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Abstract: This paper proposes adapting the semiparametric partial model (PLM) by mixing different estimation procedures 

defined under different conditions. Choosing an estimation method of PLM, from several estimation methods, is an important 

issue, which depends on the performance of the method and the properties of the resulting estimators. Practically, it is difficult 

to assign the conditions which give the best estimation procedure for the data at hand, so adaptive procedure is needed. Kernel 

smoothing, spline smoothing, and difference based methods are different estimation procedures used to estimate the partially 

linear model. Some of these methods will be used in adapting the PLM by mixing. The adapted proposed estimator is found to 

be a square root-consistent and has asymptotic normal distribution for the parametric component of the model. Simulation 

studies with different settings, and real data are used to evaluate the proposed adaptive estimator. Correlated and non-correlated 

regressors are used for the parametric components of the semiparametric partial model (PLM). Best results are obtained in the 

case of correlated regressors than in the non-correlated ones. The proposed adaptive estimator is compared to the candidate 

model estimators used in mixing. Best results are obtained in the form of less risk error and less convergence rate for the 

proposed adaptive partial linear model (PLM). 

Keywords: Backfitting Method, Combining Regression Procedures, Difference Based Method, Partially Linear Models, 

Profile Likelihood Method, Semiparametric Regression, Spline Smoothing 

 

1. Introduction 

Different methods are used for combining regression 

models. Most combinations are imposed to parametric or 

nonparametric candidate models (see for example, [14, 29, 

30, 3, 20, 31]). Yang (2001) proposed a method for 

combining nonparametric regression procedures, this method 

is called adaptive regression procedures by mixing (ARM). 

This method worked under Gaussian errors, and can be used 

where there are multiple candidate error distributions. 

Partially linear models have been first considered by these 

researchers [7, 4, 23, 27]. A partial linear model (PLM) is a 

semiparametric regression model which contains two 

components, one is parametric and the other is 

nonparametric. Parametric estimation methods are used to 

estimate the parametric component, and the nonparametric 

estimation methods are used to estimate the nonparametric 

one [9, 19]. 

This paper proposes adapting the partial linear model 

(PLM) by combining different estimation procedures and 

the resulting regression model called adaptive partial 

linear model (APLM). Different estimation schemes are 

used in estimating PLM, such as kernel smoothing, spline 

smoothing, and difference-based method. Robinson, 

Speckman, profile likelihood, backfitting are different 

estimation procedures based on kernel regression [23, 27]. 

In this work, different estimation procedures based on 

using kernel regression, spline smoothing regression 

methods are used in adapting the PLM. 

The rest of the paper is considered as follows section (2) 

presents the partially linear model (PLM), its estimation 

methods and their statistical properties. Section (3) 

introduces the proposed adaptive APLM and its theoretical 

properties. Section (4) considers numerical studies using 

simulation studies under different settings and real data 

example. The conclusions of this work are presented in 

section (5). 
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2. The Partially Linear Regression Model 

(PLM) 

2.1. The Model 

A partially linear model (PLM) takes the following form: 

( )TY X m Zβ ε= + + ,                            (1) 

where X is an (nxp) matrix of regressors in the parametric 

component of the model, Z is an (nxq) matrix of regressors in 

the nonparametric component, β  is a (px1) vector of 

unknown parameters, m is an unknown function (a 

nonparametric function) from R
q 

to R, ε is an independent 

vector of random errors with mean zero and finite variance 
2σ . A PLM in (1) is a semiparametric model since it 

contains parametric and nonparametric components. PLM is 

a preferred regression model than a fully parametric model 

and a fully nonparametric one, since PLM is a more flexible 

than the first one and combat the curse of dimensionality 

which is a well-known problem in nonparametric regression 

models. 

2.2. Estimation Methods of PLM 

Estimation of the PLM in (1) will be first started by 

estimating the parametric component, i.e., estimating the 

unknown parameter vector β . The resulting estimator of β
will be then used to estimate the nonparametric function m 

(Z). Several methods are used to estimate PLM, which may 

be divided into three sections according to the method of 

estimating the nonparametric component: 

a) Methods based on kernel regression [23, 27, 2, 11, 25, 

19]. These methods will be presented in sections (2-2-

1): (2-2-3). 

b) Methods based on regression splines [5, 21, 26-28, 34]. 

The smoothing spline method will be presented in 

section (2-2-4). 

c) Methods based on differences [32, 33, 17, 29]. 

Choosing an estimation method of PLM, from several 

estimation methods, is an important issue, which depends on 

the performance of the method and the properties of the 

resulting estimators. The interest in this work will be on 

presenting some estimation methods that will be used to form 

APLM. 

The following assumptions are needed to hold through the 

paper. 

Assumptions (2-2) 

1. Assume that the set of {Xi, Yi}, i=1, 2,…, n are i. i. d. 

design inputs. 

2. Assume that the random errors 'i sε are independent of 

(Xi, Zi), i.e., ( )\ , 0,E X Zε = and ( )2 \ ,E X Zε ∞≺ . 

3. Assume that ( )\ 0E X Z = , and the covariance matrix 

of X given Z, i.e., ( ) ( )cov \ TX Z E XX= ɶ ɶ  is a p. d. 

matrix, where ( )( )\X X E X Z= −ɶ . 

4. It is assumed that the two expectations, ( )\E X Z and 

( )\E Y Z  have bounded and continuous second 

derivatives. 

5. It is assumed that both ( )\ ,E X Y Z and ( )\ ,TE XX Y Z  

have bounded first derivatives. 

6. Assume that the first two derivatives of m(z) are 

Lipschitz continuous of order one. 

7. If Ki(z) is a weight function defined as: 

( )

1

i

n
i n

j

nj

z z
k

h
K z

z z
k

h=

 −
 
 =

− 
 
 

∑
, i=1, 2,…, n, 

is a constant, then the following conditions are satisfied by Ki 

(z): 

( )
1

1

max

n

i j
i n

j

K z O
≤ ≤

=

=∑  

( )
1

1

max

n

i j
j n

i

K z O
≤ ≤

=

=∑  

The kernel function k (z) is a symmetric density function 

with compact support and satisfies: 

( ) 1,k t dt =∫  

( ) 0,tk t dt =∫  

( )2 1.t k t dt =∫  

1. The density function of Z and (Y, Z) are bounded away 

from zero and have bounded continuous second 

derivatives. 

2.2.1. Least Squares Method (Robinson’s Estimator) 

Robinson (1988) [23], proposed a feasible least squares 

estimator of β  using a Nadaraya-Watson kernel estimator of 

the nonparametric function m (Z). Consider the conditional 

expectation of PLM in (1) given Z, 

( ) ( ) ( )\ \E Y Z E X Z m Zβ= +                 (2) 

Since ( )( ) ( )\E m Z Z m Z= , and ( )\ , 0E X Zε = . 

Subtracting (2) from (1) result in: 

( ) ( )\ \
T

Y E Y Z X E X Z β ε − = − +     (3) 

IF ( )\Y E Y Z −   and ( )\X E X Z −   are replaced by 

Yɶ and Xɶ , respectively, such that: 
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( )\Y Y E Y Z = − 
ɶ , ( )\X X E X Z = − 

ɶ .      (4) 

Equation (3) is simply a version of the standard linear 

model. Robinson (1988) proposed replacing the unknown 

conditional expectations by their kernel estimates as follows: 

( ) ( ) ( )
1

1ˆ ˆ ˆ\ /

n

i i i j h j i i

j

Y E Y Z Y K Z Z m Z
n =

= = −∑ ,       (5) 

( ) ( ) ( )
1

1ˆ ˆ ˆ\ /

n

i i i j h j i i

j

X E X Z X K Z Z m Z
n =

= = −∑ ,   (6) 

where, 

( ) ( )
1

1
ˆ

n

i h j i

j

m Z K Z Z
n =

= −∑ ,                          (7) 

and Kh(.) is a kernel function, with a bandwidth=h, defined as 

follows: 

( )
1

1
q

j i

h j i
l ll

Z Z
K Z Z K

h h=

− 
− =   

 
∏ .              (8) 

So, β  can be estimated by the standard linear regression. 

By subtracting ( )\E X Z β  from both sides of (2) and 

getting: 

( ) ( )\TE Y X Z m Zβ − =
 

,                        (9) 

which means that β can be estimated by least squares of Y 

on X, plugging ˆT
X β in (9) a nonparametric regression 

estimate can be obtained for m (Z). The proposed least 

squares estimator of β  will be as follows: 

( )( ) ( ) ( )
1

1 1

1 1ˆ ˆ ˆ ˆ ˆ1 1

n n
T T

R i i i i i i i i i i

i i

X X X X X X Y Y
n n

β
−

= =

   
= − − − −   
      
∑ ∑  (10) 

where ( )( )ˆ1 1i im Z b= ≥ , and b is a trimming parameter, 

b>0 satisfies b→0 as n→∞. The least squares estimator, β̂ is 

used in estimating the nonparametric component m (Z) as 

follows: 

( ) ( )ˆ \Tm Z E Y X Zβ = −   , 

then, 

( )
( ) ( )

( )
1

1

1 ˆ

ˆ
1

n
T

i i h i

i

n

h i

i

Y X K Z Z
n

m Z

K Z Z
n

β
=

=

− −
=

−

∑

∑
.         (11) 

Theorem (1) 

Under assumptions (2-2), the Robinson estimator ˆ
Rβ  

defined in (10) has the following properties: 

a) ˆ
Rβ  is a

n
-consistent estimator of β . 

b) ( ) ( )0
ˆ 0,

d
Rn Nβ β− → Ω , 

where, 

1 1
0 0 0 0

ˆˆ ˆ− −Ω = Φ Ψ Φ , 

( ) ( )0

1

1ˆ ˆ ˆ 1

n
T

i i i i i

i

X X X X
n =

Φ = − −∑ , 

( ) ( )2
0

1

1ˆ ˆ ˆˆ 1

n
T

i i i i i i

i

X X X X
n

ε
=

Ψ = − −∑ , 

and, 

( ) ( ) ˆˆ ˆˆ
T

i i i i i RY Y X Xε β= − − − .                    (12) 

The proof of this theorem is given in Appendix (A). 

It is found that the asymptotic distribution of ˆ
Rβ  does not 

depend on the bandwidth h. So, ˆ
Rβ  does not provide a 

method for choosing h in practice [23, 16, 15]. 

2.2.2. The Speckman Estimator 

Speckman (1988) [27] derived the parametric and 

nonparametric components estimators of PLM based on the 

modified variables of X and Y in (4). Using the sample 

values of (Yi, Xi, Ti), then: 

β̂ , 

11 1

1

p

n np

X X

X

X X

 
 

=  
 
 

⋯

⋮ ⋱ ⋮

…

, 

( )
( )

( )

1

2
( )

n

m T

m T
m T

m T

 
 
 =
 
 
  

⋮
 

Speckman considered the partial regression plots to form 

the estimators of the parametric and nonparametric 

components of (1). The algorithm will be as follows: 
a) Estimating the parametric component β: 

( ) 1
ˆ T T
Speck X X X Yβ

−
= ɶ ɶ ɶ ɶ ,                           (13) 

where, 

( )X I S X= −ɶ , ( )Y I S Y= −ɶ , 

And S is a smoother matrix defined by its elements as 

follows: 
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( )
( )

1

H i j

ij n

H i j

i

K Z Z
S

K Z Z

=

−
=

−∑
.                           (14) 

Estimating the nonparametric component m (T) as follows: 

( )ˆˆ
Speckm S Y X β= −                               (15) 

An updating step for both β and m can be used as an 

iteration step up to convergence for the estimation [27, 18]. 

Speckman (1988) [27] showed that the estimator ˆ
Speckβ  in 

(13) has asymptotic normality as Robinson estimator. 

Theorem (2) 

Under assumptions (2-2), the least squares estimator β̂  

defined in (10) has the following properties: 

a) ˆ
Speckβ  is a n -consistent estimator of β . 

b) ( ) ( )1
ˆ 0,

d
Speckn Nβ β− → Ω , 

where, 

1 1
1 1 1 1

ˆˆ ˆ− −Ω = Φ Ψ Φ , 

1
ˆ TX XΦ = ɶ ɶ , 

( ) ( )2
1

ˆ TT
X I S I S XσΨ = − −ɶ ɶ , 

The proof of this theorem is in Appendix (A). 

2.2.3. The Profile-Likelihood Method 

Severini and Wong (1992) [25] proposed estimating the 

PLM based on the conditional distribution of Y given X and 

Z. They found that this conditional distribution is parametric. 

They started by fixing the parameter vector β to estimate the 

nonparametric function mβ (Z) which depends on the fixed β. 

The resulting estimator ( )
Prof

ˆm̂ Zβ  is then used to construct 

the profile likelihood for β. They found that their estimator

Profβ̂  is estimated at n -rate and has an asymptotic normal 

distribution and is asymptotically efficient. Also, the resulting 

estimator ( )
Prof

ˆm̂ Zβ  is a consistent estimator of m(Z). The 

procedure of the profile likelihood algorithm is abbreviated 

be as follows: 

a) Estimating the parametric component β: 

( ) 1

Prof
ˆ T TX X X Yβ

−
= ɶ ɶ ɶ ɶ ,                           (16) 

where, 

( )X I S X= −ɶ , ( )Y I S Y= −ɶ , 

And S is a smoother matrix defined by its elements as 

follows: 

( )
( )

1

H i j

ij n

H i j

i

K Z Z
S

K Z Z

=

−
=

−∑
                            (17) 

b) Estimating the nonparametric component m (T) as 

follows: 

( )Prof
ˆm̂ S Y X β= −                            (18) 

The Speckaman and Profile-likelihood methods are 

coinciding for the estimation of PLM [2, 11, 18]. 

2.2.4. The Backfitting Method 

The backfitting method is referred to the studies [2, 11] as 

an iterative algorithm for estimating an additive model. The 

procedure of the backfitting algorithm will be as follows: 

a) Estimating the parametric component β: 

( ) 1
ˆ T T
back X X X Yβ

−
= ɶ ɶ ,                            (19) 

where, 

( )X I S X= −ɶ , ( )Y I S Y= −ɶ .                  (20) 

b) Estimating the nonparametric component m (T) as 

follows: 

( )ˆˆ
backm S Y X β= −                              (21) 

where S is a smoother matrix as defined in (14). 

Opsomer, and Ruppert, 1999 showed that ˆ
backβ is a n -

consistent estimator of β  for the right choice of the 

bandwidth. They proposed a method based the Empirical bias 

bandwidth selection of [24]. 

Theorem (3) 

Under assumptions (2-2), the backfitting estimator ˆ
backβ

defined in (19) has the following properties: 

a) ˆ
backβ  is a n -consistent estimator of β . (The proof is 

in Theorem 2.2 of the study [22]). 

b) ( ) ( )3
ˆ 0,

d
backn Nβ β− → Ω . (The proof is in 

Corollary 2.1 of study [22]). 

where, 

( )1 2 1
3 3 3

ˆ ˆT T TI X SX X SS Xσ− − Ω = Φ + − Φ
 

, 

( )3
ˆ TX XΦ = ɶ , and Xɶ  is as defined in (20). 

and, 

( ) ( ) ˆˆ ˆˆ
T

i i i i iY Y X Xε β= − − − . 

The proof of this theorem is in the Appendix (A). 
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2.2.4. Smoothing Spline Based-Method 

The estimation of the components of the PLM, based on 

smoothing spline, is performed by minimizing the following 

sum of square criterion (Q): 

( ) ( )( ) ( )( )2 2

1

,

n b
T

i i i
a

i

Q m Y X m z m z dZβ β λ
=

′′= − − +∑ ∫ , (22) 

The objective of Equation (22) is to estimate the parameter 

vector β and the nonparametric smooth function m (z), where 

( )m′′ ⋅  is the second derivative of ( )m ⋅ , and λ is a smoothing 

parameter which controls the trade-off between having a 

linear function when λ→0 or having a wiggly function when 

λ→∞ [6, 8, 24]. 

Applying the estimation scheme of [27], the spline 

smoothing algorithm will be as follows: 

a) Given a smoothing parameter λ, find a smoothing 

matrix Sλ which depend on λ. 

b) Estimate the parametric component β as: 

( ) 1
ˆ T T
Spline X X X Yβ

−
= ɶ ɶ ɶ ɶ ,                           (23) 

where, 

( )X I S Xλ= −ɶ , ( )Y I S Yλ= −ɶ , are the residuals of both 

X and Y, respectively. 

a) Estimate the nonparametric component m (z) as follows: 

( )ˆˆ
Splinem S Y Xλ β= −                               (24) 

b) Choosing different values of λ  until minimizing 

function Q in (22). The studies [6, 4] suggested using a 

generalized cross-validation method as a way of 

choosing λ . 

Theorem (4) 

Under assumptions (2-2), smoothing spline estimator

ˆ
Splineβ defined in (23) has the following properties: 

a) ˆ
Splineβ  is a n -consistent estimator of β .3 

b) ( ) ( )3
ˆ 0,

d
Splinen Nβ β− → Ω . 

where, 

1 1
3 3 3 3

ˆˆ ˆ− −Ω = Φ Ψ Φ ,  

and, 

3

1ˆ TX X
n

Φ = ɶ ɶ , 

( ) ( )2
3

1ˆ ˆ
TTX I S I S X

n
λ λεΨ = − −ɶ ɶ , 

and, 

2 2 2
1

ˆ ˆ ˆ( ,..., )ndiagε ε ε= . 

The proof of this theorem is in Appendix (A). 

3. The Proposed Adaptive Partially 

Linear Model (APLM) 

3.1. The Model 

Estimation methods of the PLM perform well under 

different conditions. Therefore, adaptive partial linear model 

(APLM) is proposed to handle the practical problems under 

any condition. Consider the ith copies (Yi, Xi, Zi) for the 

PLM in (1), where 

( )T
i i i iY X m Zβ ε= + + , i=1, 2,…, n 

where Xi is p-vector of covariates of the parametric part, Zi is 

a q-vector covariates of the nonparametric part, and the error 

terms 'i sε  are assumed to be independent with a conditional 

mean zero given the covariates X and Z. 

3.2. APLM Algorithm 

Let jδ , j=1, 2, 3 denotes the regression estimation 

procedures used in this work such that: 

1δ : is the Speckman estimation procedure, 

2δ : is the backfitting estimation procedure, and 

3δ : the spline smoothing procedure. 

The proposed APLM algorithm for mixing the three 

procedures is determined as follows: 

1. The used data are splitted into two equal sections, the 

first section is used for estimation and the second is 

used for prediction evaluation. 

2. The estimators of β and ( )m Z  are obtained for each 

method i.e., ˆ
jβ and ( )ˆ

jm Z , j=1, 2, 3, using the first 

section of data (i=1, 2,…, n/2). 

3. The error distribution is computed for each method j 

using the second section of data (i=n/2+1,…, n): 

1
2

ˆ

ˆ

n
i ij

j
jn

i

Y Y
Q f

σ
= +

 −
 =
 
 

∏ ,                         (25) 

where ( )ˆˆ ˆT
ij i j j iY x m Zβ= + , 1,...,

2

n
i n= + , and j=1, 2, 3. If 

the function f is normal, then the function jQ will be as 

follows: 

( )
( )2

/4 /2

2

1
2

ˆ

ˆ2 exp
ˆ2

n
i ijn n

j j

n j
i

Y Y
Q σ

σ
− −

= +

 
− 

= Π − 
  
 

∑       (26) 

4. For mixing the three estimation procedures, the 

following quantity is computed as a weight used for 

mixing: 
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3

1

j

j

j

j

Q
W

Q

=

=

∑ .                             (27) 

5. The above four steps will be repeated many times to 

obtain the average of jW , i.e. jW . If jW  is the average 

weight for procedure jδ , then the adaptive prediction 

of PLM will be obtained as: 

3

1

ˆˆ ˆ ˆT
APLM j j APLM APLM

j

Y W Y X mβ
=

= = +∑ ,  (28) 

where, 

( )ˆˆ ˆT
j j jY X m Zβ= + ,                      (29) 

1

ˆ ˆ
n

APLM j j

j

Wβ β
=

=∑ ,                      (30) 

and 

3

1

ˆ ˆ
APLM j j

j

m W m

=

=∑                         (31) 

Theorem (5) 

Under assumptions (2-2), the APLM estimator ˆ
APLMβ  of 

β defined in (30) has the following asymptotic properties: 

a) ˆ
APLMβ  is a n -consistent estimator of β . 

b) ( ) ( )ˆ 0,
d

APLM nn Nβ β− → Ω , 

The proof of this theorem is in Appendix (A). 

Corollary (1) 

Let 1 2
ˆ ˆ ˆ, ,..., kβ β β  be a sequence of independent estimators 

for the parametric component β  in PLM. If the sequence of 

ˆ
j jW β , for j=1, 2,…, k, converges in distribution to 

( ),j jN W β Ω , where jW  is a quantity such that 

1

1

k

j

j

W

=

=∑ , 

and jΩ  is a covariance matrix of ˆ
j jW β , then the linear 

combination 

1

ˆ
k

j j

j

W β
=
∑  converges in distribution to 

( ), nN β Ω , where 

1

.

k

n j

j=

Ω = Ω∑  

The proof of Corollary (1) is omitted, since this corollary 

is a generalization of Theorem (4). 

4. Numerical Experiments 

Simulation and real data will be used for comparing the 

proposed adaptive APLM with individual regression 

procedures. The performance of APLM will be evaluated 

using the squared loss between in prediction betweenY and 

ˆ
jY as will be shown in (32). 

4.1. Simulation Studies 

4.1.1. Simulation Assumptions 

Three regression estimation procedures δj’s, j=1, 2, 3 are 

defined as follows: 

δ1: for Speckman’estimator. 

δ2: for backfitting estimator. 

δ3: for smoothing spline estimator. 

The following assumptions are used: 

1. It is assumed that there are two regressors in the 

parametric component, X1 and X2, and one regressor, Z 

in the nonparametric component of the model. 

2. The bandwidth parameter, h, used in computing the 

Speckman and backfitting estimators is assumed equal 

0.5. 

3. The smoothing spline parameter, λ , used in computing 

the smoothing spline estimator is assumed equal 0.95. 

4. ( )1 2,X X X= , 1X  ( )0,1uniform , 2X  ( )0,1uniform , 

( )1, 1.5β = − , Z  ( )0,1uniform , and ε  ( )0,0.5N . 

5. Two cases with five true models will be used in the 

simulation with different sample sizes: n=20, 50, 100, 

and 200 as follows: 

Case One: Dependent Regressors: 

In this case, it is assumed that there is a relation between 

X1, X2, and Z as follows: 

( )1jX Z Uρ ρ= + − , for j=1, 2, 

where, 0.75ρ = , and U  ( )0,1uniform . 

Case Two: Independent Regressors: 

In this case, it is assumed that there is no relation between 

X1, X2, and Z. 

The Models: 

Five models will be used in this study as follows: 

Model (1): ( )2 3
T

Y X Sin Zβ ε= + +  

Model (2): ( )2
0.5

T
Y X Zβ ε= + − +  

Model (3): ( )exp 2 0.5
T

Y X Zβ ε= + − +  

Model (4): ( ) ( )2
0.5 exp 2 0.5

T
Y X Z Zβ ε= + − + − + . 

Model (5): ( )22
2 exp 2 0.5

T
Y X Z Zβ ε= + + − + . 

In each case the three regression estimation methods 1δ , 

2δ , and 3δ are computed and compared with APLM using 

different sample sizes n=10, 20, 50, 100, and 200. The 

average squared loss (ASL) in prediction is used as an 

evaluation criterion computed over 1000 replications as 

follows: 

( )( ) ( )( )1 ˆ ˆ\ , \ ,
1000

T

ASL Y E Y X Z Y E Y X Z= − − ,    (32) 
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where, ( ) ( )ˆˆ ˆ\ , TE Y X Z X m Zβ= + . 

4.1.2. Simulation Results 

a) Case One: (dependent regressors): 

Tables 1-5 shows the average squared loss (ASL) in (32) 

for the five models. Best results (bold and italic numbers) are 

obtained for all model in the form of less ASL. In Table 3 for 

model (3), the ASL for smoothing spline estimator equals 

that of APLM when the sample size n=200. 

Table 1. The average squared loss (ASL) for Model (1)-dependent case. 

N 
Speckman’ 

estimator 

Backfitting 

Estimator 

Smoothing 

Spline estimator 

APLM 

Estimator 

10 0.0032530 0.0313660 0.0050805 0.0032259 

20 0.0064236 0.0313868 0.0077545 0.0063990 

50 0.0144990 0.0913750 0.0094870 0.0044983 

100 0.0374200 0.2010470 0.0216320 0.0374200 

200 0.0673550 0.4504880 0.0389500 0.0373550 

Table 2. The average squared loss (ASL) for Model (2)-dependent case. 

N 
Speckman’ 

estimator 

Backfitting 

Estimator 

Smoothing 

Spline estimator 

APLM 

Estimator 

10 0.001376 0.001378 0.001444 0.001366 

20 0.002481 0.002798 0.002562 0.002454 

50 0.009949 0.019527 0.009439 0.009429 

100 0.022103 0.023630 0.021530 0.021529 

200 0.041432 0.041650 0.038870 0.038317 

Table 3. The average squared loss (ASL) for Model (3)-dependent case. 

N 
Speckman’ 

estimator 

Backfitting 

Estimator 

Smoothing 

Spline estimator 

APLM 

Estimator 

10 0.001622 0.002988 0.001740 0.001621 

20 0.001522 0.001773 0.001484 0.001422 

50 0.013325 0.013379 0.011973 0.011435 

100 0.024988 0.025734 0.024012 0.024011 

200 0.051800 0.055376 0.051038 0.051038 

Table 4. The average squared loss (ASL) for Model (4)-dependent case. 

N 
Speckman’ 

estimator 

Backfitting 

Estimator 

Smoothing 

Spline estimator 

APLM 

Estimator 

10 0.003179 0.0035487 0.003090 0.003063 

20 0.004414 0.0061213 0.004483 0.004410 

50 0.011674 0.0220990 0.011160 0.011151 

100 0.025925 0.0290460 0.055310 0.025755 

200 0.053093 0.0554160 0.050940 0.050660 

Table 5. The average squared loss (ASL) for Model (5)-dependent case. 

N 
Speckman’ 

estimator 

Backfitting 

Estimator 

Smoothing 

Spline estimator 

APLM 

Estimator 

10 0.020710 0.223490 0.012223 0.020600 

20 0.088107 0.814354 0.037381 0.037101 

50 0.210667 3.237850 0.015437 0.012106 

100 0.618449 5.150950 0.033938 0.031844 

200 1.106305 9.119636 0.040787 0.000400 

b) Case Two: (independent regressors): 

Tables 6-10 shows the average squared loss (ASL) in (32) 

for the five models. Best results (bold and italic numbers) are 

obtained for all model in the form of less ASL. Some best 

results are obtained for smoothing spline estimator, in Table 6 

for model (1) when n=50, in Table 7 for model (2) when 

n=200, in Table 9 for model (4) when n=100, and in Table 10 

for model (5) when n=100 and n=200. 

Table 6. The average squared loss (ASL) for Model (1)-Independent case. 

n 
Speckman’ 

estimator 

Backfitting 

Estimator 

Smoothing 

Spline estimator 

APLM 

Estimator 

10 0.003253 0.031366 0.005080 0.003250 

20 0.006423 0.031386 0.007754 0.006399 

50 0.014449 0.091375 0.009487 0.014498 

100 0.037420 0.201047 0.021632 0.037420 

200 0.067355 0.450488 0.038950 0.067355 

Table 7. The average squared loss (ASL) for Model (2)-Independent case. 

n 
Speckman’ 

estimator 

Backfitting 

Estimator 

Smoothing 

Spline estimator 

APLM 

Estimator 

10 0.001376 0.001378 0.001444 0.001366 

20 0.002481 0.002798 0.002562 0.002445 

50 0.009949 0.019527 0.009439 0.009390 

100 0.022103 0.023630 0.021530 0.021499 

200 0.041432 0.041650 0.038870 0.040317 

Table 8. The average squared loss (ASL) for Model (3)-Independent case. 

n 
Speckman’ 

estimator 

Backfitting 

Estimator 

Smoothing 

Spline estimator 

APLM 

Estimator 

10 0.006857 0.001601 0.007170 0.000685 

20 0.002290 0.005615 0.002289 0.002235 

50 0.016869 0.016980 0.016083 0.016868 

100 0.023635 0.023631 0.021648 0.021635 

200 0.052850 0.054238 0.053467 0.051751 

Table 9. The average squared loss (ASL) for Model (4)-Independent case. 

n 
Speckman’ 

estimator 

Backfitting 

Estimator 

Smoothing 

Spline estimator 

APLM 

Estimator 

 0.001621 0.002988 0.001740 0.001620 

 0.001522 0.001773 0.001484 0.001512 

 0.013325 0.013379 0.011973 0.011325 

 0.024988 0.025734 0.024012 0.024988 

 0.051800 0.055376 0.050609 0.050606 

Table 10. The average squared loss (ASL) for Model (5)-Independent case. 

n 
Speckman’ 

estimator 

Backfitting 

Estimator 

Smoothing 

Spline estimator 

APLM 

Estimator 

10 0.051370 0.086246 0.038444 0.006900 

20 0.032373 0.697480 0.013787 0.013684 

50 0.034683 4.805047 0.013186 0.013146 

100 0.400107 5.507278 0.022834 5.507278 

200 0.961307 9.199111 0.056496 9.199111 

4.2. Real Data Examples 

The APLM is illustrated using a real data example called 

the current population survey (CPS). The CPS data are taken 

from a population survey in 1985 in USA. (See Berndt, 

1991). The CPS data contains 534 observations on 11 

variables to study the determinants of wages. The variables 

are wage, education, experience, age, ethnicity, region, 

gender, occupation, sector, union, and married. In this work, 

the interest will be in the effect of gender and education 

variables (parametrically), and experience variable 

(nonparametrically) on the person’s wage. 

Table 11 shows the results of APLM for CPS data. From 

Table 11, best results (bold and italic number) are obtained 
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for APLM in the form of less ASL compared to the other 

methods. Figures 1-3 shows the estimated nonparametric 

functions using Speckman, backfitting, and smoothing spline 

estimator for the variable experience of the partial linear 

model (PLM). 

Table 11. The average squared loss (ASL) for CPS data. 

N 
Speckman’ 

estimator 

Backfitting 

Estimator 

Smoothing 

Spline estimator 

APLM 

estimator 

534 103.3909 913.8942 104.4412 103.0753 

 

 

Figure 1. Speckman estimator of PLM for CPS data. 

 
Figure 2. Backfitting estimator of PLM for CPS data. 
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Figure 3. Smoothing Spline estimator for CPS data. 

5. Conclusions 

In this work, the semiparametric partial linear model 

(PLM) is adapted by mixing different estimation procedures 

defined under different conditions. Kernel smoothing, spline 

smoothing, and backfitting methods are different estimation 

procedures used to estimate the partially linear model. These 

methods are used in adapting the PLM by mixing. 

Theoretically, the adapted proposed estimator APLM is found 

to be a n -consistent and has asymptotic normal 

distribution for the parametric component of the model. Also 

practically, best results are obtained for APLM in the form of 

less average squared loss (ASL) in prediction. In the 

simulation studies, best results are obtained when the 

regressors in both the parametric and nonparametric 

components are related (dependent) than that in the case of 

independency. This means that the proposed APLM is more 

appropriate in the case of dependent regressors. 

Appendix 

Proof of Theorem (1) 

To prove that ˆ
Rβ  is a

n
-consistent estimator of 

β :Suppose that: * ˆ
i i iX x x= − , and * ˆ

i i iY y y= − . Consider 

ˆ
Rβ  as defined in (10): 

( )( ) ( )( )

( )( )

1

1 1

1

* * * *

1 1

1 1ˆ ˆ ˆ ˆ ˆ1 1

1 1
1 1

n n
T T

R i i i i i i i i i i

i i

n n
T T

i i i i i i i i

i i

X X X X X X Y Y
n n

X X X X m z
n n

β

β ε

−

= =

−

= =

   
= − − − −   
      

   
= + +   
      

∑ ∑

∑ ∑

 

For simplicity, the indicator 1i will be removed and ˆ
Rβ

will be written as follows: 

( )

( )

1

* * * * * *

1 1 1 1

1 1

* * * * * *

1 1 1 1

1 1 1 1ˆ

1 1 1 1

n n n n
T T

R i i i i i i i i

i i i i

n n n n
T T

i i i i i i i i

i i i i

X X X X X m z X
n n n n

X X X m z X X X
n n n n

β β ε

β ε

−

= = = =

− −

= = = =

   
= + +   
      

       
= + +       

       
       

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑
 (A1) 

If the matrix * *

1

1
n

T
i i

i

X X
n =

 
 
 
 
∑ has an inverse (nonsingular), 

then the limit of ˆ
Rβ  as n→∞ (plim) will be as: 

( )

( )

1 1

* * * * * *

1 1 1 1

1 * 1 *
0 0

1 1

1 1 1 1ˆplim plim plim

1 1ˆ ˆplim plim

n n n n
T T

R i i i i i i i i

i i i i

n n

i i i i

i i

X X X m z X X X
n n n n

X m z X
n n

β β ε

β ε

β

− −

= = = =

− −

= =

       
= + +       

       
       

   
= + Φ + Φ   

   
   

=

∑ ∑ ∑ ∑

∑ ∑
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∴ ˆ
Rβ  is a consistent estimator of β . 

Also, it can be shown that ˆ
Rβ  is a n -consistent 

estimator of β  as follows: 

( ) ( ) ( )( )
1

1 1

1

* * * *

1 1

1 1ˆ ˆ ˆ ˆ ˆcov( ) cov 1 1

1 1
cov 1 1

n n
T T

R i i i i i i i i i i

i i

n n
T

i i i i i i

i i

X X X X X X Y Y
n n

X X X Y
n n

β
−

= =

−

= =

     = − − − −    
        

     =     
        

∑ ∑

∑ ∑

∵

For simplicity, the indicator 1i will be removed and cov( ˆ
Rβ ) 

will be written as follows: 

( )( )

1

* * * *

1 1

1

* * *

1 1

1

* * 2 * * * *

1 1 1

1 1ˆcov( ) cov

1 1
cov

1 1 1
ˆ

n n
T

R i i i i

i i

n n
T

i i i i i

i i

n n n
T T T

i i i i i i i

i i i

X X X Y
n n

X X X m z
n n

X X X X X X
n n n

β

ε

ε

−

= =

−

= =

−

= = =

     =     
        

     = +    
        

     
=     
         

∑ ∑

∑ ∑

∑ ∑ ∑
1−




 (A2) 

Since the covariance of ˆ
Rβ  is O (1/n), then the 

convergence rate of ˆ
Rβ  is 1/2n− , i.e. ˆ

Rβ  is n -consistent 

estimator of β . 

To prove that ( ) ( )1 1
0 0 0

ˆ ˆˆ ˆ0,
d

Rn Nβ β − −− → Φ Ψ Φ : 

From (A-1), 

( )

( )

1

* * * * * *

1 1 1 1

1 1

* * * * * *

1 1 1 1

1 1 1 1ˆ

1 1 1 1

n n n n
T T

R i i i i i i i i

i i i i

n n n n
T T

i i i i i i i i

i i i i

X X X X X m z X
n n n n

X X X m z X X X
n n n n

β β ε

β ε

−

= = = =
− −

= = = =

   
= + +   
      

       
= + +       

       
       

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

( ) ( )

( )

1

* * * *

1 1 1

1

* * * *

1 1 1

1 1 1ˆ

1 1

n n n
T

R i i i i i i

i i i

n n n
T

i i i i i i

i i i

n n X X X m z X
n n n

X X X m z X
n n

β β ε

ε

−

= = =
−

= = =

   
− = +   

      

    
 = +   

    
    

∑ ∑ ∑

∑ ∑ ∑

 

Since ˆ p
Rβ β→ , and conider (A2), then: 

* * * *

1

1
n

pT T
i i i i

i

X X E X X
n =

 →  ∑ , and 
2 * * 2 * *

1

1
ˆ ˆ

n
pT T

i i i i i i

i

X X E X X
n

ε ε
=

 →
 ∑ . 

The following inequality holds from the Cauchy-schwarz 

inequality: 

( )
1/2

2 1/2
2 * * * * 4ˆ ˆT T
i i i i i iE X X E X X Eε ε ≤   

. 

Also, from the Schwarz matrix inequality, it can be shown 

that: 

( ) ( )
1/2 1/2

2 41/2 1/2
* * 4 * 4ˆ ˆT
i i i i iE X X E E X Eε ε   ≤      

, 

and, ( )1/24
* 4ˆ
i iE X E ε  ∞ 

 
≺ . 

Using the central limit theorem, it is found that: 

( )*
0

1

1
0,

n
d

i i

i

X N
n

ε
=

→ Ω∑ . 

Given that: 
* *

0

1

1
n

pT
i i

i

X X
n =

→Φ∑ , and 
2 * *

0

1

1
ˆ

n
pT

i i i

i

X X
n

ε
=

→ Ψ∑  

then using Slutsky’s theorem, we have: 

( ) ( )0
ˆ 0,

d
n Nβ β− → Ω , 

where, 

( )1 1
0 0 0 0

ˆˆ ˆ− −Ω = Φ Ψ Φ  

Proof of Theorem (2) 

a) To prove that ˆ
Speckβ  is a n -consistent estimator of β : 

the proof is similar to that ˆ
Rβ in Theorem (1). 

b) To prove that ( ) ( )1
ˆ 0,

d
Speckn Nβ β− → Ω : See 

Theorem (4) of Speckman (1988). 

Proof of Theorem (3) 

a) To prove that ˆ
backβ  is a n -consistent estimator of β : 

the proof is in Theorem 2.2 of Opsomer and Ruppert 

(1999). 

b) To prove that ( ) ( )2
ˆ 0,

d
backn Nβ β− → Ω : See 

Corollary 2.1 of Opsomer and Ruppert (1999). 

Proof of Theorem (4) 

a) To prove that ˆ
Splineβ  is a n -consistent estimator of 

β : the proof is similar to that ˆ
Rβ in Theorem (1). 

b) To prove that ( ) ( )3
ˆ 0,

d
Splinen Nβ β− → Ω : the 

proof is similar to that ˆ
Rβ in Theorem (1).(See also, 

Holland 2017). 

Proof of Theorem (5) 

a) To prove that ˆ
APLMβ  is a

n
-consistent estimator of 

β : 

3

1 1 2 2 3 3

1

ˆ ˆ ˆ ˆ ˆ
APLM j j

j

W W W Wβ β β β β
=

= = + +∑ ,           (A3) 

where 1
ˆ ˆ

Speckβ β=  (Speckman estimator), 2
ˆ ˆ

backβ β=  
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(backfitting estimator), and 3
ˆ ˆ

Splineβ β=  (spline smoothing 

estimator). In Theorems (1:4), it is shown that the Robinson 

estimator ( )ˆ
Rβ , the Speckman estimator ( )ˆ

Speckβ , 

backfitting estimator ( )ˆ
backβ , and the spline smoothing 

estimator ( )ˆ
Splineβ  are all n -consistent estimators of β . 

Since ˆ
APLMβ  is a linear combination of three independent 

estimators 1β̂ , 2β̂ , and 3β̂ , then ˆ
APLMβ  in (A3) can be 

proved as a consistent estimator as follows: 

3

1

1 1 2 2 3 3

3

1

ˆ ˆplim plim

ˆ ˆ ˆ                  plim plim plim

                  .

APLM j j

j

j

j

W

W W W

W

β β

β β β

β β

=

=

=

= + +

= =

∑

∑

 

Then ˆ
APLMβ  is a consistent estimator of β . Also, It can 

be proved that ˆ
APLMβ  is a n -consistent estimator of β  as 

follows. 

( ) ( ) ( ) ( ) ( )ˆ ˆ ˆ ˆ ˆ ˆ ˆcov cov cov cov covAPLM R Speck Spline R Speck Splineβ β β β β β β= + + = + +  

since the three estimators are independent. As it is proved in 

theorems (1:4), that each of the three estimators is a n -

consistent estimator of β , then from (A2) it is found that the 

covariance of ˆ
Rβ  is O(1/n), and the convergence rate of ˆ

Rβ  

is 1/2n− , i.e. ˆ
Rβ  is n -consistent estimator of β . Also, the 

same is true for ˆ
Speckβ , ˆ

backβ , and ˆ
Splineβ , and so the 

( )ˆcov APLMβ  is O(1/n), with convergence rate of 1/2n− , and 

ˆ
APLMβ  is a n -consistent estimator of β . 

b) To prove that ( ) ( )ˆ 0,
d

APLM nn Nβ β− → Ω : 

From Theorem (2), it is shown that: 

( ) ( )1
ˆ 0,

d
Speckn Nβ β− → Ω , 

from Theorem (3), it is shown that: 

( ) ( )2
ˆ 0,

d
backn Nβ β− → Ω , and from Theorem (4), it is 

shown that: ( ) ( )3
ˆ 0,

d
Splinen Nβ β− → Ω , 

Since 1 1 2 2 3 3
ˆ ˆ ˆ ˆ

APLM W W Wβ β β β= + +  from (A3), 

then ( ) ( )ˆ 0,
d

APLM nn Nβ β− → Ω , 

where 

3
2

1

n j j

j

W

=

Ω = Ω∑ .  
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