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Abstract: A t-design is a generation of balanced incomplete block design (BIBD) where λ is not restricted to the blocks in 

which a pair of treatments occurs but to the number of blocks in which any � treatments (t = 2,3…) occurs. The problem of 

finding all parameters (t, v, k, λt) for which t-(v, k, λt) design exists is a long standing unsolved problem especially with λ=1 

(Steiner System) as no Steiner t-designs are known for t ≥ 6 when v > k. The objective of this study therefore to develop new 

methods of constructing t-designs with t ≥ 3 and λ ≥1. In this study t-design is constructed by relating known BIB designs, 

combinatorial designs and algebraic structures with t-designs. 
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1. Introduction 

� − (�, �, ��) design is an incidence structure of points and 

blocks with the following properties; there are � points, each 

block is incident with � points, any point is incident with �
 

blocks, and any � points are incident to ��  common blocks. 

Where �, �  and �� are all positive integers and � ≥ � ≥ � . 

The four numbers �, �, � and ��  determine � (blocks) and �
 

and four numbers themselves cannot be chosen arbitrarily. 

For a � − (�, �, ��) design and 
 is any �-element subset of �, 

with 0 ≤ � ≤ � , then the number of blocks containing 
  is 

given by: 

�� = � ��������
�������� 	0 ≤ � ≤ �	                            (1) 

particular, = ��, � = �
, � = �� . Since ��  in equation 	(∗) 
above needs to be an integer, only the values of �, � and � 

that make ��  an integer for all 0 ≤ � ≤ �  are admissible 

parameters for a � −design. A tuple (�, �, �, ��) is said to be 

admissible if the arithmetic conditions aforementioned hold 

and is said to be feasible if a � − (�, �, ��)  design exists, 

hence a feasible tuple is necessarily admissible [2]. The 

converse is not true. That is, admissibility conditions are 

necessary but they are not sufficient, there exist several cases 

of parameters that satisfy the admissibility conditions and yet 

no design with these parameters exists. However, it is 

conjectured that admissibility conditions would be sufficient, 

if the point set is large. This is known as � − large existence 

conjecture or “asymptotic existence” conjecture. 

The incidence structure associated with a � −design can be 

represented by a matrix. The point-block incidence matrix !, 

associated with a � − (�, �, ��)  design with �  blocks is a (0 − 1) matrix of � rows and � columns. The elements of ! 

are #$%  where & is the point, 'is the block and 

#$% = ( 1	&)& ∈ '0	+�ℎ-�.&�- 

There is a generalization of Fisher’s inequality to � −designs which is due to [1]. If a � − (�, �, ��)  design 

exists, where � = 2�  is even, then the number of blocks 

� ≥ �0�� . A � − (�, �, ��)  design in which � = 1  is called 

Steiner system. For example a 2 − (�, 3,1) is a Steiner triple 

system (STS) and a 3 − (�, 4,1) design is a Steiner quadruple 

system (SQS). A 2 − (�, �, �)  design is called a balanced 

incomplete block design (BIBD). A t-design is said to have 

repeated blocks if there are two blocks incident with the same 

set of k points. A t-design with no repeated blocks is said to 

be simple [6]. 

A � − (�, �, ��)  design with � ≥ 3  are known for only a 

few values of �, �and ��. For � = 3 there are several infinite 

families known. For instance, for any prime power 3 and for 

any 4 ≥ 2 , there exists a 3 − (35 + 1, 3 + 1,1)  design 

known as inversive geometry. When 	4 = 2, these designs 
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are known as inversive planes. A Steiner quadruple system 3 − (�, 4,1) is also known to exist for all � ≡ 2	+�	4	8+4	6. 

Some simple � −designs, have been constructed for � ≤ 5. 

Construction of a 6 − (�, �, 1)  design remains one of the 

outstanding open problems in the study of t-designs. Even for � = 4and � = 5, only a few examples of � − (�, �, 1) designs 

are known. In this study we construct some � −designs, with 

much emphasis on t ≥ 3, �� ≥ 1 by identifying BIB designs 

which are also � −designs. 

2. Literature Review 

The main problem in � − designs is the question of 

existence and the construction of those solutions, given 

admissible parameters. That is, finding all parameters (�, �, �, ��) for which � − (�, �, ��) design exists. There are 

many known Steiner 2 − designs but constructing Steiner � > 2 it has proved to be much harder. Wilson (1972a,1972b) 

building upon the work of many including ([3], [7], [10], and 

[11]) proved for � = 2 , fixed k and sufficiently large v 

satisfying arithmetic conditions 2 −designs exist. There is no 

similar existence result yet for � > 2. In the case of � = 3, [4] 

has shown thatthere is 3 − (�, 4,1) design if andonly if the 

necessary arithmetic conditions are satisfied. But for larger k, 

even � = 5, the result is far from complete. For ≥ 3, � ≥ 5 

the problem is wide open. All these constructions bear a 

distinct algebraic flavor in the sense that the underlying set 

upon which the design is constructed has a nice algebraic 

structure. Algebraic construction requires that a certain fixed 

(big) group to act as a group of automorphisms for the 

desired design. This technique was first formulated on paper 

by [11]. 

However this method culminates in a computer or 

computer-like brute-force search which cannot take us very 

far in quest for new � − designs (especially Steiner � −designs). Cameron et al. [5] simplified this method, by 

coming up with a technique that employs transitive actions of 

groups. They showed that, if a group acts transitively on 

subsets of size tthe orbits for that group yield designs. 

Stinson [15] came up with block spreading method for � = 2 and for prime power index. Let � be a positive integer � ≥ 2 and let 3 be a prime power. Suppose that there exists a 
<(2, �, �) design satisfying 3 ≥ � + 1. Then there exists a 

group divisible design (GDD) of group type (35)0 with block 

size �  and index one, whenever 4 ≥ �=>�. This method has 

application in the construction of Steiner 2 − designs. 

Blanchard ([3], [7], [14]) generalizes Hartman’s [14] results 

for � ≥ 2  as follows: (The “block spreading” method for � ≥ 2 and for prime power index). Let �  and �  be positive 

integers, 2 ≤ � ≤ �, and let 3 be a prime power. Then there 

exists a number 3� = 3�(�, �)  such that for any 
<(�, �, �) 
design satisfying 3 ≥ 3� , there is a � −GDD of group type 

(35)0  with block size �  and index one whenever 4 ≥ �=?� . 

More so, ([5], [8]) generalizes Blanchard’s construction for 

general index (the “block spreading” method for � ≥ 2 and 

general index). Let �, � and � be a positive integers 2 ≤ � ≤�. Then there exists a number 3� = 3�(�, �) such that for any 
@(�, �, �)  design with prime power decomposition � =

3
, 3>, 3A ⋯3C  satisfying 3$ ≥ 3� ; 1 ≤ & ≤ D ; there is a � −GDD of group type (�5)0  with block size �  and index 

one whenever 4 ≥ �=?�. This generalized “block spreading” 

construction has several application such as constructing new 

Steiner 3 −designs and new group divisible � −designs with 

index one. Limitation of this method is that the bounds on 4 

are too large. 

Magliveras et al. [9] constructed some new large sets of t-

designs, using recursive construction described by Qiu-rong 

Wu [14]. Wu [14] showed that if there exists large sets E
(D) − (�, �, �
) , E
(D) − (�, �, �>) , E
(D) − (� − 2, � −1, �
 − 1),E
(D) − (� − 2, � − 1, �> − 1), then there exists a 

large set E
(D) − (�, �, �
 + �> − � + 1) . He went on to 

show that also, if there exist a large sets E
(D) − (�, �, �) and E
(D) − (� − 2, � − 1, � − 1)  then there exist large sets E
(D) − (�, �, � + 8(� − � + 1)) for all 8 ≥ 0. 

Mohácsy and Ray-Chaudhuri [12] constructed � −designs 

from known � − wise balanced designs. In his works he 

showed that, given a positive integer �  and a � −(�, (�
, �> ⋯��), �)  design F , with all blocks-sizes �$ occurring in F  and 1 ≤ � ≤ � ≤ �
 ≤ �> ⋯ ≤ �� , the 

construction produces a � − (�, �, D�)  design F∗ , with 

D = E. H.IJ�KLM�KM� �,⋯ �K�M�KM� �N . Onyango [13] on his part 

constructed � −designs with � = 3 and � = 1 from balanced 

incomplete block design. 

3. Construction of Some O − (P, Q, RO) 
Designs with O = S	TUVRO = W 

The properties of � − (�, �, ��) designs include: 

�� = �
�	                                            (2) 

���� − (� − 1)� = ��M
�� − (� − 1)�                    (3) 

Replacing� = 3	#D4�� = 1 in equation (2) we have: 

� − 2 = �>(� − 2) ⟹	�> = 0M>
KM>								                      (4) 

Now when � = 2 we have: 

�>(� − 1) = �
(� − 1) 	⟹	 @L@Y = 0M
							
KM
                  (5) 

This implies 

�
 = �> (0M
)
(KM
);�
 =∝ (� − 1)	�> = �
 (KM
)

(0M
);�> =∝ (� − 1)   (6) 

Given that �
, �>,� − 1	#D4� − 1 are all integers and ∝ is 

a rational number which we will represent by
[
\ where ]#D4^ 

are positive integers. Thus the equations (5) become: 

^�
 = ](� − 1) and ^�> = ](� − 1)            (7) 

Case 1: When ] = 1 

Then (6) becomes: ^�
 = � − 1,⟹ � = ^�
 + 1 

^�> = � − 1,⟹ � = ^�> + 1 

Theorem 1: If ] = 1	#D4�> − 1 ≡ 0(8+4^), where ^  is 
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an integer then there are only three non- trivial 3 − (�, �, 1) 
designs which are: 3 − (8,4,1), 3 − (22,6,1)#D4	3 −(112,12,1) 

Proof: From (2), (3), and (7) 

�> = \@L`
M>
\@Y`
M> = 

\@LM

\@YM
	                            (8) 

This implies: �
 = �>> − @YM

\ � = ^�>> − �> + 2  and 

� = ^�> + 1. For this design to be 3 − (�, �, 1) design and 

from (1) it implies 

a�>> − �> − 1
^ b (^�>> − �> + 2) ≡ 08+4(^�> + 1) 

That is: 

�\@YYM@Y`
�(\@YYM@Y`>)
\(\@Y`
)                          (9) 

which is a positive integer. Expanding and simplifying 

equation (9), we obtain 

�A> − A@YY
\ + @Y(A\`c)

\Y − d\`c
\e +	 >\Y`d\`c			

\Y(\Y@Y`\)				          (10) 

The last term of equation (10), that is  

>\Y`d\`c
\Y(\Y@Y`\)                                    (11) 

will be an integer if ^>	4&�&4-�	6^ + 4. The only values for ^ in which this is possible are 1 and 2. In this case Equation 

(11) is not an integer. Thus both Equations (10) and (11) will 

be integers if �> takes the values 2, 3, 5 and 11. The table 

below gives corresponding values of �, �
, �#D4�. 

Table 1. Case1; for ^ = 1 the possible cases of 3 − (�, �, 1) designs. 

Rf Q RW P g 

2 3 3 4 4 
3 4 7 8 14 

5 6 21 22 77 

11 12 111 112 1036 

The required 3 − (�, �, 1)  designs are; 3 − (8,4,1), 3 −(22,6,1), #D4	3 − (112,12,1). A 3 − (4,3,1) is trivial given � = �, but it is required that � < �, hence is not included and 

our proof is completed. 

Case 2: When ^ = 1 

In this case Equation (6) becomes 

�
 = ](� − 1),⟹ � = @L`[
[ and�> = ](� − 1),⟹ � = @Y`[

[  

Where is ]	 a positive integer and both �
	#D4	�>  are 

divisible by 	]. 

From Equation (1) we get �
, �, #D4	�	as follows; 

�
 = �>> − ]�> + ],� = @YYM[@Y`>[
[  

and 

� = @Y`[
[ 	                                      (12) 

Using � = @L0
K  for this design to be 3 − (�, �, 1)  design 

then: 

(�>> − ]�> + ]) �@YYM[@Y`>[�
[ ≡ 08+4 �@Y`[

[ �       (13) 

That is 

(@YYM[@Y`[)(@YYM[@Y`>[)
@Y`[                      (14) 

which is a positive integer. Expanding and simplifying 

equation (14), we obtain 

�A> − 3]�>> + �>(3] + 4]>) − (6]> + 4]A) + >[Y`d[e`c[i
@Y`[   (15) 

Equation (15) will be and integer ifthe last term 
>[Y`d[e`c[i

@Y`[  is an integer. Thus �>  can take any of the 

following values 3,4,6,8,10,18,28,32,38,58, and 118. But �> 

must be divisible by 2. So 3 is not a possibility. We give 

corresponding values of �, �
, �	#D4	� in the Table 2 below. 

Table 2. Case 2; for ] = 2 the possible cases of 3 − (�, �, 1) designs. 

Rf Q RW P g 

4 3 10 6 20 

6 4 26 14 91 

8 5 50 26 260 
10 6 82 42 574 

18 10 290 146 4234 

22 12 442 222 8177 
28 15 730 366 17812 

38 20 1370 686 46991 

58 30 3250 1626 176150 
118 60 13690 6846 1562029 

Thefollowing designs 3 − (6,3,1), 3 − (14,4,1), 3 −(26,5,1), 3 − (42,6,1), 3 − (146,10,1), 3 − (222,12,1), 3 −(366,15,1), 3 − (686,20, ), 3 − (1676,30,1)#D4	3 −(6846,60,1). can then be obtain from BIB(�, �, �) designs 

given below 

2 − (6,3,4), 2 − (14,4,6), 2 − (26,5,8), 2 − (42,6,10), 2− (146,10,18), 2 − (222,12,22), 2− (366,15,28), 2 − (686,20,38), 2− (	1626,30,58), #D4	2 − (6846,60,118). 

For ] = 3 , the possible values are: 

6,9,15,18,21,33,39,60,69,81,123,165,249, and 501. The 

corresponding values of �
,�, �, #D4	� in the Table 3 below. 

Table 3. Case2; for ] = 3 the possible cases of 3 − (�, �, 1) designs. 

Rf Q RW P	 g 

6 3 21 8 56 

9 4 57 20 285 

15 6 183 62 1891 

18 7 273 92 3588 

21 8 381 128 6096 

33 12 993 332 27473 

39 14 1407 470 47235 

60 21 3423 1142 186146 

69 24 4557 1520 288610 
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Rf Q RW P	 g 

81 28 6321 2108 475881 

165 56 26733 8912 4254366 

249 84 61257 20420 14891285 

501 168 249501 83168 123514876 

Again we obtain 3 − (�, �, 1)  designs from BIB designs 

below: 

2 − (8,3,6), 2 − (20,4,9), 2 − (67,6,15), 2 − (92,7,18), 2− (128,8,21), 2 − (332,12,33), … , #D4	2− (83168,168,501) 

For ] = 4 , and using similar arguments as before we 

obtain possible values of �>  as 

follows:8,12,16,20,28,32,36,….which give the values of �
, �, �	#D4	� as follows: 

Table 4. Case2; for ] = 4 the possible cases of 3 − (�, �, 1) designs. 

Rf Q RW V B 

8 3 36 10 120 
12 4 100 26 650 

16 5 196 50 1960 

20 6 324 82 4428 
28 8 676 170 14365 

32 9 900 226 22600 

36 10 1156 290 33524 

The desired 3 − (�, �, 1)  designs are obtained from the 

following BIB designs: 

2 − (10,3,8), 2 − (26,4,12), 2 − (50,5,16), 2 − (82,6,20), 2− (170,8,28), 2 − (226,9,32),#D4	2 − (290,10,36) 

Remark: this construction can go on and on by simply 

varying the values of ]#D4^ for each case, but as values of ]#D4^ increases the designs obtained have large parameters 

making them not practical. 

4. Construction of O − (P, Q, RO) Designs 

with O = S	TUVRO ≥ W 

We extend the work in [10] by constructing 3 −designs 

with �� ≥ 1, that is for general indexand Steiner 4 −designs. 

When � = 3, �� = m and from Equation (2) we have:  

�
 = @Y(0M
)
KM
 ;⟹ �
 =∝ (� − 1)and 

�> = @L(KM
)
0M
 ;⟹ �> =∝ (� − 1)                   (16) 

Where ∝  is a rational number since �
, �>, m, � −1	#D4	� − 1 are all positive integers hence, we will represent 

it by
[
\ where ]	#D4	^ are positive integers. 

Case I, ] = 1 

Then Equation (15) becomes: 

�> = o(\@LM
)
\@YM
 �
 = \@YYM@Y`o

o\ 	 and = \@YYM@Y`>o
o      (17) 

For this design to be 3 − (�, �, m)  design and from �� = ��
; it implies 

�\@YYM@Y`o�
o\ �\@YYM@Y`>o

o � ≡ 0	8+4(^�> + 1)          (18) 

That is, 

�\@YYM@Y`o�(\@YYM@Y`>o)
oY\(\@Y`
)                             (19) 

Expanding and simplification of Equation (19)we obtain 

@eY
oY − A@YY

oY\ + @Y(Ao\`c)
oY\Y − (do\`c)

oY\e +	 >oY\Y`do\`c
oY\Y(\Y@Y`\)			       (20) 

Which will be an integer if m>^>  divides 6m^ + 4 . For m = 2, that is �� = 2, the only possible values for ^ in which 

this is possible are 1 and 2. Thus Equation (20) will be an 

integer if �> takes only of the following values; 2 and 5. The 

table below gives corresponding values of �
, �, �	#D4	� 

Table 5. Case 1; for ^ = 1	#D4	m = 2	 the possible cases of 3 − (�, �, m) 
designs. 

Rf Q RW P g 

2 3 2 3 2 
5 6 11 12 22 

The first 3 − (3,3,2) does not exist hence we have only 

one 3 − (�, �, m) design in this case. 

This 3 − (12,6,2)  is identified with this BIB design 	p(12,6,5). 
CASE II, ^ = 1 

In this case Equation (17) becomes: 

�> = o(@LM[)
@YM[ �
 = @YYM[@Y`o[

o 	and			� = @YYM[@Y`>o[
o[      (21) 

Using similar argument as before: 

(�>> − ]�> + ]m)(�>> − ]�> + 2m])
m>(�> + ])  

Will be integer if Equation (22) is and integer 

>oY[Y`do[e`c[i
oY(@Y`[)                             (22) 

We give the corresponding values of �>, �
, �, �	#D4	� in 

Table 6 below; 

Table 6. Case 2; for ] = 2	#D4	m = 2	 the possible cases of 3 − (�, �, m) 
designs. 

Rf Q RW P g 

4 3 6 4 8 

6 4 14 8 28 
10 6 42 22 154 

14 8 86 44 473 

22 12 222 112 2072 
46 24 1014 508 21463 

The following designs; 3 − (4,3,2), 3 − (8,4,2), 3 −(22,6,2), 3 − (44,8,2), 3 − (112,12,2), #D4	3 − (508,24,2)  

can be obtained from pqp(�, �, �) designs given below: p(4,3,4), p(8,4,6), p(22,6,10), p(44,8,14), p(112,12,22),	#D4p(508,24,46) For m = 2, ] = 3  and using similar 
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arguments as before we give the values of �>,�
, �, �#D4� as 

in Table 7 below: 

Table 7. Case 2; for ] = 3	#D4	m = 2	 the possible cases of 3 − (�, �, m) 
designs. 

Rf Q RW V B 

6 3 12 5 20 

12 5 57 20 228 
15 6 93 32 496 

27 10 327 110 3597 

We get the desired 3 − (�, �, m) designs from BIB designs 

below: 

p(5,3,6), p(20,5,12), p(32,6,15)#D4	(110,10,27) 
For m = 2, ] = 4 and using the same methods we give the 

table of values of; �>,�
, �, �	#D4	� as follows: 

Table 8. Case 2; for ] = 4	#D4	m = 2	 the possible cases of 3 − (�, �, m) 
designs. 

Rf Q RW P g 

8 3 20 6 40 

12 4 52 14 182 

16 5 100 26 520 

20 6 168 42 1126 

36 10 580 146 8468 

44 12 884 222 16354 

56 15 1460 366 35624 

Similarly, for m = 2, ] = 5 the values of �
,�>, �, �	#D4	� 

we give them as in the Table 9 below: 

Table 9. Case 2; for ] = 5	#D4	m = 2	 the possible cases of 3 − (�, �, m) 
designs. 

Rf Q RW P g 

10 3 30 7 70 

20 5 155 32 992 

25 6 255 52 2210 

30 7 380 77 4180 

65 14 1955 392 54740 

Now, for m = 3, ] = 3	#D4	] = 6 and applying the same 

methods, we give values of �>, �
, �, �	#D4	�  in table 10 

below respectively. 

Table 10. Case 2; for ] = 3	#D4	m = 3	the possible cases of 3 − (�, �, m) 
designs. 

Rf Q RW P g 

6 3 9 4 12 

9 4 21 8 42 

15 6 63 22 231 

24 9 171 58 1102 

51 18 819 274 12467 

Table 11. Case 2; for ] = 6	#D4	m = 3	the possible cases of 3 − (�, �, m) 
designs. 

Rf Q RW P g 

12 3 30 6 60 

18 4 78 14 273 

24 5 150 26 780 

30 6 246 42 1722 

Also for m = 4, ] = 2, ] = 4	#D4	] = 6 and using similar 

arguments, we give values of�>, �
, �, �, #D4	� in the Tables 

below respectively. 

Table 12. Case 2; for ] = 2	#D4	m = 4	the possible cases of 3 − (�, �, m) 
designs. 

Rf Q RW P g 

4 3 4 3 4 
6 4 8 5 10 

10 6 22 12 44 

22 12 112 57 532 

The first 3 − (3,3,4) design is trivial. 

Table 13. Case 2; for ] = 4	#D4	m = 4	the possible cases of 3 − (�, �, m) 
designs. 

Rf Q RW P g 

12 4 28 8 56 

20 6 84 22 308 
28 8 172 44 946 

Table 14. Case 2; for ] = 6	#D4	m = 4	the possible cases of 3 − (�, �, m) 
designs. 

Rf Q RW P g 

18 4 60 11 165 

24 5 114 20 456 

30 6 186 32 992 

When m = 5, ] = 5	#D4	] = 10 and using similar methods 

the values of �>, �
, �, �	#D4	�  we give them in the tables 

below respectively. 

Table 15. Case 2; for ] = 5	#D4	m = 5	the possible cases of 3 − (�, �, m) 
designs. 

Rf Q RW P g 

15 4 35 8 70 

20 5 65 14 182 

25 6 105 22 385 

45 10 365 74 2701 

Table 16. Case 2; for ] = 10	#D4	m = 5	the possible cases of 3 − (�, �, m) 
designs. 

Rf  Q  RW  P  g  

30 4 130 14 455 

40 5 250 26 1300 

50 6 410 42 2870 

or m = 6, ] = 3	#D4	] = 6  we get the following tables 

respectively. 

Table 17. Case 2; for ] = 3	#D4	m = 6	the possible cases of 3 − (�, �, m) 
designs. 

Rf  Q  RW  P  g  

15 6 33 12 66 

24 9 87 30 290 

51 18 411 138 3151 

Table 18. Case 2; for ] = 6	#D4	m = 6	the possible cases of 3 − (�, �, m) 
designs 

Rf  Q  RW  P  g  

18 4 42 8 84 

30 6 126 22 462 

42 8 258 44 1419 
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Also for m = 7	#D4	] = 7 we get the following table: 

Table 19. Case 2; for ] = 7	#D4	m = 7	the possible cases of 3 − (�, �, m) 
designs. 

Rf  Q  RW  P  g  

21 4 49 8 98 

35 6 147 22 539 
42 7 217 32 992 

Lastly, for m = 8, ] = 4	#D4	] = 8  we also get the 

following tables respectively. 

Table 20. Case 2; for ] = 4	#D4	m = 8	the possible cases of 3 − (�, �, m) 
designs. 

Rf  Q  RW  P  g  

12 4 16 5 20 

20 6 44 12 88 

28 8 88 23 253 
44 12 224 57 1064 

Table 21. Case 2; for ] = 8	#D4	m = 8	the possible cases of 3 − (�, �, m) 
designs. 

Rf  Q  RW  P  g  

24 4 56 8 112 

40 6 168 22 616 
56 8 344 44 1892 

88 12 888 112 8288 

Case III, ] ≠ ^#D4] > 1, ^ > 1 

Letting 

�
 = [
\ (� − 1) 	⟹ � = \@L`[

[ and�> = [
\ (� − 1) 	⟹ � = \@Y`[

[   (23) 

Where ]	#D4	^  are positive integers and �>		#D4	^  are 

divisible by ] and substituting these values of �	#D4	� in: 

�> = m(� − 2)
� − 2  

We obtain �
, �, #D4	�	 as follows: 

�
 = \@YYM[@Y`o[
o\ ,� = \@YYM[@Y`>o[

o[  and � = \@Y`[
[     (24) 

Using � = @L0
K  for this to be 3 − (�, �, 1) design then 

(^�>> − ]�> + m])
m^ s^�>> − ]�> + 2m]

m] t
≡ 08+4 a^�> + ]

] b 

That is Equation (24) is a positive integer 

�\@YYM[@Y`o[�(\@YYM[@Y`>o[)
oY\(\@Y`[)                         (25) 

Expanding and simplifying Equation (24) we obtain 

^�A> − 3]�>> + @YY�Ao[\`c[Y�
\ − �do[Y\`c[e�

\Y 	+
>oY[Y\Y`do[e\`c[i

oY\e(\@Y`[)                                (26) 

Under this case and using similar method we find 3 −

(�, �, m) exists if Equation (26) is an integer: 

>oY[Y\Y`do[e\`c[i
oY\e(\@Y`[) = >[Y(oY`euv

w `YvY
wY )

oY\(\@Y`[)                     (27) 

Taking m = 5, ] = 5	#D4	^ = 2 in this case there is only 

one non-trivial 3 − (�, �, 5) and �> would take the values 5 

or 35 with corresponding values of �, �
, �#D4�#�  in the 

table below. 

Table 22. Case 3; for ] = 5, ^ = 2	#D4	m = 5	 the possible cases of 3 −(�, �, m) designs. 

Rf  Q  RW  P  g  

5 3 5 3 5 

35 15 230 93 1426 

For m = 7, ] = 7	#D4	^ = 2, we get the following table: 

Table 23. Case 3; for ] = 7, ^ = 2#D4	m = 7	 the possible cases of 3 −(�, �, m) designs. 

Rf  Q  RW  P  g  

7 3 7 3 7 

21 7 56 17 136 

5. Construction of x − (P, Q, W) Designs 

The same technique that has been used to construct 3 − (�, �, 1) is applied. When � = 4and �� = 1, we have; 

�> =∝ (� − 2) and �A =∝ (� − 2)               (28) 

Given �
, �>, �A, � − 2, � − 1, � − 2, #D4	� − 1  are all 

integers, and ∝ is a rational number which we will represent 

by 
[
\where ]	#D4	^ are positive integers. 

Case 1] = 1 

Equation (28) becomes; 

^�> = � − 2,⟹ � = ^�> + 2and^�A = � − 2,⟹ � = ^�A + 2	  (29) 

Using Equation (29) and (30) we obtain 

�
 = ^�>> + �>^�A + 1  

�
 = ^>�Ac − 2^�AA + 3^�>A + �>A − 3�A + 2
^�A + 1  

Which implies; 

� = ^�>A − �A + 3	 and 	� = ^�A + 2             (30) 

For this design to be 4 − (�, �, 1)  and from �� = ��
  it 

means 

(^>�Ac − 2^�AA + 3^�>A + �>A − 3�A + 2)(^�>A − �A + 3)
(^�A + 1)≡ 0	8+4(^�A + 2) 

Hence Equation (31) is a positive integer 

(\Y@eiM>\@ee`A\@Ye`@YeMA@e`>)(\@YeM@e`A)
(\@e`
)(\@e`>)            (31) 



58 John Chibayi et al.:  Construction Procedure for Non-trivial T-designs  

 

Expanding Equation (31) we obtain 

^>�Ay(^�A + 1) −
5^�Ac(^�A + 1) +

�AA(6^> + 13^)
^(^�A + 1)

− �A>(24^> + 27^)
^>(^�A + 1)

+ �A(11^A + 54^> + 54^)
^A(^�A + 1)  

− (AA\e`
�z\Y`
�z)
\i(\@e`
) + d\i`dd\e`>
d\Y`>
d\

\i(\@e`
)(\@e`>)          (32) 

Equation (32) will be integer whenever Equation (33) is an 

integer 

d\i`dd\e`>
d\Y`>
d\
\i(\@e`
)(\@e`>)                     (33) 

Using Equation (33), corresponding values of �
, �>, �, �	#D4	� will be generated as shown in Table 12: 

Table 24. Case 1; for ^ = 1	the possible cases of 4−(�, �, 1) designs. 

RS  Rf  RW  Q  P  g  

2 3 4 4 5 5 

5 21 77 7 23 253 

The first 4 − (5,4,1) design is trivial. The 4 − (23,7,1) is 

the only non trivial. This 4 − (�, �, 1) is then identified with 

the following BIB designs; 2 − (5,4,3) and 2 − (23,7,21) 
Case 2,	^ = 1 

In this case Equation (29) becomes 

�
 = @eiM>[@ee`A[@Ye`[Y@YeMA[Y@e`>[Y
@e`[ � =

@eYM[@e`A[
[ 		and	� = @e`>[

[              (34) 

For this design to be 4 − (�, �, 1)  and from �� = ��
  it 

means 

�Ac − 2]�AA + 3]�>A + ]>�>A − 3]>�A + 2]>)(�>A − ]�A + 3])
(�A + ])≡ 0	8+4(�A + 2]) 

Hence, equation (34) is a positive integer 

(@eiM>[@ee`A[@Ye`[Y@YeMA[Y@e`>[Y)(\@YeM[@e`A[)
(@e`[)(@e`>[)          (35) 

Thus �A takes any of the following values 2 and 4. But �A 

must be greater than 2, hence 2 is not a possibility. We give 

corresponding values of �
, �>, �, �	#D4	� in the table below. 

Table 25. Case 2; for ] = 2	the possible case of 4−(�, �, 1) design. 

RS  Rf  RW  Q  P	 g  

4 10 20 4 7 35 

This 4 − (7,4,1) design is trivial. Hence, for ] = 2 there is 

no nontrivial 4 − (�, �, 1) design. 

For ] = 3, �A takes only 6 as its value. The corresponding 

values of �
, �>, �, �	#D4	� are given in the table 26 below. 

Table 26. Case 2; for ] = 3	the possible case of 4−(�, �, 1) design. 

RS  Rf	  RW  Q  P  g  

6 21 56 4 9 126 

This 4 − (9,4,1)  design is trivial. Hence, also for ] = 3 

there is no nontrivial 4 − (�, �, 1) design. 

For ] = 4,�A takes the values 8 and 28. The corresponding 

values of �
, �>, �, �	#D4	� are given in the table below. 

Table 27. Case 2; for ] = 4	the possible cases of 4−(�, �, 1) designs. 

RS  Rf  RW  Q  P  g  

8 36 120 4 11 330 
28 676 14365 9 171 272935 

We obtain the desired 4 − (�, �, 1)  designs from BIB 

designs below: 2 − (11,4,36), 2 − (171,9,676) 
For ] = 5  and using similar arguments as before, the 

possible values of �A  are as follows: 10,15	#D4	20  which 

gives the values of �
, �>, �, �	#D4	� as in the table below. 

Table 28. Case 2; for ] = 5	the possible cases of 4−(�, �, 1) designs. 

RS  Rf  RW  Q  P	  g  

10 55 220 4 13 715 
15 155 1240 5 33 8184 

20 305 3782 6 63 39711 

Case 3, ] ≠ ^] > 1, ^ > 1 

In this case Equation (28) can be rewritten as 

^�> = ](� − 2), ⟹ � = \@Y`>[
[  and ^�A = ](� − 2),⟹

� = \@e`>[
[                               (36) 

Using Equation (28) we have 

�
 = ^>�Ac − 2]^�AA + 3]^�>A + ]>�>A − 3]>�A + 2]>
^>�A + ]^  

Which implies 

� = \@eYM[@e`A[
[ #D4� = \@e`>[

[                (37) 

For this design to be 4 − (�, �, 1)  and from �� = ��
 it 

means 

^>�Ac − 2]^�AA + 3]^�>A + ]>�>A − 3]>�A + 2]>)(^�>A − ]�A + 3])
(^>�A + ]^)≡ 0	8+4(^�A + 2]) 

That is Equation (38) is a positive integer 

(\Y@eiM>[\@ee`A[\@Ye`[Y@YeMA[Y@e`>[Y)(\@YeM[@e`A[)
(\Y@e`[)(\@e`>[)       (38) 

Using similar argument as before Equation (38) will be 

integer if Equation (39) is an integer 

d[e\i`>
d[{\Y`dd[i\e`>
d[|\
\{(\@e`[)(\@e`>[)                    (39) 

The corresponding values of �
, �>, �, �	#D4	� is given in 

the table below. 
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Table 29. Case 3; for ] = 3	#D4	^ = 2	 the possible case of 4−(�, �, 1) 
design. 

RS  Rf  RW  Q  P  g  

3 6 10 4 6 15 

This 4 − (6,4,1)  design is trivial. Hence, for ] =3	#D4^ = 2 there is no nontrivial 4 − (�, �, 1) design 

Also for ] = 5	#D4	^ = 2	  there is no non-trivial 4 −(�, �, 1), the following table gives the corresponding values 

of �
, �>, �, �	#D4	�. 

Table 30. Case 3; for ] = 5	#D4	^ = 2	 the possible case of 4−(�, �, 1) 
design. 

RS  Rf  RW  Q  P  g  

5 6 35 4 8 70 

In this case there is only one non- trivial 4 − (�, �, 1). The 

following table gives the corresponding values of �
, �>, �, �	#D4	�. 

Table 31. Case 3; for ] = 4	#D4	^ = 3	 the possible case of 4−(�, �, 1) 
design. 

RS  Rf	  RW  Q  P  g  

4 12 30 5 11 66 

For ] = 6	#D4^ = 3 equation (28) becomes 

196560
(3�A + 6)(3�A + 12) 

And the corresponding values of �
, �>, �, �#D4�  are as 

shown below. 

Table 32. Case 3; for ] = 6	#D4	^ = 3	the possible cases of 4−(�, �, 1) 
designs. 

RS Rf RW Q P g 

4 10 20 4 7 35 

6 26 91 5 15 273 
8 50 260 6 27 1170 

10 82 574 7 43 3526 

22 442 8177 13 223 140267 

For ] = 7	#D4^ = 3 equation (3.4.3.2) becomes 

466480
(3�A + 7)(3�A + 14) 

In this case there is only one non- trivial 4 − (�, �, 1). The 

following table gives the corresponding values of �
, �>, �, �	#D4	�. 

Table 33. Case 3; for ] = 7	#D4	^ = 3	 the possible case of 4−(�, �, 1) 
design. 

RS Rf RW Q P g 
7 35 140 5 17 476 

For ] = 8	#D4	^ = 3 equation (3.4.3.2) becomes 

992256
(3�A + 8)(3�A + 16) 

Also in this case, there is only one non- trivial 4 −(�, �, 1). The following table gives the corresponding values 

of �
, �>, �, �	#D4	�. 
Table 34. Case 3; for ] = 8	#D4	^ = 3	 the possible case of 4−(�, �, 1) 
design. 

RS Rf RW Q P g 
40 1496 52547 17 563 1740233 

For ] = 9	#D4	^ = 3 equation (3.4.3.2) becomes 

1939140
(3�A + 9)(3�A + 18) 

And the corresponding values of �
, �>, �, �	#D4	� are as 

shown below. 

Table 35. Case 3; for ] = 9	#D4	^ = 3	the possible cases of 4−(�, �, 1) 
designs. 

RS Rf RW Q P g 

6 21 56 4 9 126 

9 57 285 5 21 1197 
15 183 1891 7 63 17019 

6. Conclusion 

In this study a new recursive technique has been developed 

for the construction of � − (�, �, ��) designs. Thus, the study 

has presented an alternative method that is simpler and 

unified for the construction of BIBDs that are very important 

in the experimental designs. As it provides designs for 

different values of � , unlike many methods that provide 

designs for a single value of �. More so, it provides both 

Steiner and non-Steiner designs. 

Recommendations 

Although this study has provided a technique for the 

construction of � −  designs, it is still clear that construction 

method of � −designs is not known in general. In fact, it is not 

clear how one might construct � −designs with arbitrary block 

size. We therefore invite researchers to come up with “additive 

theorems “for this construction to make it general for any value 

of � as this may bring in new techniques and ideas. There is also 

need for obtaining a theorem which would give all values of x 

and y for the case three in this construction in order to see new 

Steiner � −designs. Lastly, if there is a computer package that 

could be incorporated in the method to aid in calculations. 
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