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Abstract: Time series has fundamental importance in various practical domains in the world, more so in modeling and 

forecasting. Many important models have been proposed to improve the accuracy of their prediction. Global warming has been a 

big challenge to the world in affecting economic and Agricultural activities. It causes drastic weather changes, which are 

characterized by precipitation and temperature. Rainfall prediction is one of the most important and challenging tasks in today’s 

world. The objective of this study was to conducted a diagnostic analyzes of weather variables which were used to model the 

rainfall patterns by use of Bayesian Vector Autoregressive (BVAR). The diagnostic analyzes was done after the normalization of 

the data. The data was found to be stable after first differencing and it was tested using Augmented Dicker Fuller (ADF) and 

Phillips-Perron (PP) test. The tests were found to have the P-values that were statistically significant. The Granger Causality test 

was also conducted and found to be statistically significant. The Ljung-Box test of residuals, shows that the graphs of these 

residuals produced, appeared to explain all the available information in the forecasted model. The mean of the residuals was near 

to zero and therefore no significant correlation was witnessed. The time plot shows that the variation of the residuals remains 

much the same across the historical data, apart from the two values that were beyond 0.2 or -0.2 in Zone Two, and therefore the 

residual variance was treated as constant. The histogram shows that the residuals were normally distributed, which represented 

gaussian behavior. The ACF graph, shows that the spikes were within the required limits, so the conclusion was that the residuals 

had no autocorrelation of the residuals. The Ljung-Box test shows that the developed model was good for forecasting. Finally, the 

researcher recommends application of other techniques like Random Forest and Bootstrapping technique to check whether the 

accuracy may further be improved from other models. 
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1. Introduction 

Kenya has experienced protracted droughts and intense 

flooding every year [1]. An increase in such extreme weather 

events, the glaciers around Mount Kenya have disappeared, 

leading to the drying up of rivers and streams. The weather 

changes have also led to harvest losses and food shortages, as 

well as landslides, soil degradation and a loss of biodiversity 

[2]. The waning water sources and unreliable rainfalls have 

reduced the availability of water. Climate variability and 

changes have adversely affected Agricultural sector and the 

situation is expected to worsen in the future. In the present 

days, weather forecast issue is resolved through the support of 

numerical Atmospheric Circulation Models (ACMs). These 

are integrated by different weather amenities on daily basis 

normally on coarse-grained resolution grids which covers a 

wide geographical coverage. The ACMs describe several 

meteorological variables such as humidity, temperature, wind 

component, geopotential among others. All these define the 
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predicted patterns of atmosphere for a given forecast duration. 

However, meteorological phenomena like rainfall, normally 

vary more on local scales. Numerical Weather Prediction 

(NWP) is a simplified set of equations so-called the primitive 

equation used to calculate changes of conditions [3]. The word 

“numerical” is deceptive since all kinds of weather forecasting 

are built on some quantitative data and thus could fit under this 

area [4]. The big number of variables that is involved when 

considering the dynamic atmosphere makes this task 

extremely difficult. Manipulating the huge data sets and 

performing the complex calculations necessary to predict 

weather and make a resolution conclusive enough to make the 

result useful require the use of some of the most powerful 

computers. In the past about forty years, enabled by 

developments in observing systems and improvements in 

understanding and modelling of the various components of the 

Earth system and supported by enhancements in computing 

capabilities, steady advances in weather and climate 

prediction have taken place at major operational centers across 

the world [5]. Perfecting these advances in weather and 

climate prediction, there have been important milestones in 

advancing the science and operational infrastructure for 

predictions at extended timescales. The first generations of 

dynamic seasonal forecast systems were implemented at 

operational centers in the mid-1990s [6]. Routine weather and 

climate forecasts at the global and regional levels now 

provided information critical for the economic welfare of 

society and for mitigating losses of life and property. 

According to the State of the Climate in 2017, [7], [8], since 

1901, the mean annual global (land + ocean) surface air 

temperature had warmed by 0.7–0.9° Celsius per century, and 

the rate of warming had almost doubled since 1975 to 1.5–1.8° 

Celsius per century. A steady upsurge in temperature had 

triggered important changes in the frequency and intensity of 

extreme weather and climate events such as heat and cold 

waves, droughts, floods, hurricanes, and so forth over various 

parts of the globe Intergovernmental Panel on Climate Change, 

(2013). These unique long-term climatic changes had 

influenced sub-seasonal and seasonal-to-interannual 

unpredictability and had a reflective impact on the natural 

environment as well as on the life, health and well-being of 

human society, [9]. 

Much of the discussion around climate changes focuses on 

how much the earth would warm up over the coming century. 

Climate change is not only limited to temperature, but also, 

how precipitation (both rain and snow) changes would also 

have a great impact on the global population. This study 

considered a number of variables, they included; Rainfall 

which was the response variable and the explanatory variables 

which were Temperature, Humidity, Atmospheric Pressure, 

Wind Speed, Radiation and Wind Gust. The main purpose of 

this study was to get more insight about the rainfall patterns in 

Kenya. Several predictor variables were used in this study 

which were noted to influence rainfall patterns in Kenya. The 

effects of global warming have greatly affected Rainfall 

patterns in Kenya which have caused adverse economic and 

social effects. 

Bayesian Vector Autoregressive (BVAR) is used to conduct 

together classic unconditional as well as conditional forecasts. 

Unconditional forecasts challenging those obtained from 

factor models in accuracy [10] and are used for a variety of 

analyses. Conditional forecasts permit for elaborate scenario 

analyses, where the future path of one or more variables is 

assumed to be known. They are handy tools for analyzing 

conceivable realizations of policy-relevant variables. 

2. Purpose of the Study 

Global warming has become a major challenge in the world. 

This has brought about unpredictable weather patterns that 

have affected the normal seasons. Extreme weather changes 

are identified as major global challenges of the recent times. In 

Kenya, unstable weather patterns which are associated with 

global warming have been experienced over a period of time. 

Despite the availability of models that are used by 

meteorology department to make predictions, the same 

devastating scenarios of unpredictable weather changes are 

still been experienced. Therefore, home grown models 

reliable for accurate predictions are needed on short and 

long-term time scales to reduce potential risks and damages 

that may occur due to unexpected weather changes. To 

achieve the times series models for prediction, a diagnostic 

analyzes is an important tool for determining the state of the 

data. Models for accurate prediction of weather changes in 

Kenya are identified as a major area of concern that this study 

sought to address. This paper aims at conducting data variable 

analyzes in order to develop a predictive model of rainfall 

patterns using Bayesian Vector Autoregressive. 

3. Literature Review 

To test for stationarity of the variables in the model, the 

Augmented Dickey-Fuller-test (ADF-test) are used. When a 

time series variables are independent of time and the auto 

covariance and the variances are not infinite, then the time 

series variables are said to be stationary [11]. Further, [12] 

when the probability distribution has no fluctuation over time, 

the time series variables are stationary, thus, the time series 

follows a random walk. Stationarity is an important criterion 

when using a BVAR-model [13]. If the time series is not 

stationary, the results from the test would not be trustworthy. 

In vector autoregressive (VAR) processes, if the process is 

stationary, the multivariate least squares (LS) estimator of the 

coefficients has a non-singular asymptotic distribution 

whereas the distribution becomes singular if some variables 

are integrated or cointegrated [14]. So the Wald test has a 

nonstandard asymptotic distribution. Differentiation is a good 

working method to overcome the problem of non-stationarity 

according to, [15]. The ADF test is based on the hypothesis 

testing where the null hypothesis states that the time-series 

variable is non-stationary [16]. In such circumstances, the 

variables are differenced a number of times until the ADF test 

shows a 5% level of significant. 

When BVAR-Models are conducted, Granger Causality tests 
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are required to check if there is a significant association 

between variables. There is Granger Causality, if information 

from one endogenous time series gives the most accurate 

prediction of another endogenous time series even though all 

other possible information is taken into account [17]. 

Subsequently, [18] meant that the idea behind the Granger 

Causality test is that the effect is generated by the cause, and not 

the reverse. However, it is important to note that the test also 

identifies the direction of the association between variables and 

not only causality. Bayesian vector autoregressions are usually 

used for forecasting and structural analysis. Until recently, 

though, most empirical work had considered only small 

systems with a few variables due to parameter propagation 

concern and computational restrictions. [19]. 

 

Figure 1. Time plot graph for the initial data. 

4. Methodology 

4.1. Diagnostic Procedures 

The source of the data was secondary data, which was 

sourced from Trans- African Hydro-Meteorological 

Observatory (TAHMO) and Kenya Meteorological Stations. 

The data was stored in the form of excel format, which was 

captured on daily basis for a period of four years, starting from 

June 2014 to June 2017. The data was converted into CSV 

files in order to import it into R statistical software for analysis. 

To remove scaling, normalization was done through liner 

scaling technique. It was essential because all the variables 

used different units of measurements. Also, a variable may 

have a large impact on the predictor variable only because of 

its numerical scale. The technique of linear scaling which is 

also referred to as min-max normalization estimations, has a 

formula stated as; 

×	= 	 x	 − 	Min(x)
Max(x)	– 	Min(x) 

Normalization transformed the data into a common range of 

between 0 and 1. Thus, removing the scaling effects from all 

the variables. 

Before the data in time series is analyzed, the data should 

attain some level of stability. The study adopted two methods 

of stationarity test. Augmented Dickey fuller (ADF) test and 

Phillips- Perron (PP) test. When these two methods are used, 

different results are expected. Thus, the derivation of 

stationarity is considered at the level where both results reject 

the null hypothesis and therefore stationarity exists. If this 

assumption is violated and non-stationary data is used, then 

the outcome would result to an unpredictable model outcome. 

Many time series data in reality are not stationary and they 

require to be stationary in order to be analyzed. 

Non-stationarity can be detected by visual examining of the 

time series graph and by looking at the series correlogram, or 

by conducting a Unit Roots Statistical test. To remove 

non-stationarity, a time series is transformed by differencing 

once or several times until it becomes stationary. In this study, 

Unit Roots Statistical test was employed where, Dickey- 

Fuller test and Phillips – Perron test were used to test for 

stationarity. 

Consider 
� a time-series which is in the form 


� = � + �
��� + ��, where 

�� = ����� + ε�, 

The Unit Root tests are based on testing the null hypothesis 

that 

H0: � =1 

against the alternative hypothesis that 

H1: � < 1. 

The characteristic polynomial had a root equal to unity 

under the null hypothesis, hence the name Unit Root tests. 

The Augmented Dickey-Fuller test allows for higher-order 

autoregressive processes by including ∆xt−p in the model. 

Taking � =1 then VAR(1) process is stable if all eigenvalues of 

�1 have modulus less than one, this stability condition is 

equivalent to 

���(IK − 	B1z) ≠ 0	for	|z| 	≤ 	1 

this can be generalized as 

���(IKp − 	Bz) = 	det(IK − 	B1z −	··· 	−	Bpzp) 

This gives the definition of the characteristic polynomial of 

a matrix. The polynomial is called the reverse characteristic 

polynomial of the BVAR (p) process. Hence, the process is 

stable if its reverse characteristic polynomial has no roots in 

and on the complex unit circle. Since stability implies 

stationarity, the process is stationary when proved to be stable. 

The test follows AR (1) process 
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� = �
��� + ��, 

where, ��  is an IID series of random variables. 
�  is 

non-stationary under the null hypothesis, and is stationary 

under the alternative hypothesis. The standard t-statistics 

would not follow t-distribution because of the non-stationarity 

of 
� under the null hypothesis. To test the null hypothesis, 

the following test statistics equation was used 

ADF = 
*�	�	

+.-	(*) 

The ADF test in the equation follows the assumption that 

the error terms are independent and identically distributed, 

and that the order of the underlying autoregressive process is 

finite and known. The procedure for the ADF test is similar to 

the Dickey–Fuller test procedure, the only difference is the 

model where it is applied. The model where ADF is applied 

are as shown below. 

∆.� = α+βt +φ
��� +δ1∆
���+...+δp−1∆
��� + ε� 

where, α denotes a constant, β is the coefficient on a time 

trend, and p represented the lag order of the autoregressive 

process. Putting the constraints α = 0 and β = 0, this resembled 

a model with a random walk, and using the constraint β = 0 

resembled a model of random walk with a drift. The ADF test 

was performed under the hypothesis 

H0: ϕ = 1 against H1: ϕ < 1 

The test statistic was computed as 

ADF = 
01	

+2(01) 

If the ADF τ test statistic is less than the critical value, then 

the null hypothesis of φ = 0 is rejected and no unit root is 

present. When null hypothesis was not rejected, it meant that 

the time series was not stationary and required at least 

differencing once. 

The Phillips-Perron (PP) test is an alternative technique for 

correcting the serial correlation in Unit Root testing. The PP 

test uses the standard DF or ADF test, but modifies the t-ratio 

so as to prevent serial correlation to affect the asymptotic 

distribution of the test statistic. The difference between the PP 

and ADF tests is in terms of how the tests deal with the issue 

of serial correlation and heteroskedasticity in the error terms. 

The test model for the PP test is given as 

∆x� = β
3D� +	πx���+ µ�  

Where µ�  denoted I(0) which may be heteroskedastic. The 

PP tests correct the serial correlation and heteroskedasticity in 

the error terms µ�  of the tested model, by directly modifying 

the Dickey-Fuller test statistics �π = 0	 and Tπˆ. The test 

statistics denoted by Zt and Zπ are given as: 

Zt = { 
56
76	}2. tπ=0 - 

�1	
8 976�	56

76: 	;. 9<..+2(π)
56: 	; 

Zπ = Tπ=  - 
�1	
8 . 9<..+2(π)

56: 	; (λ?8 −	δ?8) 

The estimated variance parameters of: 

δ8= lim<→D E�� ∑ G[<IJ� µ�
8] and 

λ8 = lim<→D L G[
<

IJ�
E��M�8] 

are σ8and λ
8
 Where M<= ∑ µ�

NIJ� . The sample variance of 

the least square residual µ�O  is a consistent estimator of σ8, 

and the Newey - West long-run variance estimates of µ�  using 

µ�O  is a consistent estimator of λ
8
. Under the null hypothesis 

that π = 0, the PP, Zt and Zπ statistics have the same asymptotic 

distributions as the ADF t-statistics and normalized bias 

statistics. The advantage of the PP tests over the ADF tests is 

that the PP tests are robust to general forms of 

heteroskedasticity in the error term µ�  and the user need not 

to specify a lag length for the test regression. 

The basis behind Bayesian Vector Autoregression is that 

each of the time series in the system influences each other. 

This relationship needs to be tested first using Granger’s 

Causality test before the model building. So, what does 

Granger’s Causality really test? Granger Causality tests the 

null hypothesis that the coefficients of past values in the 

regression equation is zero. In simple terms, the past values of 

time series (x) do not cause the other series (y). Therefore, if 

the p-value gotten from the test is smaller than the significance 

level of 0.05, then, the null hypothesis is rejected. Generally, 

believing that a present or future event could have been caused 

by a past event, this would be identified by a Granger 

Causality. This was the impetuous for the Granger Causality 

test on time series data which gave evidence that one variable 

caused the others. The test is based on ordinary least square 

regression model and on the null hypothesis test. Based on, 

does x Granger cause y? If it does not, the null hypothesis is 

rejected. The test is based on the following Ordinary Least 

Square Regression model 

PI = QR =	+∑ �STSJ� PI�S +	∑ �S
I�S +TSJ� VI 

Here, the �S and �S are the regression coefficient and VI 	is 

the error term. The test is based on the null hypothesis: 

WR: �� =	�8 = …………=�X = 0 

If the p – value for the test is less than the designed value of 

alpha, then the null hypothesis is rejected and Granger 

Causality exists. It is assumed that the data is stationary, but if 

it were not the case, then differencing is employed before 

using the Granger Causality test. 

4.2. Residual Test Using Ljung-Box Test 

The “residuals” in a time series model are the errors that 

occurs after fitting a model. For several time series models, the 

residuals are equal to the difference between the observations 

and the corresponding fitted values. 

et = yt − P3
� 

To checking whether a model has adequately captured the 

information in the data, residuals are beneficial. The following 
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properties will be yielded in the residuals to depicted a good 

forecasting method. If there are correlations between residuals, 

then there is information left in the residuals which should be 

not be used in computing forecasts. The residuals are 

uncorrelated if; 

The residuals have zero mean. 

The residuals have constant variance. 

The residuals are normally distributed. 

5. Findings 

To ensure that the time series data contains no flaws, is 

stable and it is not affected by serial correlation, diagnostic 

analysis is put into use. To achieve these, two tests were 

conducted to ascertain the applicability of the data in this study. 

The test included Stationarity test and Granger causality test. 

The first step was to obtain the time plot graph. 

Time plot graph for the data. 

Time series graph for zone one. 

The plots exhibit a time series in nature. This graph is a 

sample representation of all the other zones as they exhibited 

the same behavior. The time plot shows seasonality behavior 

and need to be differenced and tested for stability. 

5.1. Stationarity Test 

Augmented Dickey fuller (ADF) and Phillips-Perron (PP) 

test. The Augmented Dickey-Fuller (ADF) test was 

implemented to check whether the variables were stationary or 

not. The results for two zones and global vector are used as the 

representation of this study. 

5.1.1. Zone One 

The table 1 below shows the results of dependent and 

independent variables under ADF and PP tests. 

Table 1. Zone One Stationarity Test. 

Variables ADF Test Statistics Phillips-Perron Truncation lag parameter P-Value ADF P-Value P. P Remarks 

. -2.285 -22.53 3 0.04631 0.0127 Stationary 

.� -2.6144 -12.11 3 0.03372 0.0343 Stationary 

.8 -2.129 -14.12 3 0.0523 0.0218 Stationary 

.Y -3.832 -19.58 3 0.020318 0.033 Stationary 

.Z -3.893 -10.819 3 0.0274 0.04245 Stationary 

.[ -2.312 -17.09 3 0.0453 0.01643 Stationary 

.\ -2.206 -9.378 3 0.04934 0.039382 Stationary 

It shows that under ADF and PP test for Zone one for all the variables are stationary. 

5.1.2. Zone Two 

The table 2 below, considered the variable X which showed ADF and Phillips-Perron Test Statistics. 

Table 2. Zone Two Stationarity Test. 

Variables ADF Test Statistics Phillips-Perron Truncation lag parameter P-Value ADF P-Value P. P Remarks 

. -4.347 -28.68 3 0.0357 0.01 Stationary 

.� -1.792 -7.131 3 0.655 0.0268 Stationary 

.8 -3.285 -26.15 3 0.04825 0.0119 Stationary 

.Y -3.148 -15.06 3 0.01212 0.0183 Stationary 

.Z -3.531 -14.94 3 0.0507 0.0190 Stationary 

.[ -3.914 -27.23 3 0.0235 0.0437 Stationary 

.\ -2.686 -13.16 3 0.0303 0.0138 Stationary 

The result shows that the variables were stable and they can be used for time series analysis. 

5.1.3. Global Vector 

Table 3. Global Vector Stationarity Test. 

Variables ADF Test Statistics Phillips-Perron Truncation lag parameter P-Value ADF P-Value P. P Remarks 

. -4.813 -26.706 3 0.01 0.01 Stationary 

.� -2.4932 -29.47 3 0.03792 0.01 Stationary 

.8 -2.8393 -22.79 3 0.02428 0.01865 Stationary 

.Y -2.7592 -16.337 3 0.02744 0.01019 Stationary 

.Z -3.2486 -14.789 3 0.0298 0.01997 Stationary 

.[ -2.0473 -19.717 3 0.05155 0.0437 Stationary 

.\ -2.8747 -16.708 3 0.02288 0.0382 Stationary 

 

Table 3 Represent stationarity of the Global Vector. 
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5.2. Granger Causality Test 

5.2.1. Zone One 

The Granger causality test was done, from the findings, 

model 1: x ~ Lags(x, 1:6) + Lags(x1, 1:6) and Model 2: x ~ 

Lags(x, 1:6) while the p value was 0.02134 *. For x2 against x, 

Granger causality test shown that Model 1: x ~ Lags(x, 1:6) + 

Lags(x2, 1:6). Model 2: x ~ Lags(x, 1:6) while the p value was 

0.02139 *. For x3 against x, Granger causality test shown that 

Model 1: x ~ Lags(x, 1:6) + Lags(x3, 1:6). Model 2: x ~ Lags(x, 

1:6) while the p value was 0.005139 **. For x4 against x, 

Granger causality test shown that Model 1: x ~ Lags(x, 1:6) + 

Lags(x3, 1:6). Model 2: x ~ Lags(x, 1:6) while the p value was 

0.0171 *. For x5 against x, Granger causality test shown that 

Model 1: x ~ Lags(x, 1:6) + Lags(x3, 1:6). Model 2: x ~ Lags(x, 

1:6) while the p value was 0.02694 *. For x6 against x, Granger 

causality test shown that Model 1: x ~ Lags(x, 1:6) + Lags(x6, 

1:6). Model 2: x ~ Lags(x, 1:6) while the p value was 0.05171. 

Therefore, the granger causality test for Zone one shows 

that x1 to x5 had a significant influence on the Cause of 

dependent variable x but x6 had minimal influence on the x 

variable. However, the variable was still used in the analysis 

since its significance value was closer to 0.05. 

5.2.2. Zone Two 

Table 3 showed that the Granger causality test Model 1: x ~ 

Lags(x, 1:6) + Lags(x1, 1:6). 

Model 2: x ~ Lags(x, 1:6) while the p value was 0.007123 

**. For x2 against x, Granger causality test showed that Model 

1: x ~ Lags(x, 1:6) + Lags(x2, 1:6) Model 2: x ~ Lags(x, 1:6) 

while the p value was 0.004149 **. For x3 against x, Granger 

causality test showed that Model 1: x ~ Lags(x, 1:6) + Lags(x2, 

1:6), Model 2: x ~ Lags(x, 1:6) while the p value was 

0.006399 **. For x4 against x, Granger causality test showed 

that Model 1: x ~ Lags(x, 1:6) + Lags(x2, 1:6, Model 2: x ~ 

Lags(x, 1:6) while the p value was 0.006399 **. For x5 

against x, Granger causality test showed that Model 1: x ~ 

Lags(x, 1:6) + Lags(x5, 1:6, Model 2: x ~ Lags(x, 1:6) while 

the p value was 0.03492 * For x6 against x, Granger causality 

test showed that Model 1: x ~ Lags(x, 1:6) + Lags(x5, 1:6) 

Model 2: x ~ Lags(x, 1:6) while the p value was 0.03723 * 

Therefore, the granger causality test for Zone two showed 

that all the variables were having a strong significant influence 

on the Causes of dependent variable x. Their level of 

significant was less than 0.05. 

5.2.3. Global Vector 

The hypothesis was that rainfall is not granger caused by 

temperature, humidity, wind, wind gust, Atmospheric pressure 

and radiation. 

For x1 against x, Granger causality test showed that Model 

1: x ~ Lags(x, 1:8) + Lags(x1, 1:8). 

Model 2: x ~ Lags(x, 1:8) while the p value was 0.05 **. 

For x2 against x, Granger causality test showed that Model 1: 

x ~ Lags(x, 1:8) + Lags(x2, 1:8), Model 2: x ~ Lags(x, 1:8) 

while the p value was 0.0002901 ***. For x3 against x, 

Granger causality test showed that Model 1: x ~ Lags(x, 1:8) + 

Lags(x2, 1:8). Model 2: x ~ Lags(x, 1:8) while the p value was 

0.06 ***. For x4 against x, Granger causality test showed that 

Model 1: x ~ Lags(x, 1:8) + Lags(x4, 1:8) Model 2: x ~ Lags(x, 

1:8) while the p value was 0.06 ***. For x5 against x, Granger 

causality test showed that Model 1: x ~ Lags(x, 1:8) + Lags(x4, 

1:8). Model 2: x ~ Lags(x, 1:8) while the p value was 0.05 ***. 

For x6 against x, Granger causality test showed that Model 1: 

x ~ Lags(x, 1:8) + Lags(x6, 1:8), Model 2: x ~ Lags(x, 1:8) 

while the p value was 0.0274 *.  

Therefore, the global vector had a strong granger causality 

influence on the dependent variable x. These have been 

depicted by strong level of significant in each case. 

5.3. Ljung-Box Test 

The Ljung-box test shows three items; the graph of the 

residuals, which displays the deviations from the actual values, it 

also displayed the ACF graph, which helps to check for 

uncorrelation in the residuals. It is the standard residual 

diagnostic to check if they behave as white noise and therefore 

the model can be used for forecasting. In this case the developed 

model can be used for the intended purposes of forecasting. The 

last part is the histogram, which is used to check for the gaussian 

behavior. The bell shape is well displayed in the histogram, and 

since a good forecast method should have normally distributed 

residuals, then the model would give a good forecast. 

5.3.1. Zone One 

 

Figure 2. Zone One checking residuals behavior. 

These graphs show that the residual method produces 

forecasts that appear to account for all available information. 

The mean of the residuals is close to zero and there is no 

significant correlation in the residual series. The figure 2 shows 

that the variation of the residuals stays much the same across 

the historical data, apart from the two values that are beyond 0.2 

or -0.2, and therefore the residual variance can be treated as 

constant. The histogram a normal distribution of the residual, 

which represents gaussian behavior. The ACF graph, shows that 
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the spikes are within the required limits, so the conclusion is 

that the residuals have no autocorrelation of the residuals. 

5.3.2. Zone Two 

 

Figure 3. Zone Two checking residuals behavior. 

These graphs show that the residual method gives forecasts 

that appear to account for all available information. The mean 

of the residuals is close to zero and there is no significant 

correlation in the residual series. The figure 3 of the residuals 

shows that the variation of the residuals stays much the same 

across the historical data, and therefore the residual variance 

can be treated as constant. This can also be seen on the 

histogram of the residuals. The histogram suggests that the 

residuals have a bell shape, which means that they are 

normally distributed. Consequently, forecasts from this 

developed model means that it will be quite good. 

 

Figure 4. Global Vector checking residuals behavior. 

5.3.3. Global Vector 

The time plot of the residuals shows that the variation of the 

residuals stays much the same across the historical data, and 

therefore the residual variance can be treated as constant. This 

can also be seen on the histogram of the residuals. The 

histogram suggests that the residuals are normally distributed. 

The mean of the residuals is close to zero and there is no 

significant correlation in the residual series. This shows that 

the model developed can make a good forecast. 

6. Conclusions 

The graphs of the initial time series data had seasonality, 

which prompted a need to difference once. The stationarity 

test was evaluated using two tests, ADF and PP tests. The 

conclusion was arrived at when both ADF and PP tests 

rejected the null hypothesis, thus the data was treated to be 

stationary. All zones were found to be stationary from the 

ADF and PP tests which gave a strong statistical significance 

of the p – values obtained. 

The Ganger Causality test, which was to test if there was any 

serial correlation and if the lags of the predictor variables 

influenced that of response variable was conducted. It was 

concluded that the temperature, relative humidity, atmospheric 

pressure, wind speed, radiation and wind gust, granger caused 

rainfall. This was clearly given by the statistically significant 

p-values in all the zones. The Ljung-Box test shows that the 

developed model is good for forecasting. 

7. Recommendations 

For further research, the researcher recommends use of 

more weather variables like topography, cloud cover, sun 

shine duration among others to improve the accuracy of the 

predictability. 

The study used secondary data for 2014 to 2017, therefore 

the researcher recommends that current data for 2020 and 

2021 may be used to make current future predictions. 

Climate models, only predict a range of possible future 

scenarios, the extent of how far the future would be should be 

studied. 

Finally, the researcher recommends application of other 

techniques like Random Forest and Bootstrapping technique 

to check whether the accuracy may further be improved from 

other models. 
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