” and
in section 19.11 “Planning of sample sizes for two-factor
studies”, using the table on pp. 1337-1341 “Power Values for
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Analysis of Variance (fixed effects)”. In Wang et al. [17] and
Rasch and Verdooren [13] the determination of the size for
three-factors studies in a balanced experiment for mixed
ANOVA is given. In Rasch et al. [11] an overview of the
determination of the minimal number in balanced cross-
classifications and nested-classifications of fixed and mixed
models for two-factors and three-factors is given together
with an R-program package OPDOE (Optimal Design of
Experiments). See also Rasch et al. [12, 13] and Spangl et al.
[15] for a balanced three-way ANOVA classification to
determine the minimal number of replications.

In this paper is treated the four cross-classified factors 4,
B, C, D in balanced (orthogonal) experiments. In Example 7
below a clinical study is given : a factor 4 of a=3 Covid 19
vaccines Biontech ( A; ), Astra Seneca ( A, ) and
Johnson&Johnson (A3); a factor B of female (B;) and male
(B,) patients and a factor C with an age below 60 years (C;)
and 60 years and older (C,). Because as well the number of
levels as also the levels are fixed independently from the
experimenter, we call the factors fixed. The survey should be

executed with the random factor D in d=4 hospitals selected
randomly from a huge number of hospitals in a country.

Further are considered two balanced Split-Plot Designs.
The first one is the fixed factor 4 used in the main-plots of
the factor B of blocks; further the fixed factor C and D are
used in the Split-Plots. The second one are the fixed factors A
and C used in the Main-plots of the factor B of blocks;
further the fixed factor D is used in the Split-Plots.

Tests for testing the significance of fixed main or
interaction effects in models of the balanced four-way cross
classified analysis of variance with at least one fixed factor is
then treated. The four factors are denoted by 4, B, C, and D.
Random factors as well as random variables in the models
are bold printed. The symbol x between factors means cross
classification.

The four-way cross classification Model 1 is based on the
model (1) (with all interactions) here written for the case
where all factors are fixed.

Yijkim = 1+ a; + bj + ¢, + d; + (ab);; + (ac) i +(ad); + (be) ji + (bd) j; + (cd)yy + (abc)ji + (abd);j + (acd) iy +
(bed) jiy + (abed)jriteijiim (1)
i=1,...,a,j=1,...,b,k=1,...,¢c,1=1,...,d,m=1,...,n>2,

Assumed are that all fixed effects in Model 1 sum up to
zero, when summation is done over at least one of the
superscripts of the effect. For instance Y2_, (bcd) jki=0. The
random effects €;jyy, are all independent from each other
and are normally distributed with expected value zero and
variance 6°.

2. The ANOVA - Table, Expected Mean
Squares and F Statistics

Here are investigated four models with four, three, two
factors fixed and also only one factor fixed.

Table 1. Analysis of Variance Table of a Four-way Cross-Classification with equal Subclass Numbers n, SS is Sum of Squares and df are the degrees of

freedom.

Source of Variation SS af

Between A-levels SSy = bcdnz o -y a-1
Between B- levels SSp = acdn XY; Y? —% 2 b-1
Between C- levels SS¢ = abdnz Y2 - %YZ c—1
Between D- levels SSp = aban Y% — %YZ d-1
Interaction 4 x B SSup = Cdnz bcdnz Y2 — acan Y + ; YZ, (a-1)(p-1)
Interaction 4 x C SSpc = ban ie.. _denZ ( abd YYZ. +;Y2' (a=1)(c-1)
Interaction 4 x D SSap = ﬁz Y - ,,Can (e )0 B0 Yz (a=1)(a-1)
Interaction B x C SSpe = ﬁz Y — acdnz e abdnz 78, + Yzm (b-1)(c-1)
Interaction B x D SSpp = LZY amZ Y; ———XY3 +;,Y2. (b-1)(a-1)
Interaction C x D SSep = 2 kl — EZ ) abcnz Y2 + - i y2l_ (c-1)(d -1)

1 1
SSasc =%iz’:k Yij/(“ > bcdn acdn Z G oban %sz -%g Yz/2

Interaction 4% BxC

2
adn Z

i,k
_1ly  y2 1 2
SSapp = CnZl,],l Yo +bcdn Z;:Yl
Interaction 4 x Bx D 2
72 " _72 Y2 Y.
acn -J b i.l N

(a-1)(b-1)(c-1)

2 1 2
——> Y7 ‘%Z Y.

abcn 7 ~
1]

(a-1)(b-1)(d -1)
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Source of Variation SS df
1 2 1 2 2 1 2 1 2
SS, =— Y; — Y- + + Y = Y;
A0 " by i%l AL b dn feoee abdn Zk: i abcen zl: ol bd %{: iz
Interaction A% C % D (a=1)(c-1)(d -1)
2 Y
Y - VY2, i
Z kL " N
1 2 2 1 2 1 2
SS, =— + ) & + -
Bep j%l ok acdn; J abdn% ol abcnzl: adn i v
Interaction B X CX D 2 ' (b-1)(c-1)(d -1)
_ - L yy2 L.
Z Sl Z Y

Interaction 4 x B xCx D

Within the Classes
(residual)

Corrected Total

SS; — ssA — 585 — ssc — SSp—SS45 — SSuc — SSap — SSpc — SSsp — SSep — SSapc —

SSABD - SSBCD _SSres'
2 Y
n

res - Eyuklm

(a=1)(6-1)(c-1)(d -1
abcd(n—l)

N-1

= abcdn with n > 2.

Table 2. Mean Squares, Expectations for Model 1 and F —Statistics.

Mean Squares

Expected Mean Squares

F -Statistic

MS, = %

MSp =22

MS = ¢

MS, = %
_ SSaB

MSap = (a-1)(b-1)
_ SSac

g = (a-1)(c-1)
_ SSap

MSap = (a-1)(d-1)
_ SSBc

B = (b-1)(c-1)
_ SSBD

MSgp = (b-1)(d-1)
_ SScp

e = (c-1)(a-1)

MSypc = SSapc

(a-1)(b-1)(c-1)

_ SSaBD
MSagp = (a-1)(b-1)(d-1)

_ SSacp
MSaco = (a-1)(c-1)(d-1)

_ SSpcp
MSgcp = (b-1)(c-1)(d-1)

_ SSABCD
MSagep = (a-1)(b-1)(c-1)(d-1)
MS.... = s2 Ssres

res

abed (

abcd(n—1) SSy

2 2 _
teo1 B Fa a-1  SSres
> . acdn sz P abed (n —1) SSg
b—1 4= j g b-1  SS,.q
bd) 2 abed (n—1) SS,
o+ 22 Zc Fo= abed(n-1) SS¢_
c-1 k c=1  SS,
) p) ~
P abcn Zd F, = abcd(n-1) SSp
d- 1 1 d—-1  SSres
2 _ abcd(n—1) SSpp
Ca (a— 1)(b 1)E(ab) AB = 7((1_1)(@_1)) SSres
2 bdn __ abcd(n-1) SSac
(a-1)(c— 1)Z(ac)lk Fye = —(afl)((cflgssres
2 bcn __ abcd(n-1) SSpa
ot (a-1)(d— 1)Z(ad) Fypp = —(a—l)((d—l)) 55700
2 adn __ abcd(n-1) SSp¢
7"+ T 2k BC ™ (o-1)(c-1) SSyes
2, am 2 _ abcd(n-1) SSgp
7 F G 2D BD = (p-1)(d1) SSres
2 abn __ abcd(n-1) SScp
g +(c 1)(d- 1)Z(Cd)k’ €D = (emD)(@-1) SSyes
abcd (n = l) SS
2 _ ABC
g +(a 1)(b 1)(c 1)E(abc)llk Fapc =

2
= 1)(b 1)(a 52 (abd)f

2
= 1)(c 1)(a 52 (@cd)a

(==
. abed (n —1) SSABD
A = (a=1)(b-1)(d-1) SSyes

_ abed(n=1)  SSxcp
Fpep = (a=1)(c=1)(d -1) SS,es

abed (n - 1) SSecp

7"+ Genamn 2 Diu Foco = (b=1)(c=1)(d~1) S8,
abcd(n —1) SSABCD
* + apo-nena-n 2@bed) Faeo = (a-1)(b-1)(c-1)(d=1) S8,
o2

2.1. Model 1 Cross Classification with All Factors Fixed

Two and One Fixed Factor(s)

A model with four fixed factors 4, B, C, D: AxBxCxD is

called Model 1. The ANOVA - table given above is
independent of the model and will be used for all four models.
The expected Mean Squares E(MS) depend on the models.

2.2. Model 2, 3 and 4 for Cross Classification with Three,

A model with three fixed factors 4, B, C: AxBxCxD is
called Model 2. If another factor in place of D is random, the
factors are rearranged without loss of generality.
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The Table with Mean Squares and their expectations is
given in Table 2. How to derive the Expected Mean Squares
for all four and other models is described in Rasch and Schott

([81, [9, Section 7.2]).
The model equation for Model 2 is given by

Yijkim = M+ a; + bj + ¢, + d; + (ab);; + (ac)y+(ad)y + (bc) j + (bd)j, + (cd)j; + (abc);j, + (abd);j; + (acd)y, +
(bed) i, + (abed);jiit+€;jxim (2)

i=1,...

The side conditions for the fixed effects are as in Model 1.
If some of the factors or factor combinations are random,
assumed is that the corresponding main and interaction
effects are independent, normally distributed and have
expectation zero and variances with small subscripts equal to

,a,j=1,...,b, k=1, ..

L6 1=1,...,dm=1,...,n>2.

the capital letters of the factors.

A model with two fixed factors 4 and B: AxBxCxD is
called Model 3.

The model equation for Model 3 is given by

Yijkim = M+ a; + bj + ¢, + d; + (ab);; + (ac)y + (ad)y + (bc) i, + (bd)j, + (abc)jy + (abd);; + (acd)y, +
(bed) i, + (abed);ji€;jxim 3)

i=1,..

The side conditions for the fixed effects are as in Model 1,
the random effects are assumed to be independent with
expectation zero, normally distributed and have expectation
zero and variances with small subscripts equal to the capital

Lai=1,...b k=1, ..

Lcl=1,...,d,m=1,...,n>2.

letters of the factors.

A model with one fixed factor 4: AxBxCxD is called
Model 4.

The model equation for Model 4 is given by

Yijkim = 1+ a; + bj + ¢, + d; + (ab);; + (ac)y + (ad); + (bc) j + (bd) j; + (abc);j, + (abd);j, + (acd)y, +
(bed) j, + (abed);jiit€;jiim 4)

i=1,..

The side conditions for the fixed effects are as in Model 1,
the random effects are assumed to be independent with
expectation zero, normally distributed and have expectation
zero and variances with small subscripts equal to the capital
letters of the factors.

Because the F statistics for fixed effects of Model 2, 3 and
4 are identical with those in Table 2, a Table of Expected
Mean Squares and F —Statistics for Model 2, 3, and 4 is not
presented. As already mentioned the reader may derive them
by using the algorithm described in Rasch and Schott [8, 9].

3. Determination of the Minimum
Number of Replications for Testing
Fixed Effects

In the four models considered in this paper the minimum
number of replications for testing fixed effects depends not
on the model.

The random error term e, containing independent
observational errors with E(e;y,) = 0, var(ejum) = 02, is the
same for all observations. For testing null-hypothesis of the
effects we assume that the e;,, are normally distributed.

In the ANOVA tables the E(MS) (Expected MS) is given.
The non-centrality parameter A can be obtained by the
general formula given in Lindman ([3], p. 151),

_ df1[E(MS1) — E(MS3)]
A= E(MS,) )

where E(MS;) and E(MS,) = ¢°, are the expected mean sum

waj=1, .. bk=1,..

Lo l=1,...,dm=1,..,n>2.

of squares of the numerator and denominator of the F-test
statistic with degrees of freedom df; and df,, respectively.

If the fixed factor has at least three levels the minimum
experimental size depends on the values of its factor levels.
As described in Rasch and Verdooren [13] and Rasch et al.
[10-12] we calculate the minimum experimental size for the
least favourable (maximin size) and the most favourable
(minimin size) case of the location of the values of the factor
levels of 4. We first describe what we mean by the minimum
of the minimal experimental size and the maximum of the
minimal experimental size as given by Rasch et al. [7] and
Rasch et al. [14]. The relation

F(fl'fZ!Oll_a)z F(fl'fZﬁklﬁ)! (6)

is used, where f; and f, are the degrees of freedom of the
numerator and the and the denominator, respectively. Further a
and S are the two risks of the first and second kind of the
corresponding F-test respectively, and 4 is the non-centrality
parameter of the non-central F-distribution. Equation (6) plays
an important role in all other sections of this paper. Beside f;, f5,
o and f the difference J between the largest and the smallest
effect (main effect or in the following sections also interaction
effect) of the fixed factor 4, to be tested against zero, belongs to
the precision requirements. The solution A in (6) we denote by

A=Aa. B. fis 1)

Let E,,;n, and E,, 4, be the minimum and the maximum of ¢
real effects £, E,, ...., E, of a fixed factor E or of interaction
effects.
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The minimal size of the experiment depends on 4 according to
the exact position of all g effects. But this is unknown before the
experiment starts. We consider two extreme cases, the most

favourable (resulting in the smallest minimal size 7, ) and the

least favourable (resulting in the largest minimal size 7, )

case. The least favourable case leads to the smallest non-
centrality parameter A,,;,, and by this to the so-called maximin
This occurs if the effects E,,;, =E; =

—E and Ey;4 = Eq = E and the ¢ — 2 non-extreme effects are

Size M.y

Eax + Eny 7 N 72 2
equal to M ==me=nin . For £ =0, D (E,~E)’ =2E
i=1
this is shown in the following scheme.
| |
| | I

E=-E 0=E,==E,_

E,=E

For the general case of this configuration with E = M we
have

[

_ —E; —E; ! - 2 52
E = Mand Ey = (Epgy- M) = 222500 gy = (F,. - M) = — Zmex—Emin g )" (B, ~E)* =2(3) =%

with 6= E,0x — Emin-
The most favourable case for even ¢g=2m occurs if m of the

E.equal E_;, = - E and the m other E; equal E_,, = E. For
odd g=2m + 1 again m of the E;should equal E_;, and m

other E; should equal E

max ?

n

and the remaining effect should

be equal to one of the two extremes E.;, or E_, . For

min

q
E=0, Z(Ei —E)2 :qE2 this is shown for even ¢ in the

i=1

i=l
following scheme.

E=E=-=E,=-F 0 E,  =E, ,==E =E

(This corresponds with a D-optimal design in linear regression).

Hence for the general case of this configuration we have E
=M,

Eq = (Emax' M) = M and E] = (Emin 'M) =- (Emax - Emm)/2

and

q

Z(E,. -E) =¢(5/2)* = ¢5Y/4.

i=1

and

A‘min = 82/(262) and Amax = qsz/(462) with & = (Emax - min) (7)

This derivation is also given in Rasch and Verdooren [13].
In the following sections the formulae and R-programs for
Npin and N, for the Models 1, 2, 3 and 4 are given.

3.1. Experimental Size for Model 1

The calculation of the sample size minimin and maximin
for the test of the factor 4 of the Null hypothesis: Hy: a; =
a, = +-.= a, is demonstrated.

Under the side condition };a; = 0 the null hypothesis can
also be formulated as Hy: ay = a, = --.=a, = 0.

. MS, .
F —statistic: F= , with df (4) = (a-1) and df (res) =

abcd(n-1).

. bcdn Y%, a?
Non-centrality parameter A4, = 0—2“1‘
_ abcdns?

bcdn¥% . a?
=—=E1"1 we have Ay max = ype

For 1, =
2 A ot
bcdné .
o with Aax ~ Cpin 2 0.

and Ay ppin =

For the non-centrality parameter A, we use in the R-—
program delta = §/c.
A program in R which gives the solution of formula for the

sample size maximin of the fixed effect 4 is:
> maximinA = function( p, a, b, ¢, d, delta , beta)

{

f = function(n, p, a, b, ¢, d, delta , beta )

{

A = qf(p, a-1, a*b*c*d*(n-1), 0)

B = qf( beta, a-1, a*b*c*d*(n-1), delta*delta*n
*a*b*c*d/4)

C=A-B

H

k = uniroot(f, ¢(2, 10000 ), p=p, a=a, b=b, c=c, d=d,
delta=delta, beta=beta) $root

kO = ceiling(k)

print (paste(" maximinA sample number:
quote=F)

}

Example 1

wherep=1-a:

> maximinA( p=0.95, a=3,b=2,c=2,d=0.5, delta= 1,
beta = 0.05)

[1] maximinA sample number: n= 11

n =", k0),
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A program in R which gives the solution of formula (6) for
the sample size minimin of the fixed effect 4 is:
> miniminA = function( p, a, b, ¢, d, delta , beta)

{

f = function(n, p, a, b, ¢, d, delta , beta )

{

A = (f(p, a-1, a*b*c*d*(n-1), 0)

B = gf( beta, a-1, a*b*c*d*(n-1), 0.5*
delta*delta*n*b*c*d)

C=A-B

}

k = uniroot(f, c¢(2, 10000), p=p, a=a, b=b, c= c, d=d,
delta=delta, beta=beta) $root

kO = ceiling(k)

print (paste(" miniminA sample number: n =
quote=F)

}

", k0),

Example 2

wherep=1—-a:

> miniminA( p=0.95, a=3, b =2, ¢ = 2, d= 2, delta = 0.5,
beta = 0.05)

[1] miniminA sample number: n= 16

To give an impression over the variation of the sizes we
give minimin and maximin sizes for o = 0.05; #=0.1 and 6 =
0.2 o for some values of a, b, ¢, d in Table 3. Note that when
a is larger than 2 minimin and maximin are different.

Table 3. Minimum sub-class numbers (upper entry minimin; lower entry
maximin) for test of fixed factors A in the four-way cross classification
Model 1 with o.=0.05, f=0.1 and 6 = 0.2 0.

a b c=2 c=3
d=3 d=10 d=3 d=10
) 44 14 30 9
5 44 14 30 9
3 30 9 20 6
30 9 20 6
5 53 16 36 11
3 36 11 24 8
3 36 11 24 8
24 8 16 5
2 65 20 43 13
5 26 8 18 6
3 43 13 29 9
18 6 14 4
Remark

If the values of a, b, ¢, d are such that the total number of
observations N =abcdn for n =2 is already quite large, the R-
program gives no value for the minimin and maximin. In this
case we can use the value n = 2 for the minimal number of
replications. This is demonstrated in the Examples 3 and 4.

Example 3

wherep=1—-a:

> miniminA( p=0.95, a=10, b = 3, ¢ = 4, d= 5, delta = 1,
beta = 0.05)

Error in uniroot(f, ¢(2, 10000), p=p,a=a,b=b,c=c,d
=d, delta = delta, :

f() values at end points not of opposite sign

We calculate now the power directly for miniminA with n
=2:

> Fpvalue = qf(0.95, 10-1, 10*3*4*5%(2-1), 0)

> Fpvalue

[1] 1.895472

> powerminiminA = 1- pf(Fpvalue, 10-1,10%3*4*5%*(2-1),
1*¥1%2*3%4%*5/2)

> powerminiminA

[17 0.9999908

Example 4

wherep=1-a:

> maximinA( p=0.95, a=10, b= 3, c= 4, d=5, delta = 1,
beta = 0.05)

Error in uniroot(f, ¢(2, 10000), p=p,a=a,b=b,c=c,d
=d, delta = delta, :

f() values at end points not of opposite sign

In addition: There were 14 warnings (use warnings() to see
them)

We calculate now the power directly for maximinA with n
=2:

> Fpvalue = qf(0.95, 10-1, 10*3*4*5%(2-1), 0)

> Fpvalue

[1] 1.895472

> powermaximinA = 1- pf(Fpvalue, 10-1,10*3*4*5%*(2-1),
1*¥1%2*10*3*4*5/4)

> powermaximinA

(111

For the other tests of the fixed effects a change must be
done analogously in the R program according to the non-
centrality parameter A derived from the E(MS) column of the
ANOVA-table and in the R-program; used is delta = d/o.

For example now the calculation is demonstrated of the
sample size minimin and maximin for the test of the fixed
interaction effect AB of the effects 4 and B with the side
condition in (1) as :

Null hypothesis: Hy: (ab);j = 0, for all i,j.

F —statistic: F' = MS,p / MSges with df (4B) = (a-1)(b-1)
and df(res) = abcd(n-1).

. cdn =3 (ab)?;
Non-centrality parameter A,z = ———2—1

2
o
cdn qu'b;ﬂab)zi‘ abcdné?
For A4p = —Zz Z we have AaB max = 402 and
2 _ cdné§?
AB min 202

with @, —dyin 20 -

For the non-centrality parameter 4,5 in the R —program
delta = 6/o is used.

A program in R which gives the solution of formula (6) for
the sample size maximin for the interaction 4B is:

> maximinAB = function( p, a, b, ¢, d, delta , beta)

{

f = function(n, p, a, b, ¢, d, delta , beta )

{

A = gf(p, (a-1)*(b-1), a*b*c*d*(n-1), 0)

B = gf( beta, (a-1)*(b-1), a*b*c*d*(n-1), delta*delta*n
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*a*b*c*d/4)
C=A-B
j

k = uniroot(f, c(2, 10000 ), p=p, a=a, b=b, c=c, d=d,
delta=delta, beta=beta) $root

kO = ceiling(k)

print (paste(" maximinAB sample number: n = ", kO0),
quote=F)

H

Example 5

wherep=1—-a:

> maximinAB( p=0.95, a=3,b =2, ¢ =2, d= 2, delta = 1,
beta = 0.05)

[1] maximinAB sample number: n =3

A program in R which gives the solution of formula (6) for
the sample size minimin for 4B is:
> miniminAB = function( p, a, b, ¢, d, delta , beta)

{

f = function(n, p, a, b, ¢, d, delta , beta )

{

A = qf(p, (a-1)*(b-1), a*b*c*d*(n-1), 0)

B = qf( beta, (a-1)*(b-1), a*b*c*d*(n-1), 0.5%

delta*delta*n*c*d)

C=A-B

}

k = uniroot(f, c(2, 10000), p=p, a=a, b=b, c= c, d=d,
delta=delta, beta=beta) $root

kO = ceiling(k)

print (paste(" miniminAB sample number: n = ", kO0),
quote=F)

H

Example 6

wherep=1—-a:

> miniminAB( p=0.95, a=3, b= 2, c= 2, d=2, delta = 1,
beta = 0.05)

[1] miniminAB sample number: n = 8

3.2. Experimental Size for the Models 2, 3 and 4

For the fixed effects the determination of the minimin and
maximin one can use the same R programs as given in
section 3.1.

Example 7

Problem: We consider a fixed factor 4 of COVID 19
survey including three vaccines Biontech (4,), Astra Seneca

(A4,) and Johnson (A3) (levels of 4), a fixed factor B of
female (B;) and male (B,) patients and a fixed factor C with
an age below 60 years (C;) and 60 years and older (C;). The
survey should be executed with the random factor D in four
hospitals randomly selected from a huge number of hospitals
in a country. This is a Model 2 with factors 4, B, C fixed and
factor D random.

How many patients of each of the 48 groups (3 * 2 * 2 *
4 = 48) are needed, when we like to test the null hypothesis
that all three vaccines have the same effectiveness?

Use a = 0.01, # = 0.05 and J = 0.5 ¢ for calculating the
maximin size and the minimin size of the patients.

Solution

wherep=1-a

> maximinA( p=0.99, a=3, b= 2, c= 2, d=4, delta = 0.5,
beta = 0.05)

[1] maximinA sample number: n =7

> miniminA( p=0.99, a=3, b= 2, c= 2, d=4, delta = 0.5,
beta = 0.05)

[1] miniminA sample number: n = 11

4. Minimum Number of Replications for
Testing in Split-Plot Designs with 4 at
the Main-plots

Consider the design that the fixed factor 4 has been
randomized laid down with an Main-plots in a balanced
randomized block design with the factor B as Blocks with an
Main-plots per Block. Each Main-plot is split into cdn Split-
plots. The fixed factors C and D are randomized laid down
on the cdn Split-plots in the Main-plots. The fixed factors A4,
C and D have equal sizes of n > 2 replications.

The four-way cross classification is based on the model
(with all interactions) here written for the case where the
factor B denotes the Blocks and the factors 4, C and D are
fixed; the Main-plots have a random Main-plot error p. The
factor 4 with n replications is randomized laid down on the
Main-plots of the Blocks B, otherwise stated A is nested in B,
the notation B>A denotes that 4 is nested in B; the factor
combinations of CxD with n replications are randomized laid
down on the Split-plots of the Main-plots, otherwise stated
CxD is nested in 4, A>CxD; the Split-plots have a random
Split-plot error e. Such a design is called a Split-Plot design
with Factor 4 on Main-plots in Blocks and factor C and D on
Split-plots.

Yijkim = b+ bj +a;jy + Pmaj) + Ckijy + diajy + (@ iy +(@d)gjy + (@cd)iijy + €mejrry (8)

i=1,..,aj=1 .. bk=1,.

The first part of (8) are the Main-plot effects and the
second part of (8) are the Split-plot effects.

Assumed is that all fixed effects in sum up to zero, when
summation is done over at least one of the superscripts of the
effect. For instance Y2_,(acd)y; =0. The random effects
Pmj) and €y,jiy are assumed to be independent and

Lo l=1,...,dm=1,.,n>2.

normally distributed with expectation zero and with
variances respectively o7, and ¢”.

The ANOVA - table and the expected Mean Squares
E(MS) are given below in Table 4 and Table 5 respectively.
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Table 4. Analysis of Variance Table of a Split-Plot design with factor A at the Main-plots in Blocks B and equal Split-plot numbers n > 2.

Source of Variation SS df
1 1
Between B- levels = Z 2 _ _y2 b-1
SSp=—= ) ¥} —~ 12

Between A-levels SS, = ! Z Y2 ! Y2 a-1
A= pedn o — T e

Residual p of Main-Plots = Res1 SSRres1 = ﬁz Yl? = %Yz -SSs - SS4 df Resl = abn—b—a+1.

Between C- levels SS,. = ! z Y? 1 Y? c-1
¢ = Jbdn T = 7 e

Between D- levels SS, = ! Z Y? 1 Y2 d-1
D= ben s = G oo

Interaction 4 x C

Interaction 4 X D

Interaction C x D

Interaction A% C % D

Residual of split-plots = Res

Corrected Total

= ban ik. ~ pedn i
1 1
SS = _Z YZ - _z Yz
AD bcn Uedls bedn Voo
1 2 1 2
8Sep = abnz Yia. = abdnz Yi.

1 2 1 2
SSucp = BT Z Y. — Myi.k..

1 1
Yh ———Y5

SSic

ben

+ ! ZYZ
bcdn L

SSCD - SSACD

1 Zyz + 1
abcn ol

- ZYZ b
abdn -+ aben

SSkes = SSp —SS, — SSg ~SSpes1 — SS¢ - SSp- SSac — SSap -

(a—l)(c—l)

! ZYZ + 1 Y2
abdn k.. N

~YZ (a-1)d-1)

N

ab1cnz Y2, +%yju (c-1)(a-1)
(a-1)(c-1)(d-1)

1
Y3 ——Y?
Sia-tp

dfRes =N-1 —abn —acd+a +1

N-1

N =abcdn withn > 2.

Table 5. Mean Squares, Expectations for the Split-plot Model with factor A on the Main-plots in Blocks B and F —Statistics.

Mean Squares

Expected Mean Squares

F -Statistic

SS,
M, = —=
Ss
MS, = bTB
SSRes1
MSpes1 = dfRes1
SS
MS; = - — :
SS
MSp = = :
SS,c
MS, = ———2¢
7 (@-De-1)
SSip
MS,, = ——422
AP " (a—1)(d-1)
SSep
MSer = e=D@=1
SS
MSACD — 'ACD

(a-D(-1d-1)
MSRes = SSRes / dfRes

bcdn
0% + cdn o} +—Z a?
a—1

0%+ cdn o?,
2
2
k
2, aben Zd2
d-1 !
bdn
2, oam 2
Tt a—De= 1)2(“)*
bcn
2, M 2
Tt a-Da- 1)2(“‘””

abn
" e L0k

bn

- abdn

c—1

4 oD DE=D LD

0.2

“(@a-D(b-1) 55,

T @-1)  SSen
__dfRes SS.
- (¢ =1)SSpes
_ dfRes SSp
L (d — 1) SSyes
5o dfRes SSac
ac (a-=1D(-1) SSres
- dfRes SSap
4 (a-1Dd-1) SSres
. dfRes SSep
e (a - 1)(d - 1) SSres
dfRes SSacp
Facp =

(a—1)(d —1) S,

The calculation is demonstrated of the sample size
minimin and maximin for the test of the factor 4 on the

Main-plots of the Null hypothesis:

Hy:ay =a, =--.=a,.

Under the side condition ) ;a; = 0 the null hypothesis can
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also be formulated as

Hy:ay =a, =--.=a, =0.

dfResl ss,

F—statistic: F, =
4 (a-1) SSges1

=abn—-b—a +1.

, with df (4) = (a-1) and dfRes!

. bedn Y% . a?
Non-centrality parameter 1, = bedndizq o

% +cdn a?1
bedn Y%, a? bcdné?
For 1, =——==1-L we have A =——————and Ay p;
A o%+cdna?1 Amax 4(0%+cdn o?1) A min
bcd§?

=———with a,,, —a,. 20.
2(0%+cdn o?1) max min

For the non-centrality parameter 4, we use in the R-—
program

delta = 8/\(c* + cdno?)).

A program in R which gives the solution of formula for the
sample size minimin of the fixed effect A on the Main-plots
is:

> miniminMP1A = function( p, a, b, ¢, d, delta , beta)

{
f= function(n, p, a, b, ¢, d, delta , beta )
{

A =(f(p, a-1, a*b*n-b-a+1, 0)

B = gf( beta, a-1, a*b*n-b-a+1, delta*delta*b*c*d/2)

C=A-B

}

k = uniroot(f, c(2, 10000 ), p=p, a=a, b=b, c=c, d=d,
delta=delta, beta=beta) $root

kO = ceiling(k)

print (paste(" miniminMP1A sample number: n = ", k0),
quote=F)

}

Example 8

wherep=1-a:

> miniminMP1A( p=0.95, a=3, b =2, ¢ = 2, d= 2, delta =
2, beta =0.05)

[1] miniminMP1A sample number: n = 15

A program in R which gives the solution of formula (6) for
the sample size maximin of the fixed effect A on the Main-
plots is:

> maximinMP1A = function( p, a, b, c, d, delta , beta)

{

f= function(n, p, a, b, ¢, d, delta , beta )

{

A =(f(p, a-1, a*b*n-b-a+1, 0)

B = gf( beta, a-1, a*b*n-b-a+1, delta*delta*n*b*c*d/4)

C=A-B

}

k = uniroot(f, c(2, 10000 ), p=p, a=a, b=b, c=c, d=d,
delta=delta, beta=beta) $root

kO = ceiling(k)

print (paste(" maximinMP1A sample number: n = ", k0),
quote=F)

H

Example 9

wherep=1—-a:

> maximinMP1A( p=0.95, a=3, b= 2, c= 2, d=2, delta =2,
beta = 0.05)
[1] maximinMP1A sample number: n = 3

The calculation is demonstrated of the sample size
minimin and maximin for the test of the factor C on the Split-
plots of the Null hypothesis:

HO:C1=C2="'.=CC.

Under the side condition ; ¢; = 0 the null hypothesis can
also be formulated as

HO:C1=C2="'.=CC=O.
F —statistic: F, = %)Ss%with df (C) =(c-1) and
- Res

dfRes = abcdn-1-abn-acd+a+1 .

. ban 35, c?
Non-centrality parameter A, = bdnYizs 6 .

o2
abdn¥<_, c? abdné&?
For A; = T““ we have A¢c max = 7 and A¢ min
abds? .
=——— with
20
Cmax = Cmin Z 6 .

For the non-centrality parameter A; in the R—program is
used delta = d/c.

A program in R which gives the solution of formula for the
sample size minimin of the fixed effect C on the Split-plots
is:

> miniminSP1C = function( p, a, b, ¢, d, delta , beta)

{

f = function(n, p, a, b, ¢, d, delta , beta )

{

dfRes = a*b*c*d*n-1- a*b*n-a*c*d+a+1

A = (f(p, c-1, dfRes, 0)

B = gf( beta, c-1, dfRes, delta*delta *a*b*d/2)

C=A-B

H

k = uniroot(f, ¢(2, 10000 ), p=p, a=a, b=b, c=c, d=d,
delta=delta, beta=beta) $root

kO = ceiling(k)

print (paste(" miniminSP1C sample number: n = ", k0),
quote=F)

}

Example 10

wherep=1-a:

> miniminSP1C( p=0.95, a=3, b = 2, ¢ = 2, d= 2, delta =
1.5, beta = 0.05)

[1] miniminSP1C sample number: n = 4

A program in R which gives the solution of formula (6) for
the sample size maximin of the fixed effect C on the Split-
plots is:

> maximinSP1C = function( p, a, b, ¢, d, delta , beta)

{

f = function(n, p, a, b, ¢, d, delta , beta )
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{

dfRes = a*b*c*d*n-1-a*b*n-a*c*d+a+1

A = (f(p, c-1, dfRes, 0)

B = gf( beta, c-1, dfRes, delta*delta*n*a*b*d/4)

C=A-B

}

k = uniroot(f, c(2, 10000), p=p, a=a, b=b, c= c, d=d,
delta=delta, beta=beta) $root

kO = ceiling(k)

print (paste(" maximinSP1C sample number: n = ", k0),
quote=F)

}

Example 11

wherep=1—-a:

> maximinSP1C( p=0.95, a=3, b= 2, c= 2, d=2, delta =1,
beta = 0.05)

[1] maximinSP1C sample number: n =5

For the test of the factor D on the Split-plots a change must
done analogously in the R program according to the non-
centrality parameter A derived from the E(MS) column of the

Yijkim =k + b + ai(jy + cr(jy + (@O ik(iy + Pmajiy +
i=1,..aj=1, .. bk=1,

The first part of (9) are the Main-plot effects and the
second part of (9) are the Split-plot effects.

Assumed is that all fixed effects in model 1 sum up to
zero, when summation is done over at least one of the
superscripts of the effect. For instance Y.2_, (acd);,=0. The
random effects for Main-plot
error Pm(ijiy and random effects for Split —

ANOVA-table and in the R-program is used delta = d/o.

5. Minimum Number of Replications for
Testing in Split-plot Designs with A
and C at the Main-plots

Consider the case that the fixed factors 4 and C has been
laid down on Main-plots in a balanced randomized block
design with the factor B as Blocks with acn Main-plots. The
fixed factor D sizes n > 2 is laid down in the Split-plots of the
Main-plots.

The four-way cross classification is based on the model
(with all interactions) here written for the case where the
factors A, C and D are fixed and the factor B as Blocks; the
factors A and C are laid down on the Main-plots of the
Blocks B: otherwise stated AxC is nested in B, hence
B>AxC; the factor D is laid down on the Split-plots of the
Main-plots of the Split-Plot design, hence AxC>D.

The fixed factors 4, C and D have equal sizes of n > 2
replications.

dyjiyt@ad)ijioy + (€ ragjiy + (@cdirigijiy + €mejrry  (9)

Lo l=1, ...,dm=1,...,n>2.

plot error €y, are assumed to be independent and
normally distributed with expectation zero and with
variances respectively o7, and ¢”.

The ANOVA - table and the expected Mean Squares
E(MS) are given below in Table 6 and Table 7 respectively.

Table 6. Analysis of Variance Table of a Split-plot design with factor A and C on Main-plots in Blocks B and equal Split-plot Numbers n > 2.

Source of Variation SS df
Between B- levels = _Z 2 _ _y2 b-1
555 acdn Y N 4
Between A-levels SS, = ! Z Y2 ! Y2 a-1
A = bciln i 1\{
Between C- levels = _Z 2 _ _yz2 c—1
SSe ===} Yi 5 Y2,

Interaction AxC

Residual p of Main-Plots = Res1 SSRes1

ij..

1 1
Between D- levels SS, =—— ) Y2 —_y?2
b= T E am T

Interaction 4xD

Interaction CxD

1 2 1 2
SSucp = E z Y. — Eyzk

1 v2 1 7
ben kT abn e

Interaction AxCxD

1 2 1 2 1 2 .1,
SSac = MZ Yk, — bcdnz %= abdnz Yi. + NY

=—3% Y2 —=Y2 —55p55-SSc-SSic

SS, ——1 EYZ ! EYZ ! EYZ+1Yz
AP ben LL pedn L aben Sl

SScp = ! E Y3 ! E Y
cD b ll(] bd k..

(a = 1) (c = 1)
dfResl= abcn-ac-b+1

d-1

(a-1)(d-1)
(e=1)(a-1)

! Z Y? + 1 Y?
abcn et N

(a=1)(c-1)(d -1)
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Source of Variation SS

daf

+1 ZYZ - ZYZ +
bcdn LT abdn ke

1 1
Y% —=Y?
abcnz b ™y o

SSkes = SSy —S8S, —SS5—SSc — SSuc — SSress - SSp — SSp -

Residual of split-plots = Res SScp - SSacp

Corrected Total

dfRes = N- 1 - aben - acd + ac+1

N-1

N = abcdn with n > 2.

Table 7. Mean Squares, Expectations for the Split-Plot Model with factor A and C on the Main-Plots and F —Statistics.

Mean Squares Expected Mean Squares

F -Statistic

= bcdn
MSA:a_Al 02+Cd"012+a_1zai2
SSp
MS; = 2
SS, bd
MSC:C_Cl 02+cdndf+—z_rllZc,§
SS,
MSpes1 = deeeszl a2 + cdn of
SSp o2 abcn Z 2
e DI " d
e d-14&="
SSac bdn
MS,r =——— 2 72 2
AT (a—D(c—-1) 0%+ @=Dc=1 (ac)i,
SSap ben
IMS,, =———— 2 z )2
2 (@a-DE-1) o+ G Da = 2 Di
SSep abn
MS.p =——— 2 z )2
cD (c—l)(d—l) a +—(C—1)(d—l) (c )kl
_ SSacp ) bn ,
MSycp = @-Dc-DEd-1D o°+ @=Dlc=Dd= 1)Z:(acd)ikl
MSges = SSres / dfRes o2

_ dfResl SS,
A7 a—1 SSgpest

_ dfResl SS;
€7 =1 SSpes

_ dfRes SSp

D™ d —1 8,
- dfRes SSac
ae (a - 1)(C - 1) Ssres
- dfRes SSpa
4 (a-1Dd-1) SSres
o dfRes SSep
e (C - 1)(d - 1) SSres

- dfRes SSacp
acb (a—1)(c—1)(d — 1) SSres

The calculation is demonstrated of the sample size
minimin and maximin for the test of the factor 4 on the
Main-plots of the Null hypothesis: Hy: a; = a, = +-.= a,.

Under the side condition }; a; = 0 the null hypothesis can
also be formulated as Hy: a; = a, = --.=a, = 0.

F-statistic: F, = d(’; Ref)l =4 with df (4) = (a-1) and
- Res1

dfRes 1= abcn-ac-b+1.

Non-centrality parameter 1, =

bedn 3L, a?
o2+cdno?1’
_ bcdnz‘il=1ai2

bcdns?
For 44 = nd

we have Aymax = Jrmy i orn @

o2+cdn 21
bcd§? .
Admin = 2(@%+edn 071 with a,,, —a;, 2 0.

For the non-centrality parameter A4 is used in the R-—
program delta = 8/N(6” + cdno?)).

A program in R which gives the solution of formula for the
sample size minimin of the fixed effect 4 on the Main-plots
is:

> miniminMP2A = function( p, a, b, ¢, d, delta , beta)

{

f= function(n, p, a, b, c, d, delta , beta )

{ A= (qf(p, a-1, a*b*c*n-a*c-b+1 , 0)

B = ¢f( beta, a-1, a*b*c*n-a*c-b+1, delta*delta*b*c*d/2)
C=A-B

}

k = uniroot(f, ¢(2, 10000 ), p=p, a=a, b=b, c=c, d=d,
delta=delta, beta=beta) $root

kO = ceiling(k)

print (paste(" miniminMP2A sample number: n =", k0),
quote=F)

}

Example 12

wherep=1-a:

> miniminMP2A( p=0.95, a=3, b =2, ¢ = 2, d= 2, delta =
2, beta =0.05)

[1] miniminMP2A sample number: n = §

A program in R which gives the solution of formula (6) for
the sample size maximin of the fixed effect 4 on the Main-
plots is:

> maximinMP2A = function( p, a, b, ¢, d, delta , beta)

{

f = function(n, p, a, b, ¢, d, delta , beta )

{

A = (f(p, a-1, a*b*c*n-a*c-b+1, 0)

B = qf( beta, a-1, a*b*c*n-a*c-b+l,
delta*delta*n*b*c*d/4)

C=A-B

}
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k = uniroot(f, c(2, 10000), p=p, a=a, b=b, c= c, d=d,
delta=delta, beta=beta) $root

kO = ceiling(k)

print (paste(" maximinMP2A sample number: n =", k0),
quote=F)

}

Example 13

wherep=1—-a:

> maximinMP2A( p=0.95, a=3, b= 2, c= 2, d=2, delta =2,
beta = 0.05)

[1] maximinMP2A sample number: n =3

For the test of the factor C on the Main-plots we must change
analogously the R program according to the non-centrality
parameter A derived from the E(MS) column of the ANOVA-
table and in the R-program we use delta = 8/\(c” + cdnc?)).

Now the calculation is demonstrated of the sample size
minimin and maximin for the test of the factor D on the Split-
plots of the Null hypothesis:

Hy:dy =d, =-.=d,.

Under the side condition };d; = 0 the null hypothesis can

also be formulated as Hy: dy = d, = --.=d; = 0.
F —statistic: Fp, = 252 with df (D) = (d-1) and df

(d-1 )SSres
(Res) = abedn -1-aben-acd+act1.

d 2
. _abenyi_ dj
Non-centrality parameter A, = —
aben 3P . a? abcné?
For Ap = J—;‘“ we have Ap max = — and Ap min
abcns? .
==z with diax = dmin > 6.

For the non-centrality parameter Ap is used in the R-—
program delta = d/c.

A program in R which gives the solution of formula for the
sample size minimin of the fixed effect D on the Split-plots is:

> miniminSP2D = function( p, a, b, ¢, d, delta , beta)

{

f = function(n, p, a, b, ¢, d, delta , beta )

{

A = (f(p, d-1, a*b*c*d*n-1-a*b*c*n-a*c*d + a*c +1, 0)

B = gf( beta, d-1, a*b*c*d*n-1-a*b*c*n-a*c*d + a*c +1 ,

delta*delta*n *a*b*d/4)

C=A-B

}

k = uniroot(f, c(2, 10000 ), p=p, a=a, b=b, c=c, d=d,
delta=delta, beta=beta) $root

kO = ceiling(k)

print (paste(" miniminSP2D sample number: n = ", kO0),
quote=F)

H

Example 14

wherep=1—-a:

> miniminSP2D( p=0.95, a=3,b=2,c=2,d=2,delta=1,
beta = 0.05)

[1] miniminSP2D sample number: n =5

A program in R which gives the solution of formula (6) for
the sample size maximin of the fixed effect D on the Split-

plots is:

> maximinSP2D = function( p, a, b, ¢, d, delta , beta)

{

f = function(n, p, a, b, ¢, d, delta , beta )

{

A = qf(p, d-1, a*b*c*d*n-1-a*b*c*n-a*c*d + a*c +1, 0)

B = gf( beta, d-1, a*b*c*d*n-1-a*b*c*n-a*c*d + a*c +1,

0.5* delta*delta*n*a*b*d)

C=A-B

H

k = uniroot(f, ¢(2, 10000), p=p, a=a, b=b, c= ¢, d=d,
delta=delta, beta=beta) $root

kO = ceiling(k)

print (paste(" maximinSP2D sample number: n = ", k0),
quote=F)

H

Example 15

wherep=1-a:

> maximinSP2D( p=0.95, a=3, b= 2, c= 2, d=2, delta =1,
beta = 0.05)

[1] maximinSP2D sample number: n =3

6. Conclusion

This paper gives an extension of the literature about
balanced cross-classification. Till now the maximum of three
factors were considered in balanced designs to calculate the
minimum number of replications for a fixed factor. Now for
the four factor balanced crossed design and split-plot design
the minimum number of replications can be calculated with
provided small R-programs. This means that there is now an
extension of the R-package OPDOE for calculating the
minimum size of a fixed factor for testing with a certain power.
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