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Abstract: Janardan Distribution is one of the important distributions from lifetime models and it has many applications in 

real life data. A size-biased form of the two parameter Janardan distribution has been introduced in this paper, of which the 

size-biased Lindley distribution is a special case. Its moments, median, skewness, kurtosis and Fisher index of dispersion are 

derived and compared with the size-biased Lindley distribution. The shape of the size-biased Janardan distribution is also 

discussed with graphs. The survival function and hazard rate of the size-biased Janardan distribution have been derived and it 

is concluded that the hazard rate of the distribution is monotonically increasing. The flexibility in the reliability measures of the 

size-biased Janardan distribution have been discussed by stochastic ordering. To estimate the parameters of the size-biased 

Janardan distribution maximum likelihood equations are developed. 
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1. Introduction 

Size-biased distributions are the special cases of the 

weighted distributions. [6] introduced the weighted 

distributions to model ascertainment bias and later was 

discussed by [13]. [11] & [12] discussed the applications of 

weighted distributions and size biased sampling in real life. 

These distributions arise in practice when observations from 

a sample are recorded with unequal probability and provide a 

unifying approach for the problems where the observations 

fall in the non-experimental, non-replicate, and non-random 

categories. If the random variable X has the probability 

distributions function (pdf), ( );f x θ  then the size-biased 

distribution is of the form 

( ) ( )0 ;
;

m

m

x f x
f x

θ
θ

µ
=

′
,                            (1) 

Where ( )0

0

;m
m x f x dxµ θ

∞

′ = ∫  for 1& 2α α= =  we get the 

size-biased and area-biased distributions respectively. [3] 

proposed a weighted Lindley distribution by using a new 

weight function. Various properties of the model have been 

derived and the shape of the hazard rate is also discussed. [1] 

derived size-biased gamma distribution (SBGMD). They 

derived the characterizing properties of the SBGMD 

including Shannon entropy and Fisher’s information matrix. 

They also derived Baye’s estimator of the SBGMD using 

different priors. [5] examined the size-biased versions of the 

generalized beta of the first kind, generalized beta of the 

second kind and generalized gamma distributions. They 

discussed broader applications of the size-biased distributions 

in forestry sampling, modeling and analysis. [2] derived size-

biased Pareto distribution and discussed upper record values 

of the size-biased Pareto distribution. They proposed some 

recurrence relations satisfied by the single and product 

moments of upper record values form size-biased Pareto 

distribution. 

[17] derived size-biased Poisson Lindley distribution 

(SBPLD) and its moments. They estimated parameter of 

the SBPLD and apply the model on thunderstorms. They 

concluded that the size-biased Poisson Lindley 

distribution (SBPLD) gives much closer fit than the size-

biased Poisson distribution (SBPD). [10] derived some 

size-biased probability distributions and their 

generalizations. These distributions provide a unifying 

approach for the problems where the observations fall in 

the non-experimental, non- replicated, and nonrandom 
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categories. 

[9] introduced one parameter Lindley distribution (LD) as 

( ) ( ) ( )
2

; 1 , 0 0
1

x
f x x e x

θθθ θ
θ

−= + > >
+

           (2) 

[8] discussed various properties of the Lindley 

distribution and showed that Lindley distributions provide a 

better fit than exponential distributions. [7] introduced the 

size-biased Poisson Lindley distribution considering the 

size-biased form of the mixture of Poisson Lindley 

distribution. They developed various properties of the size-

biased Lindley distribution and its applications on 

biological data. [16] introduced a two parameter continuous 

distribution named as Janardan distribution (JD) and 

derived its various properties including moments, failure 

rate function, mean residual life function and stochastic 

ordering. They also discussed the estimation methods for 

JD and apply it on waiting time data. The probability 

density function of the JD is 

( ) ( ) ( )
2

2
; , 1 , 0, 0, 0.

x

f x x e x

θ
αθθ α α θ α

α θ α

−
= + > > >

+
    (3) 

It can be seen that for 1α = , the LD (2) is a special case of 

JD (3). The JD is a mixture of exponential 
θ
α
 
 
 

 and Gamma 

2,
θ
α

 
 
 

 distribution. The mean of the JD is 

( )
( )

2

1 2

2α θ α
µ

θ θ α

+
′ =

+
.                                (4) 

[15] introduced the mixture of Poisson and Janardan 

distribution named discrete Poisson-Janardan distribution 

(PJD). They developed properties and parameter estimation 

of the PJD and applied it on two data sets, distribution of 

mistakes in copying groups of random digits and distribution 

of Pyrausta nublilalis.[4] derived Poisson area-biased Lindley 

distribution including its structural properties. The 

applications of the Poisson area-biased Lindley distribution 

are discussed in biostatistics. 

In this paper the size-biased form of the Janardan 

distribution of which size-biased Lindley distribution is a 

special case, has been suggested and various properties of 

size-biased Janardan distribution (SBJD) comparing with 

size-biased Lindley Distribution. 

2. The Size-Biased Janardan Distribution 

(SBJD) 

By using equation (1) the probability density function of 

the size-biased Janardan distribution (SBJD) is 

( ) ( ) ( )
3

2 2
; , 1 , 0, 0, 0.

2

x

f x x x e x

θ
αθθ α α θ α

α θ α

−
= + > > >

+
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It is observed that for 1α = , the SBJD (5) approaches to 

size-biased Lindley distribution (SBLD) with probability 

density function 

( ) ( ) ( )
3

; 1 , 0, 0.
2

x
f x x x e x

θθθ θ
θ

−= + > >
+

   (6) 

 

Fig. 1. The pdf graph for SBJD for 1=θ  and 1,2,3,5,10=α . 

 

Fig. 2. The pdf graph for SBJD for different values of parameters. 

From Fig. 1 & 2 it can be seen that the size-biased 

Janardan distribution is positively skewed. In Fig. 1. With 

1θ = , as we increase the value of α the shape of the model 

is going to flatting and for lower value of α the model is 

peaked. In Fig. 2. with 1.5 & 2, 3α θ= =  the shape of the 

model is peaked. For 1.5 & 1,α θ= =  and 12 & 15,α θ= =
the shape of the model is nearly similar to normal. 

The cumulative distribution function (cdf) of the SBJD (5) is 

( ) ( ) ( )
( )

2 2 2

2

2 2
1 , 0, 0, 0.

2

θ
α

α θ α θ θ α θ α
θ α

α θ α

−+ + + +
= − > > >

+

xx x
F x e x   (7) 

Some basic measures (moments, skewness and kurtosis) of 

the SBJD (5) and SBLD (6), are given in the following table 

Table 1. Some measures of the SBJD and SBLD. 

Measure SBJD SBLD for 1=α in SBJD 
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Measure SBJD SBLD for 1=α in SBJD 
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It can be seen that for both the SBJD and SBLD,

( )1 2

2 3
, ,30

3
γ β

 
→   

 
as 0.θ →  Therefore the SBJD and 

SBLD are positively skewed and leptokurtic. 

The Fisher index of dispersion of the SBJD is 

( )
( )

( )
2 2 4

2

6 6

2 3
FI X

θ θα α

θ α

+ +
=

+
                       (8) 

For ( ) 1FI X <=> , the SBJD is under dispersed, equi 

dispersed and over dispersed respectively. 

Median of the SBJD is 

( )
2

2
2, 3,

2
median m m

θ θ α θ
α θ αθ α

    = Γ + Γ    
    +  

,     (9) 

Where ( )1

0

,

x

n xx e dx n t− − = Γ∫  is incomplete gamma function. 

Theorem 2.1. Let 1 2, , , nx x x⋯  be random sample having 

pdf ( )f x  from SBJD then show that 

( )
( ) 1

d x x

f x

ϕ
µ

=
′

,                                     (10) 

where ( ) ( )
1 0

1
x

x uf u duϕ
µ

=
′ ∫ and 1µ′ is the mean of the SBJD. 

Proof. By using the probability distribution function in (5) 

we have 

( ) ( ) ( )
4

2

3 2

0

1
2 3

x
u
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θ
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−
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2 2
1 .

2 2 3

x x x x

x e x e xe x e
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α α α αθ θ θϕ

αα α θ α
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Taking derivative of (11), 

( ) ( ) ( )
4

2

3 2
1 .

2 3

x

d x x x e

θ
αθϕ α

α θ α

−
= +

+
    (13) 

Hence substituting the values we get, 

( )
( ) ( ) ( )2 2

1

.
2 3 2

d x x x

f x

ϕ
µα θ α θ θ α

= =
′+ +

      (14) 

3. Reliability Measures of the SBJD 

The survival function of the SBJD is 
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Fig. 3. Graph of the survival function for SBJD for different values of 

parameters. 

 

Fig. 4. Graph of the survival function for SBJD for different values of 

parameters. 

The hazard rate function of the SBJD is 

( ) ( )
( ) ( )

3

2 2 2

1

2 2

x x
h x

x x

θ α

α α θ α θ θ α θ α

+
=

 + + + +
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      (16) 

 

Fig. 5. Graph of the hazard function for SBJD for different values of 

parameters. 

 

Fig. 6. Graph of the hazard function for SBJD for different values of 

parameters. 

From fig. 3 & 4, it can be seen that the survival function of 

the SBJD is in decreasing trend and fig. 4 & 5, the hazard 

function of the SBJD is monotonically increasing. Moreover 

for 1α = , (15) and (16) are the survival function and hazard 

function of the SBLD respectively. 

Lemma 1. Let ( )f x  is a twice differentiable density 

function of a continuous random variable x chosen from 

SBJD: 

( ) ( )
( )

f x
x

f x
η

′
= − ,                              (17) 

Then suppose the derivative of ( )xη is exist and ( ) 0xη >  

for SBJD. 

i-e. ( )
( )22

1 2
0

1

x
x

x x

αη
α

+′ = >
+

; for all 0.x >     (18) 

It shows that hazard function of the SBJD is monotonically 

increasing (IFR) 

4. Stochastic Ordering 

A random variable X is said to be smaller than a random 

variable Y in the 

i. Stochastic order ( )stX Y≤  if ( ) ( )X YF x F x≥  for all x 

ii. Hazard rate order ( )hrX Y≤  if ( ) ( )X Yh x h x≥ for all x 

iii. Mean residual life order ( )mrlX Y≤ if ( ) ( )X Ym x m x≤
for all x 

iv. Likelihood ratio order ( )lrX Y≤ if 
( )
( )

X

Y

f x

f x
decreases in x. 

[14] considered the following results for establishing 

stochastic ordering of distributions 

lr hr mrl

st

X Y X Y X Y

X Y

≤ ⇒ ≤ ⇒ ≤

⇓

≤
 

Theorem 3.1. Let a random variable X from SBJD 

( )1 1,θ α  and another random variable Y from SBJD ( )2 2,θ α . 

If 1 2α α=  and 1 2θ θ≥  (or if 1 2θ θ= and 1 2α α≤ ) then 

lr hr mrl stX Y X Y X Y X Y≤ ⇒ ≤ ⇒ ≤ ⇒ ≤  

Proof. Let 

( )
( )

1 2 2 1

1 2

2 2
1 1 1 2 2 2 1

2
2 2 2 1 21 1

; , 2 1

; 12

xf x x
e

f y x

θ α θ α
α αθ α θ α θ α α

θ α θ α αθ α
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 
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1 2 2 1
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log 2 log log
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( )
( ) ( )( )

1 1 1 2 1 2 2 1

2 2 1 2 1 2

; ,
log

; 1 1

f xd

dx f y x x

θ α α α θ α θ α
θ α α α α α

− −
= −

+ +
   (21) 

Case (i): 1 2α α=  and 1 2θ θ≥ , then

( )
( )

1 1

2 2

; ,
log 0

; ,

f xd

dx f x

θ α
θ α

< . It means that 

lr hr mrl stX Y X Y X Y X Y≤ ⇒ ≤ ⇒ ≤ ⇒ ≤  

Case (i): 1 2α α≤ and 1 2θ θ= , then
( )
( )

1 1

2 2

; ,
log 0

; ,

f xd

dx f x

θ α
θ α

< . 

It means that 

lr hr mrl stX Y X Y X Y X Y≤ ⇒ ≤ ⇒ ≤ ⇒ ≤  

This theorem shows the flexibility of the SBJD in the 

context of reliability measures (stochastic ordering, hazard 

rate ordering, mean residual ordering and likelihood ratio 

ordering). 

5. Estimation of Parameters 

Maximum Likelihood Estimates (MLE): Let 1 2, , , nx x x⋯

be random samples from the size-biased Janardan 

distribution in (2.1) then the likelihood estimates function of 

the SBJD is 

( )
( )

( )1

3

2 2
1

, 1

2

n

i

i

nxn

i in
n

i

L e x x

θ
αθθ α α
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=

−

=

= +
+

∑
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The two log likelihood equations for &θ α are 

( ) 1

2

log , 3
0

2

n

i

i

x
L n nθ α
θ θ αθ α
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= − − =
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( )
2 2

1 1

log , 2 4
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n n
i

i

ii i

L x n n
x

x

θ α θ α
α α αα θ α= =

∂
= + − − =
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The equations (23) and (24) cannot be solved directly. 

However in order to solve these equations we derive the 

derivatives 
( )2

2

log ,
,

L θ α
θ

∂

∂
( )2

2

log ,
,

L θ α
α

∂

∂
( )2
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∂
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for extreme conditions respect to two variables: 
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= +
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Hence, (by the formula) we obtain that 

( ) ( )
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   (28) 

These equations can be solved iteratively till sufficiently 

close estimates of &θ α are obtained. 

6. Conclusion 

As we know that the Janardan Distribution has wide 

applicationsin lifetime models. A size-biased form of the two 

parameter Janardan distribution is derived in this paper and it 

has been noted that it is a special case of the size-biased 

Lindley distribution. Moments, median, skewness, kurtosis 

and Fisher index of dispersion of the size-biased Janardan 

distributionare derived and compared with the size-biased 

Lindley distribution. From the graphs of theprobability 

distribution function of the derived model it can be seen that 

the shape of the size-biased Janardan distribution is 

positively skewed. The survival function and hazard rate of 

the size-biased Janardan distribution have been derived. 

From graphs and lemma 1 it is concluded that the hazard rate 

of the distribution is monotonically increasing (IFR). The 

flexibility in the reliability measures of the size-biased 

Janardan distribution have been discussed by stochastic 

ordering. Maximum likelihood equations are developedto 

estimate the parameters of the size-biased Janardan 

distribution. The parameters of the size-biased JD can be 

estimated by simulations. 
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