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Abstract: The Second order kronecker model for simplex-centroid design was fitted where data was for feed supplements 
blend using a mixture of soya beans, maize jam, cotton seed and fish meal guided by design points in the simplex-centroid 
design and the respose was the yield of milk in litres. The main objective was to fit a Kronecker model in the simplex-centroid 
design to formulate optimum dairy meal concentrates. Use the data to fit the second order kronecker model for four 
components simplex-centroid design. From the Kronecker regression function, coefficient matrix was derived from selected 
parameter subsystem of interest, moment matrix was then obtained. Information matrix and improved information matrix were 
derived. The collected data was fitted in the derived Kronecker model and the estimates of the parameters as well as overall 
model performance were numerically obtained. ANOVA was run to incorporate the constant term. From the analysis it was 
found that Kronecker model provided a good fit. Therefore the results support that the feed supplement had significant effect to 
milk productivity. For optimal production the research recommend that more than one ingredients need to be blend. Blends 
with soya beans and fish meal in two, three and four ingredients were statistically significant and therefore recommended for 
optimal milk production. From the ANOVA it was found that other factors not included in this study affect milk productivity 
and therefore the research recommends further studies be done to investigate those other factors such as the breeds, feeding 
practices and also effect of supplement to other dairy products. 
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1. Introduction 

In this section we discussed the background of the study 
by describing the mixture experiment, dairy meal 
concentrates and their importance to dairy animals and their 
formulation. Scholarly studies are reviewed here. We then 
formulate the study problem giving the study objectives. The 
scope of the study is also discussed incorporating the study 
assumptions. 

Background of the study 

Mixture experiment involves proportion of one or more 
ingredients for optimizing one or more criteria. There are 
often many competing criteria that could be considered in 

selecting the design, and one is typically forced to make 
trade-offs between these objectives when choosing 
competing design. The measured response is assumed to 
depend only on the proportions of the ingredients present in 
the mixture and not on the amount of the mixture, [1]. 

Feed formulation is the process of selecting, blending, 
processing and mixing of ingredients to make animal feeds. 
Typical formulations indicate the amounts of each ingredient 
that should be included in the diet, and then provide the 
concentration of nutrients in the diet. The nutrient 
composition of the diet will indicate the adequacy of the diet 
for the particular class of dairy animals for which it is 
prepared (e.g. lactating or dry animals, young or weaner 
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groups). It is common to show the energy and protein 
contents of the diet but comprehensive information on 
concentrations of mineral elements and amino acids may also 
be provided. The balancing of animal feeds are based on the 
principles of feed formulation. 

The objective of feed formulation is to utilize knowledge 
about nutrients, feedstuffs and animals in the development of 
nutritionally adequate rations that will be eaten in sufficient 
amounts to provide the desired level of production at 
reasonable cost. To achieve this objective, a blend of 
knowledge is required for optimum results. A ration is 
balanced when all the required nutrients are present in the 
feed ingested by the animal during a period of 24 hours. 

Dairy animal’s daily nutrient requirements should be 
calculated on realistic production goals. Specific factors to 
consider are milk production and composition, animal 
activity, body weight, stage of pregnancy and changes in 
body condition. In practice, it may be necessary to consider 
only those nutrients that are likely to be limiting or deficient 
(energy, proteins, macro-elements and amino acids). 

Present day high milk producing animals in the Eastern 
Africa region are the result of years of genetic improvement 
programmes. However, poor feed, inadequate in both quality 
and quantity, is a major constraint in efforts to improve the 
productivity of livestock in many smallholder production 
systems in the region; whether mixed farming, pastoral or 
agro-pastoral. The principal sources of feed for ruminants in 
mixed crop-livestock systems are crop residues 
complemented with forage collected from communal land, 
forests, roadsides or fallow land, or by grazing animals on 
those lands. This feeding regime often does not meet the 
nutritional requirements for maintaining high milk 
production of dairy animals. Adding a supplement of 
concentrates helps meet the high demand for nutrients needed 
to sustain high milk production. 

In Kenya, milk is traditionally produced at the lowest 
possible cost from a pastures and crop residues-based feeding 
system. The price of milk has been low and constantly 
fluctuates with seasons. Since mid-2002 milk market prices 
in Kenya have been rising steadily, and there has been a 
tendency to move from pastoral milk production to more 
intensive systems, where commercial dairy concentrates are 
fed as supplements. Such a scenario calls for more localized 
feeding methods such as Total Mixed Ration (TMR) or 
supplementations based on simple feed formulation 
approaches. 

Various evaluation techniques have been used in the 
formulation of dairy feeds. Wagner and Stanton in [2], used 
Pearson square. However this technique can only balance one 
nutrient at a time. Least cost formulation based on linear 
programming has also been used, [3]. This technique requires 
commercial feed software which is costly for most extension 
organization in developing countries and return on 
investment when using them on a small scale does not justify 
its purchase. 

This research is an extension of Muriungi, et al. in [4], 
where polynomial model in simplex-Centroid for four 

components design to formulate optimum dairy feed was 
used. We therefore adopts a mixture experiment design which 
is a special type of a response surface experiment in which 
the factors are the ingredients or components of the mixture; 
the response is a function of the proportions of each 
ingredient. The proportional amounts of each ingredient are 
typically measured by weight, volume, and ratio and so on as 
described by Myers, et-al in [5]. They also defined Response 
surface methodology as a collection of statistical and 
mathematical techniques useful for developing, improving 
and optimizing process, and response is the performance 
measure of a given process. However, we fitted the second 
order Kronecker model for the four components in simplex-
centroid design. 

The objective of the study was to use the second order 
Kronecker model for four components in Simplex-Centroid 
design to formulate the optimum dairy concentrate. We 
therefore seek to derive the second order Kronecker model 
using a subsystem of interest and fit data on the model to 
determine the points of the design that yields optimum 
response. 

Dean, et al. in [6], used least- cost feed formulation for 
dairy cattle to the next logical step of profit maximization. 
Linear programming model presented selects simultaneously 
the concentrate and roughage components of the ration, the 
roughage-concentrate ratio, level of feeding per cow and 
quantity of milk production maximizing income above feed 
costs. They presented the nutritional and economic aspects of 
the model in mathematical form. This was followed by 
illustrations on nutritional specifications which include body 
maintenance requirements and milk production response 
curve associated with alternative levels of energy and protein 
fed. They recommended an improvement of the model by 
research designed to define more precisely the milk 
production response relationships for cows of different 
ability, size, breed, stage of lactation and other determinants. 

Chakeredza et al. in [7], used linear programming to 
formulate a least cost ration. The least cost formulation was 
described as a mathematical solution based on linear 
programming. 

Mahmut, et al. in [8], used Mixture design to investigate 
the effects of four different gums (xanthan gum, guar gum, 
alginate and locust bean gum) and their combinations on the 
rheological properties of a prebiotic model instant hot 
chocolate beverage (including 3.5% inulin) and to determine 
their interactions in the model beverage. Simplex centroid 
mixture design was applied to predict the physicochemical 
(soluble solids, pH, colour properties) and rheological 
parameters (consistency index (K), flow behaviour index (n) 
and apparent viscosity (η50)) of the samples. In the model, the 
optimum gum combination was found by simplex centroid 
mixture design as 59% xanthan gum and 41% locust bean 
gum, and the highest K value was 33.56 Pa sn. The increase 
of guar gum and alginate in the gum mixture caused a 
decrease in the K value of the sample. 

Okpala and Okoli in [9] used three ingredients. Biscuits 
were produced by blends of pigeon pea, sorghum and 
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cocoyam flours. Ten formulations were obtained from this 
design. 

In their paper “A V-optimal design for Scheffe’ 
polynomial model”, Shuangzhe and Heinz in [10], applied 
the weighted simplex centroid design to obtain V-optimal 
allocations of the observations and showed optimality over 
the entire simplex using the equivalence theorem. 

Koske et-al. in [11], indicated that the goal of an 
experimenter is to obtain a design that gives maximum 
information. They investigated mixture experiments on 
second degree Kronecker model. They showed how a design 
can be improved by using a parameter subspace. 

Gaylor and Sweeny in [12] studied optimum allocation. 
They said that a region of interest does not necessarily 
correspond to the region available for experimentation 
0 1x≤ ≤ . They said that the allocation of experimental data 
points minimizes the average variance of the predicted values 
occurring according to the density function in the region of 
prediction is derived as ŷ=α+βz. The errors of this relation 
were assumed to be uncorrelated and of a common variance 

2
yσ . 

Coetzer and Focke in [13], used mixture design in mixing 
fluids. They viewed mixture conceptually as a hypothetical 
collection of fluid clusters. The mixture model was defined 
by prescription for estimating fluid cluster properties and 
combining them to yield an overall mixture property. A 
particular flexible form was obtained using a generalized 
weighted power- means with the weighting based on global 
mole fractions , 0 1, 1, 1, 2i i ix x x i q≤ ≥ = =∑ ⋯ . Optimal 

designs for estimating the parameters in the generalized 
weighted power-mean mixtures were presented. They 
concluded that the simplex centroid design is very efficient in 
estimating the parameters of the model and that it is not 
dependent on initial guesses for the parameter estimates. 
They suggested that these designs may be employed for 
determining initial parameter estimates for employing a 
sequential design strategy. 

Scope of the study 

Second degree Kronecker model for four mixture 
components was derived and data fitted on the model. This 
was numerically analyzed. 

The second-degree Kronecker model has all entries 
homogeneous in degree four and reflects the statistical 
properties of a design � 

The primary concern of the experimenter was to learn 
more about the subsystems of interest. Therefore the 
coefficient matrix K  was computed from given subsystems 
of interest. This allows the designer to evaluate the 
performance of a design relative to the subsystems of interest 
only. 

From the coefficient matrix, moment matrix was derived 
and the information matrix derived. 

Data was fitted on the Kronecker model and the model was 
analyzed. 

The study assumed that there was homogeneity in data 
primary feeding practices for the dairy animals in which the 
data was collected as well as control of external factors such 

as diseases. 

2. Materials and Methods 

2.1. Introduction 

In this section we discuss the general design problem for 
the kronecker model, data collection and analysis procedure 
were also be discussed. 

2.2. Kronecker Model 

The study was extended to designing a problem that will 
help in obtaining a design with maximum information for the 
maximal parameter subsystem K θ′ , subject to the side’s 
conditions. Kronecker regression model was appropriate for 
this purpose. In this study we fitted the second order 
Kronecker model for the four ingredients. 

The mixture ingredients t1, t2 … tm are such that 0it ≥  
such that 1it =∑  

Thus the experimental region was given by 

the probability simplex 

1 1
1

{ ( ,..., ) ' [0,1] 1},
m

m m
i

t wheret t tT ε
=

= = =∑  t 
mt T∈    (1) 

For this study, 4m =  
The second order Kronecker regression model for four 

ingredients was used to model the expected response ( )tE Y

as was suggested by Draper and Pukelsheim in [14] 

1 1

[ ] ( ) '
m m

t i j ij
i j

t tt tY θθ
= =

Ε = = ⊗∑∑               (2) 

The second degree Kronecker model was given by 

( ) ( ) ( )2

, 1 ,

'
m

t ii i ij ji i j

i j i j

E Y f t t t tθ θ θ θ
=

= = + +∑ ∑     (3) 

Where tY  the observed response under the experimental 

conditions t T∈  was taken to be a scalar random variable 
and 

( ) 2

11 22, ,..., ' m
mm Rθ θ θΘ = ∈                      (4) 

unknown parameter. 
The moment matrix was determined by 

( ) ( ) ( ) '
T

M f t f t dτ τ= ∫                      (5) 

With the unknown parameter vector 

11 12( , ,..., )mmθ θ θ θ ε Μ= ℜ  and the regression function, 

( )f t t t= ⊗  for all it  (observations) from an experiment are 

assumed to be of equal unknown variance and are 
uncorrelated. 

For the full second-order model equation for four 
ingredients; 
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111 12 1 2 13 1 3 14 1 4 21 2 1 22 2 23 2 3 24 2 4

2 2

31 3 1 32 3 2 33 3 34 3 4 41 4 1 42 4 2 43 4 3 44 4

( )E y t t t t t t t t t t t t t t

t t t t t t t t t t t t t t

θ θ θ θ θ θ θ θ
θ θ θ θ θ θ θ θ

= + + + + + + + +

+ + + + + + +

                                        (6) 

We derived the coefficient, moment and the information 
matrices in order to obtain an optimal response in terms of 
mixture components 

2.2.1. Coefficient Matrix ( )K  

Sometimes it is not necessary to work with the full 
parameter system θ, and therefore we may wish to study s  

out of the k, s k≤  components. This is achieved by studying 

the linear parameter subsystem of interest 'K θ  for some 

k s×  matrix K. K is referred to as the coefficient matrix of 
the parameter subsystem 'K θ . 

Draper and Pukelshein in [15], proposed a model 
representation involving the Kronecker square t t⊗ , the 

2 1m ×  vector consisting of the squares and cross products of 
the components of t  in lexicographic order. 

Given the regression function, we obtained the order as; 

( ) 2 2
11 1 12 1 2 13 1 3 14 1 4 21 2 1 22 2 23 2 3 24 2 4 31 3 1 32 3 2

2 2
33 3 34 3 4 41 4 1 42 4 2 43 4 3 44 4

f t t t t t t t t t t t t t t t t t t t

t t t t t t t t t t

θ θ θ θ θ θ θ θ θ θ

θ θ θ θ θ θ

= + + + + + + + + + +

+ + + + +
                             (7) 

In this research we used a subsystem of interest given by the equation. 

'K θ =

11

12 21

13 31

14 41

22

23 32
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2

2

2
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2

2

θ
θ θ

θ θ
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θ
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θ θ

θ
θ θ

θ

 
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 
 
 + 
 
 + 
 
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                                                                                      (8) 

Where θ  is the vector of the full parameters and the vector on the right hand side represent the subsystems of interest. This 
equation was used to determine the coefficient matrix K . 

From the subsystems of interest vector, the full Kronecker regression model was reduced to the following model 

( ) ( ) ( ) ( )

( ) ( ) ( )

2 2
11 1 12 21 12 21 13 31 13 31 14 41 14 41 22 2

2 2
23 32 23 32 24 42 24 42 33 3 34 43 34 43 44 4

1 1 1

2 2 2

1 1 1

2 2 2

E y t t t t t t t t

t t t t t t t t

θ θ θ θ θ θ θ θ

θ θ θ θ θ θ θ θ

     = + + + + + + + + + + +     
     

     + + + + + + + + + +     
     

                  (9) 

2.2.2. Moment Matrix (M) 

From the General Equivalence Theorem, if M∈ ℳ  is a 
competing moment matrix that is feasible for 'K θ  with 
information matrix ( )

K
C MC= , Then M is ϕ −  optimal for 

'K θ  in ℳ if and only if there exists a NND(s) matrix D, 
that solves the polarity equation 

( ) ( ) 1C D traceCD
α

ϕ ϕ −
= =                  (10) 

And also there exists a generalized inverse G of M, such 
that the matrix ' 'N GKCDCK G=  that satisfies the 
normality inequality 

�����	
� ≤ 1	���	���	
 ∈ ℳ                 (11) 
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But for optimality, equality is obtained in the normality 
inequality if M is inserted instead of A. 

For the simplex shaped experimental region, the moment 
matrix was given by 

( ) ( ) ( )'

t

M f t f t dtη = ∫                         (12) 

This equation was adapted in our research since we used a 
model of subsystem of interest rather than the full regression 
range. 

From the four components simplex-centroid design we had 
the 4 designs 1 2 3 4, , andη η η η  for the pure, binary, ternary 

and the overall centroid. We therefore derived the moment 
matrix by summing the individual design moment matrix 

( ) ( ) ( ) ( ) ( )1 2 3 4
4 6 4 1

15 15 15 15
M n M M M Mη η η η= + + +   (13) 

These design moments were derived as follows where R-
software was used to derive the numerical values. 

Using the Kronecker product, the four factors, (t1, t2, t3, 
t4)=(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0) and (0, 0, 0, 1), for the 
pure mixture blends were obtained as ��⨂����⨂��′; resulting 
in matrices for each of the design point. This procedure was 
repeated for the four design points namely, pure, binary, 
tertiary and the centroid. 

In the Kronecker model, τ  has moment matrix 

( ) ( )( )t t t tττ τΜ = ∫ ⊗ ⊗ ∂                        (14) 

The set of moments of order four determines all lower 
order moments. For instance the pure third moment expands 
to order four by way of 

( )3

3 1 21 4 31
t t dtµ τ µ µ= + = +∫                   (15) 

Other lower moments were derived as follow 

( )2

21 2 1 21 31 22
t t t dtµ τ µ µ= + = +∫                  (16) 

( )2

2 1 21 3 21
t t dtµ τ µ µ= + = +∫                        (17) 

= ( ) ( )4 31 31 22µ µ µ µ+ + +                     (18) 

= 4 31 222µ µ µ+ +                                  (19) 

( )11 1 2 1 2 2121 21 2t t t t dµ τ µµ µ= + = + =∫             (20) 

= ( )31 222 µ µ+                                           (21) 

= 31 222 2µ µ+                                             (22) 

2.2.3. Information Matrix 

Pukelsheim in [16], gave the definition of an information 

matrix as: For a design ξ with the moment matrix M, the 

information matrix for 'K θ with KxS coefficient matrix K of 
full column S, is defined to be ( )KC Μ  where the mapping 

KC from the cone NND (K) into the space sym(S) is given 

by 

( )
;

'min
S K

S

k

L R LK I

C A LAL
×∈ =

=
 For all ( )A NND K∈         (23) 

Where the minimum is taken according to Loewner 
ordering over all the left inverses L of K 

In our design, given that the coefficient matrix has been 
determined from the subsystem of interest and the moment 
matrix has been derived, then the coefficient matrix C was 
given by 

',C LML=                                       (24) 

Where L is the left inverse of K given by; 

1 '( 'K)L K K−=                               (25) 

2.3. Data Collection and Analysis 

In this research, the researcher used secondly data 
collected in Muriungi et al in [4] to fit the Kroneckor model. 

The collected data was fitted in the Kronecker model. The 
coefficient of the model was derived using the least square 
equation 

( ) 1
' 'X X X Yβ −=                              (26) 

To carry ANOVA test in order to determine the 
significance of each design in the model and to evaluate the 
overall fitness of the model, we first calculated the F-
statistics using the equation; 

( )
( )
/ 1

/

SSR p
F

SSE N p

−
=

−
                           (27) 

Where N is the total observations in this case N=75 and P 
the number of design points. 

2
75

1

N

u

u

SSE y y

= ∧ −

=

 
 = − 
 
 

∑                           (28) 

2
75

1

N

u

u

SSR y y

= ∧

=

 
 = − 
 
 

∑                          (29) 

uy  is the value of the uth observation 

uy
∧

 is the predicted value of the response corresponding to 

the uth observation which is determined from the model by 
substituting the parameter estimates 

y
−

 is the average of N=75 observations. 
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We therefore determine the adjusted coefficient of 

determination 2
AR  utilizing the equation 

2 / ( )
1

/ ( 1)A

SSE N p
R

SST N

−= −
−

                       (30) 

Where SST SSR SSE= +                     (31) 

3. Results 

3.1. Introduction 

From the full parameter system Kronecker regression 
function in (26), we derived a model that uses the selected 
subsystem of interest as described in section 3.2. In the 

succeeding section we used the model of subsystem of 
interest parameters to determine the coefficient matrix. 

3.2. Kronecker Model 

From the full parameter system Kronecker regression 
function in (6), we derived a model that uses the selected 
subsystem of interest as described in section 3.2.1 In the 
succeeding section we used the model of subsystem of 
interest parameters to determine the coefficient matrix. 

3.2.1. Coefficient Matrix 

Using (8), we determined the Transpose of the coefficient 
matrix as. 

K’ = 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0.5 0 0 0.5 0 0 0 0 0 0 0 0 0 0 0

0 0 0.5 0 0 0 0 0 0.5 0 0 0 0 0 0 0

0 0 0 0.5 0 0 0 0 0 0 0 0 0.5 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0.5 0 0 0.5 0 0 0 0 0 0

0 0 0 0 0 0 0 0.5 0 0 0 0 0 0.5 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0.5 0 0 0.5 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

































                (32) 

3.2.2. Moment Matrix 

For the four components vector ( )/
1 2 3 4, , ,t t t t , we utilize the kronecker product to obtain the moment matrix 

( )M τ =

/

1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4

t t t t

t t t t

t t t t

t t t t

          
          
          ⊗ × ⊗
          
                 
             

                                                             (33) 

This will yield a 16 by 16 matrix. 
From section 2.1.2, we noted that the set of moments of order four determines all the lower order moments. 
For the four-ingredient model, given an arbitrary exchangeable designτ , the fourth order moments are 

4
4 1t dµ τ

−
= ∫                                                                                   (34) 

3
31 1 2t t dµ τ

−
= ∫                                                                               (35) 

2 2 2
211 1 2 3 22 1 2 1111 1 2 3 4, ,t t t d t t d t t t t dµ τ µ τ µ

− −
= = =∫ ∫ ∫                                               (36) 

Substituting above in the moment matrix equation (33) we get the second degree K-moment matrix as. 
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4 31 31 31 31 22 211 211 31 211 22 211 31 211 211 22

31 22 211 211 22 31 211 211 211 211 211 1111 211 211 1111 211

31 211 22 211 211 211 211 1111 22 211 31 211 211 1111 211 211

31 211 211 22 211 211

µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ
µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ
µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ
µ µ µ µ µ µ µ1111 211 211 1111 211 211 22 211 211 31

31 22 211 211 22 31 211 211 211 211 211 1111 211 211 1111 211

22 31 211 211 31 4 31 31 211 31 22 211 211 31 211 22

211 31 211 1111 211 31 22 211 211 22 31 211 1

µ µ µ µ µ µ µ µ µ
µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ
µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ
µ µ µ µ µ µ µ µ µ µ µ µ µ 111 211 211 211

211 211 1111 211 211 31 211 22 1111 211 211 211 211 22 211 31

31 211 22 211 211 211 211 1111 22 211 31 211 211 1111 211 211

211 211 211 1111 211 31 22 211 211 22 31 211 1111 211 211 21

µ µ µ
µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ
µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ
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     (37) 

In the simplex -centroid design with four components there are 15 design points. Four elementary centroid designs: 1η  

which is supported on the vertices, 2η  on the edge midpoints, 3η  on the ternary and 4η  on the overall centroid point. This is 

given as in the equations below where there are 4 1η design points, 6 2η  design points, 4 3η  design points and 1 4η  design 

point. 
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                       (38) 

Therefore the moments of order four of these designs are, respectively found as follows: 
For 4µ  we average all the element to power four of any of the row in the design. i.e 

( )4
4 4

4
1

....... 0.08190
15

11 4
dtµ τ

 
 = = + + =
 
 

∫                                                          (39) 

For 22µ , we take any two rows, square the elements, sum the corresponding product of the two rows and average the sum. 

i.e 

( )2 2

22 1 2

1
0.00607

15

2 2
22 1 1......01 4 4

dt tµ τ
 
 

= = = 
 
 

 × + + × ∫
 

                                         (40) 

For 31µ , we take the cube of any row and multiply it with corresponding elements of any other row. These product are 

summed and its average determined. 

( )3 1

31 1 2

1
0.00607

15

3 1
13 1 1......01 4 4

dt tµ τ
 
 

= = = 
 
 

 × + + × ∫
 

                                        (41) 

For 211µ , we take the square of the elements in any row and multiply with corresponding elements in any other two rows. 

These products are summed and averaged. 
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( )12

211 1 3

1
0.00108

15

2 1 1
1 121

2
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dtt tµ τ
 
 

= = = 
 
 

 × × + + × × ∫
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                                      (42) 

For 1111µ , we sum and average the products of the corresponding elements in the four rows 

( )11 1

1111 1 43

1
0.00026

15

2 1 1 1
1 1 111

2
1 1 1 1......0 0 01 4 4 4 4

 
 

= = = 
 
 

 × × × + + × × × ∫
 

dtt ttµ τ                    (43) 

The results from (39) to (43) were substituted to (37) to yield the moment matrix M. 
However using (38), we numerically obtained the moment matrix ( )M η . This was done by first obtaining the moment 

matrix for the designs in the simplex centroid; ( )1M η , ( )2M η , ( )3M η  and ( )4M η . 

Both method will yield the numerical values of the moment matrix as: 
Matrix M 

0.08190 0.00607 0.00607 0.00607 0.00607 0.00607 0.00108 0.00108 0.00607 0.00108 0.00607 0.00108 0.00607 0.00108 0.00108 0.00607

0.00607 0.00607 0.00108 0.00108 0.00607 0.00607 0.00108 0.00108 0.00108 0.00108 0.00108 0.00026 0.00108 0.00108 0.00026 0.00108

0.00607 0.00108 0.00607 0.00108 0.00108 0.00108 0.00108 0.00026 0.00607 0.00108 0.00607 0.00108 0.00108 0.00026 0.00108 0.00108

0.00607 0.00108 0.00108 0.00607 0.00108 0.00108 0.00026 0.00108 0.00108 0.00026 0.00108 0.00108 0.00607 0.00108 0.00108 0.00607

0.00607 0.00607 0.00108 0.00108 0.00607 0.00607 0.00108 0.00108 0.00108 0.00108 0.00108 0.00026 0.00108 0.00108 0.00026 0.00108

0.00607 0.00607 0.00108 0.00108 0.00607 0.08190 0.00607 0.00607 0.00108 0.00607 0.00607 0.00108 0.00108 0.00607 0.00108 0.00607

0.00108 0.00607 0.00108 0.00026 0.00108 0.00607 0.00607 0.00108 0.00108 0.00607 0.00607 0.00108 0.00026 0.00108 0.00108 0.00108

0.00108 0.00108 0.00026 0.00108 0.00108 0.00607 0.00108 0.00026 0.00607 0.00108 0.00108 0.00108 0.00108 0.00607 0.00108 0.00607

0.00607 0.00108 0.00607 0.00108 0.00108 0.00108 0.00108 0.00026 0.00607 0.00108 0.00607 0.00108 0.00108 0.00026 0.00108 0.00108

0.00108 0.00108 0.00108 0.00026 0.00108 0.0180.7 0.00607 0.00108 0.00108 0.00607 0.00607 0.00108 0.00026 0.00108 0.00108 0.00108
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 (44) 

3.2.3. Information Matrix (C) 

Information matrix was determined by utilizing (24) and (25). From (24) and using R- software, the left inverse of the 
coefficient matrix was derived as; 

L =

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
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                                                 (45) 

From the matrix L  and the moment matrix M derived in section 3.2.2, we now numerically derive the information matrix C 
using (24) as; 



244 Robert Muriungi Gitunga et al.:  Using the Second Order Kronecker Model in Simplex–Centroid  
Design in Formulating Optimum Dairy Feed 

0.08190 0.01214 0.00715 0.01214 0.00607 0.00216 0.00216 0.00607 0.00216 0.00607

0.01214 0.02428 0.00432 0.00432 0.01214 0.00432 0.00432 0.00216  0.00104 0.00216 

0.00715 0.00432 0.00685 0.00432 0.00715 0.00432 0.00685 0.00715 0.00432 0.00715 

0.01214 0.00432 0.00432 0.02428 0.00216  0.00104 0.00432 0.00216 0.00432 0.01214 

0.00607 0.01214 0.00715 0.00216 0.08190 0.01214 0.01214 0.00607 0.00216 0.00607

0.00216 0.00931 0.00432  0.00104 0.01214 0.02428 0.00432 0.01214 0.00432 0.00216

0.00216 0.00432 0.00685 0.00432 0.01214 0.00432 0.01847 0.00216 0.00432 0.01214 

0.00607 0.00216 0.00715 0.00216 0.00607 0.01214 0.00216 0.08190 0.01214 0.00607

0.00216  0.00104 0.00432 0.00432 0.00216 0.00432 0.00432 0.01214 0.02428 0.01214 

0.00607 0.00216 0.00715 0.01214 0.00607 0.00216 0.01214 0.00607 0.01214 0.08190
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 (46) 

3.3. Fitting Data in the Kronecker Model for Four Components Simplex-Centroid Design 

As indicated in section 1.1 and 2.2, we made use of data collected by Muriungi et.al. in [4] below 

Table 1. Experimental Data on Milk Production in Liters. 

DESIGN POINTS OBSERVATIONS Ỹ 

1x  2x  3x  4x    

1 0 0 0 30.45 30.98 31.09 31.14 30.34 30.80 
0 1 0 0 28.73 29.57 27.81 31.26 29.26 29.326 
0 0 1 0 31.77 30.84 31.51 30.56 30.78 31.09 
0 0 0 1 25.88 25.48 24.96 25.57 26.82 25.742 
1/2 ½ 0 0 33.19 32.72 30.52 30.58 32.01 31.804 
1/2 0 ½ 0 30.96 30.82 30.24 30.45 30.03 30.51 
1/2 0 0 ½ 34.67 35.42 31.22 33.04 35.33 33.936 
0 ½ 1/2 0 31.81 33.44 30.13 30.82 31.62 31.564 
0 ½ 0 ½ 30.32 31.81 31.62 31.67 29.65 31.014 
0 0 1/2 ½ 33.53 34.60 34.17 34.80 33.97 34.214 
1/3 1/3 1/3 0 32.92 35.44 34.94 33.28 34.80 34.276 
1/3 1/3 0 1/3 35.28 36.10 37.08 35.93 36.74 36.226 
1/3 0 1/3 1/3 31.96 34.49 31.77 32.39 32.78 32.678 
0 1/3 1/3 1/3 38.30 38.28 36.72 36.36 35.19 36.97 
1/4 ¼ 1/4 ¼ 38.04 37.15 38.33 39.61 37.56 38.138 

We first derived the design matrix X using the model in (9). 

1.00000.00000.00000.00000.00000.00000.00000.00000.00000.0000

0.00000.00000.00000.00001.00000.00000.00000.00000.00000.0000

0.00000.00000.00000.00000.00000.00000.00001.00000.00000.0000

0.00000.00000.00000.00000.00000.00000.00000.00000.00001.0000

0.25000.25000.00000.00000.25000.00000.00000.00000.00000.0000

0.00000.00000.00000.00000.25000.25000.00000.25000.00000.0000

0.00000.00000.00000.00000.00000.00000.00000.25000.25000.2500

0.25000.00000.00000.25000.00000.00000.00000.00000.00000.2500

0.25000.00000.25000.00000.00000.00000.00000.25000.00000.0000

0.00000.00000.00000.00000.25000.00000.25000.00000.00000.2500

0.11110.11110.11110.00000.11110.11110.00000.11110.00000.0000

0.11110.11110.00000.11110.11110.00000.11110.00000.00000.1111

0.11110.00000.11110.11110.00000.00000.00000.11110.11110.1111

0.00000.00000.00000.00000.11110.11110.11110.11110.11110.1111

0.06250.06250.06250.06250.06250.06250.06250.06250.06250.0625
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                         (47) 

and using equation (26) and the data in table 1, we determined the coefficient of the Kronecker model with subsystem of 

interest as 
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11b  = 34.52511                      23b  = 60.43345 

12b  = 88.21080                      24b  = 84.86363 

13b  = 56.38235                      33b  = 30.92314 

14b  = 68.09252                      34b  = 83.58024 

22b  = 32.76916                       44b  = 25.22242                                                            (48) 

Hence substituting these values in the Kronecker model (9) we get the fitted model which substitutes the regression 
coefficients with estimates above, 

( ) ( ) ( )

( ) ( ) ( )

2 2
1 12 21 13 31 14 41 2

2 2
23 32 24 42 3 34 43 4

1 1 1
34.53 88.21 ( ) 56.38 68.09 32.77

2 2 2

1 1 1
60.43 84.86 30.92 83.58 25.22

2 2 2

E y t t t t t t t t

t t t t t t t t

     = + + + + + + + +     
     

     + + + + + + +     
     

         (49) 

Therefore, the predicted responses are: 

Ỹ1 = 34.53                      Ỹ9 = 30.46 

Ỹ2 = 32.77                      Ỹ10 = 35.71 

Ỹ3 = 30.92                      Ỹ11 = 33.69 

Ỹ4 = 25.22                       Ỹ12 = 37.07 

Ỹ5 = 30.88                       Ỹ13 = 33.03 

Ỹ6 = 31.03                       Ỹ14 = 35.31 

Ỹ7 = 34.94                       Ỹ15 = 35.31 

Ỹ8=31.94                                                                                                           (50) 

The mean of the observed response was calculated as,  

31.95y
−

=                                                                                     (51) 

Using (28), (29) and (51), We determined SSR and SSE as 

2 2 2 2 2

2

(34.53 31.95) (34.53 31.95) (34.53 31.95) (34.53 31.95) (34.53 31.95)

............ (35.31 31.95) 942.4775

SSR = − + − + − + − + −

+ + − =
     (52) 

75
2 2 2 2

1

2

(30.45 34.53) (30.98 34.53) (31.09 34.53) (31.14 34.53) ...

(38.04 35.31) 462.05

U

SSE

=

= = − + − + − + − + +

− =

∑          (53) 

From (27), we determined the F-ratio, where p in this case 
will be 10 

942.4775 / (10 1)
14.7317

462.05 / (75 10)
F

−= =
−

       (54) 

Since F=14.7317 is greater than the table (critical) value

( )9,65, 0.05 2.08F α = = , we conclude that the response does 

depend on the mixture components. That is, milk productions 
by the dairy animals vary with different blends of the feed 

supplement given. 
We therefore determine the adjusted coefficient of 

determination which aids in deciding whether the Kronecker 
model explains a sufficient amount of the variation is 
measured by comparing the estimate of the error variance 
obtained from the analysis of the fitted model against the 
estimate of 2σ . 

From (31), SST was determined as, 

SST=942.4775+462.05=1404.5275            (55) 
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Using (31), (53) and (55) 

( )2 462.05 / 75 10
1 0.6255

1404.5275 / (75 1)
AR

−
= − =

−
         (56) 

This means that the error variance estimate obtained from 
the analysis of the fitted model is 37.45%. This implies that 
the model provides a fairly good fit. However, there is need 
to investigate further other factors to reduce this variance. 
This will be discussed in Chapter five. The assumptions 
stated in section 1.5 could have resulted to this variance as 

other feeding practices and external factors control could be 
very difficult to make them uniform. 

Using the data in table 1, and the model (9), ANOVA was 
run using R software. This was done to find how different 
blend at the design points contribute to the response variable 
when the mean productivity measured by the intercept of the 
model is taken into account. The following result were 
obtained 

Residuals on the responses: 

             (57) 

Table 2. ANOVA Table Showing the Significance of the Design Points. 

Coefficients Estimate Std. Error t value Pr (>|t|) 
Intercept 33.710 3.195 10.552 0.000456*** 

X11 -2.920 3.829 -0.762 0.488256 
X12 13.796 13.431 1.027 0.362384 
X13 -6.504 8.180 -0.795 0.471044 
X14 2.755 8.529 0.323 0.762860 
X22 -4.669 3.846 -1.214 0.291471 
X23 -2.459 8.149 -0.302 0.777933 
X24 19.521 8.534 2.288 0.084088’ 
X33 -2.816 3.547 -0.794 0.471670 
X34 15.308 8.511 1.799 0.146480 
X44 -8.332 3.519 -2.368 0.076994’ 

Signif. codes: 0.001 ‘***’, 0.01 ‘**’, 0.05 ‘*’, 0.1’. 
Residual standard error: 1.526 on 4 degrees of freedom 
Multiple R-squared: 0.9275, Adjusted R-squared: 0.7464 
F-statistic: 5.12 on 10 and 4 DF, p-value: 0.06475 

From this table which shows the result of ANOVA, it can 
be seen that by introducing the constant which is measured 
by the intercept. Then we increased the precision of our 
estimates as shown by the adjusted R-squared compared with 
(55). This implies other feeding practices except the 
supplement have significant impacts on variation to milk 
productivity. 

Also the blend of 
2

x (Soya beans) and 
4

x (Fish meal) 

shows significance at 0.1, this implies that this blend 
contribute significantly to milk productivity. 

A blend of 
44

x  (fish meal) shows significance at 0.1, 

implying that fish meal supplement is significance in milk 
productivity. 

4. Conclusions and Recommendations 

4.1. Conclusions 

In this study, the following conclusions were drawn. 
a. The derivation of the Kronecker model involved a 

subsystem of interest which was used to derive the 

coefficient matrix. We averaged the interaction of 
ingredients from the full parameter system to derive our 
subsystem of interest vector. In determining the 
coefficient matrix for the Kronecker model, the research 
recommends that other combinations of ingredients can 
be done to determine a different vector of the subsystem 
of interest. 

b. The fitted Kronecker model support the result of the 
polynomial model. From the computed adjusted R2 we 
conclude the model provides a good fit and F-ratio 
support that supplement are significant in explaining the 
variation in milk production. The ANOVA summaries, 
proves that by introducing the constant which is 
measured by the intercept we make our estimate more 
precise as the adjusted R2 is improved. This implies 
other feeding practices except the supplement have 
significant impacts on variation to milk productivity. 

c. The results also show that the blend of Soya beans and 
Fish meal contribute significantly to milk productivity. 
Also pure blend of fish meal supplement is significance 
in milk productivity. The research therefore, 
recommends this supplement for optimal milk 
productions. 

4.2. Recommendations 

From this study we recommend the following: 

a. For dairy farmers to achieve most optimal production, 
they need to blend feeds supplement with at least three 
of the ingredients. 

b. As stated in chapter 3, the researcher recommends that 
further studies should be done on milk productivity of 
dairy animals across the bleed given meal concentrates as 
supplement. This will be aimed at reducing variability in 
the model. This is guided by the assumption that different 
blend of concentrates may affect production differently 
across the breeds of dairy cows. 

c. Further studies should be done to investigate the effect 
of these supplement on other animal products. 
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