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Abstract: This project considers the parameter estimation problem of test units from Kumaraswamy distribution based on 

progressive Type-II censoring scheme. The progressive Type-II censoring scheme allows removal of units at intermediate 

stages of the test other than the terminal point. The Maximum Likelihood Estimates (MLEs) of the parameters are derived 

using Expectation-Maximization (EM) algorithm. Also the expected Fisher information matrix based on the missing value 

principle is computed. By using the obtained expected Fisher information matrix of the MLEs, asymptotic 95% confidence 

intervals for the parameters are constructed. Through simulations, the behaviour of these estimates are studied and compared 

under different censoring schemes and parameter values. It’s concluded that for an increasing sample; the estimated parameter 

values become closer to the true values, the variances and widths of the confidence intervals reduce. Also, more efficient 

estimates are obtained with censoring schemes concerned with removals of units from their right. 
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1. Introduction 

Censored sampling arises in a life testing experiment 

whenever the experimenter does not observe (either 

intentionally or un-intentionally) the failure times of all units 

placed on a life test. 

“According to Horst, a data sample is said to be censored 

when, either by accident or design the value of the variables 

under investigation is unobserved for some of the items in the 

sample.”[1] Inference based on censored sampling has been 

studied during the past over 50 years by numerous authors for 

a wide range of lifetime distributions. 

In this study, we assume that the lifetimes have Kumaraswamy 

distribution. This distribution was introduced by Kumaraswamy 

as a probability density function for double bounded random 

processes. [2] This distribution is applicable to many natural 

phenomena whose outcomes have lower and upper bounds, such 

as the heights of individuals, scores obtained on a test, 

atmospheric temperatures, hydrological data etc. 

The two parameter Kumaraswamy distribution has a PDF 

and CDF given respectively by; 

1 1( ; , ) (1 ) ,f x x xλ λ θθ λ λθ − −= −            (1) 

( ; , ) 1 (1 ) ,F x xλ θθ λ = − − 0 1 ; , 0x λ θ< < >    (2) 

Kumaraswamy and Ponnambalam et al. [2, 3] have pointed 

out that depending on the choice of the parameters, this 

distribution can be used to approximate many distributions, 

such as uniform, triangular, or almost any single model 

distribution and can also reproduce results of beta distribution. 

The basic properties of the distribution have been given by 

Jones. [4] 

Inferential issues for the Kumaraswamy distribution based 

on censored data have been addressed by Gholizadeh et al. [5] 

who considered the Bayesian estimation of Kumaraswamy 

distribution under progressively Type II censored samples. 

Tabassum et al. [6] explored the Bayesian analysis of 
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Kumaraswamy distribution under failure censoring sampling 

scheme. Feroze et al [7] estimated the parameters of 

Kumaraswamy distribution under progressive type II 

censoring with random removals using maximum likelihood 

method. 

Most recently, Mostafa et al [8] derived parameter 

estimators of Kumaraswamy distribution based on general 

progressive type II censoring scheme using maximum 

likelihood and Bayesian approaches. Also, some of the recent 

work on progressive censoring include but not limited to 

[9-14]. As far as we know, no one has described the EM 

algorithm for determining the MLEs of the parameters of the 

Kumaraswamy distribution based on progressive type-II 

censoring scheme. 

The purpose of this study is to estimate the shape and scale 

parameters of the Kumaraswamy distribution under 

progressive type-II censoring using the EM algorithm and to 

compare the results under different censoring schemes. 

In this work, we propose to use EM algorithm for 

computing MLEs. This is because the EM algorithm is 

relatively robust against the initial values compared to the 

traditional Newton-Raphson (NR) method. [15, 16] For some 

of the recently relevant references on EM algorithm and 

censoring include [17 and 20]. 

2. Parameter Estimation 

2.1. Progressive Type II Censoring 

Suppose n identical units are put on a test and the lifetime 

distributions of the n units are denoted by  ��, … , ��. 

The integer m < n is fixed at the beginning of the 

experiment and they are the units which are observed 

completely until failure. 

The censoring occurs progressively in m stages. These m 

stages offer failure times of the m completely observed units. 

At the time of the first failure (the first stage), ��  of the 

� − 1  surviving units are randomly withdrawn from the 

experiment. At the time of the second failure (the 2nd stage), 

�� of the � − 2 − ��  surviving units are withdrawn and so 

on. Finally, at the time of the  
�� failure (the  
�� stage), 

all the remaining �� = � − 
 − �� − �� − ⋯ − ���� 

surviving units are withdrawn. According to Childs and 

Balakrishnan, we refer to this as progressive Type-II right 

censoring with scheme ���, ��, … ���. [21] 

2.2. Maximum Likelihood Estimation 

Let 
1: 2: :

, ,...,
n n m n

X X X  denote a progressive Type II 

censored sample from Kumaraswamy distribution. Then 

according to [21] the likelihood function based 

on progressively Type II censored sample is given by; 

[ ]1: :

1

( , ; ,..., ) ( ; , ) 1 ( ; , )
i

m
R

n m n i i

i

L x x k f x F xθ λ θ λ θ λ
=

= −∏   (3) 

From equations (1) and (2), the likelihood function based on 

progressive Type II censored sample is as follows; 

( ) ( )
1

1

1: :

1

( , ; ,..., ) 1 1

−
−

=

 ∝ − −
  ∏

iRm
m m

n m n

i

L x x x x x

θ
θλ λ λθ λ λ θ  (4) 

The log-likelihood function of equation (4) can be written 

as follows: 

1: :

1

( , ; ,..., ) ln ln ( 1) ln( )
m

n m n i

i

l x x m m xθ λ λ θ λ
=

∝ + + − ∑  

( )
1 1

( 1) ln(1 ) ln 1
m m

i i i

i i

x R xλ λθ θ
= =

+ − − + −∑ ∑    (5) 

2.3. EM Algorithm 

We propose the EM algorithm, introduced by Dempster et 

al. [22] to find the MLEs. 

Let 

1 2 1 2
( , ,..., ), .. ( , ,..., ),

Jm j j j jR
Z Z Z Z with Z Z Z Z= =  

1,2,..., ,j m=  be the censored data. 

We consider the censored data as missing data. The 

combination (X, Z) = W forms the complete data set. The 

log-likelihood function based on W can be written 

respectively as: 

1

( ; , ) ln ln ( 1) ln( )
m

j

j

H w n n xθ λ λ θ λ
=

∝ + + − +∑

1 1 1

( 1) ln(1 ) ( 1) ln
JRm m

j jk

j j k

x Zλθ λ
= = =

− − + −∑ ∑∑  

1 1

( 1) ln(1 )
jRm

jk

j k

Z
λθ

= =

+ − −∑∑           (6) 

In the E-step, one requires to compute the 

pseudo-likelihood function. This can be obtained from 

���; �, ��  by replacing any function of ��� 

{ ( ) }, ( ) ( ) .jk jk jk jsay h z by E h z z x>  

Therefore equation (6) becomes; 

1 1 1 1

( ; , ) ln ln

( 1) ln( ) ( 1) ln(1 ) ( 1) ln ( )

∗

= = = =

∝ +

 + − + − − + − > ∑ ∑ ∑∑
JRm m m

j j jk jk j

j j j k

H w n n

x x E Z Z x
λ

θ λ λ θ

λ θ λ
 

1 1

( 1) ln (1 )
JRm

jk jk j

j k

E Z Z x
λθ

= =

 + − − > ∑∑     (7) 

Therefore, , ,j jgiven X x= the conditional distribution of 

 ���  follows a truncated Kumaraswamy distribution with left 

truncation at 
jx . That is 

( ) ( ) 1 ( ) ,
Z X j w j w j j j

f Z X f z F x z x = − >      (8) 

Therefore the conditional expectations in equations (6) and 

(7) can be obtained as follows: 
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( )( ) ( )1

1
( ; , ) ln 1 ln 1

jk jk
E v E z z v vλ λθ λ

θ
= − > = − −  (9) 

( ) ( )2 ; , ln    jk jkE v E z z vθ λ = >∵  

( )
( )

( ) ( )}{1
(1, ) 1 1

1

v

v
θλ

θ
β θ θ

λ

−
= Ψ − Ψ +

−
  (10) 

Thus, in the M-step of the ( )1
th

k +  iteration of the EM 

algorithm, the value of 
( 1)kθ +

 is first obtained by solving the 

following equation: 

( )( )
( ) ( )

2

1 1

( ; , )
ln(1 ) ; , 0

∗

= =

= + − + =∑ ∑
k

m m
k k

j j j

j j

dH w n
x R E x

d

λθ λ θ λ
θ θ

 

( )( )

( 1)

( ) ( )

2

1 1

ln(1 ) ; ,
k

k

m m
k k

j j j

j j

n

x R E xλ
θ θ

θ λ

+

= =

−= =
− +∑ ∑

⌢

 (11) 

Once 
( 1)kθ +

 is obtained, 
( 1)kλ +

 is obtained by solving the 

equation 

( )( 1)

1

1 1 1

( ; , )

ln
ln( ) ( 1) ; , 0

1

∗

+

= = =
= + − − + =

−∑ ∑ ∑
m m m

j j k k

j j j

j j jj

dH w

d

x xn
x R E x

x

λ

λ

θ λ
λ

θ θ λ
λ

 

( )
( 1)

( 1)

1

1 1 1

ln
ln( ) ( 1) ; ,

1

+

+

= = =

−=
− − +

−∑ ∑ ∑
⌢

k

m m m
j j k k

j j j

j j jj

n

x x
x R E x

x

λ

λ

λ
θ θ λ  (12) 

2.4. Asymptotic Variance-Covariance Matrix of the MLEs 

The variance–covariance matrix is used to provide a 

measure of precision for parameter estimators by utilizing the 

log-likelihood function. We first compute the variance–

covariance matrix of parameters θ and λ by considering a 

complete data set from the Kumaraswamy distribution. 

For such a case, the log likelihood function based on X is 

obtained as follows; 

( )
1 1

( ; , ) ln ln ( 1) ln( ) ( 1) ln 1
= =

= + + − + − −∑ ∑
n n

c i i

i i

l x n n x x λθ λ λ θ λ θ  (13) 

Using equation (13), the Fisher information matrix for the 

complete data set is given as; 

2 2

2
11 12

2 2
21 22

2

ln ln

( , )
ln ln

c c

c

c c

d l d l

I Id dd
I E

I Id l d l

d d d

θ λθθ λ

θ λ λ

 
    = − =  
   
 
 

 

And the variance-covariance matrix of parameters θ and λ is 

given by 

( ) ( )
( ) ( )

1

11 12

21 22

ˆ ˆ ˆvar cov ,

ˆ ˆ ˆcov , var

I I

I I

θ θ λ

θ λ λ

− 
   =   
  

 

      (14) 

Where 

11 2

n
I

θ
=  

}{
12

(2, 1) (2) (1 )n
I

θ β θ θ
λ

− Ψ − Ψ +
=  

{ }2' '

22 2 2

( 1)
(2, 2) (2) ( ) (2) ( )

−= + − − + −  
n n

I
θ θ β θ ψ ψ θ ψ ψ θ

λ λ
 

'( ) ( )where x and xψ ψ are the digamma and trigamma 

functions respectively. 

In this work, we are interested in deriving the asymptotic 

variance–covariance matrix for the MLEs based on the EM 

algorithm. For this we will use the procedure that was 

established by Louis and Tanner. [23, 24] The idea of this 

procedure is given by 

( ) ( ) ( )
obs c miss

I I Iη η η= −             (15) 

�ℎ� � !"�#�, !$%&�#�  and !�'&&�#�  denote the complete, 

observed, and missing (expected) information, respectively, 

and η = (θ, λ). The Fisher information matrix for a single 

observation which is censored at the time of the (�� failure is 

given by 

( )2

( )

2

ln ;
( )

z x jk jk jj

miss

d f z z x
I E

d

η
η

η

 >
 = −
 
 

 

( );z x jk jk jwhere f z z x η>  is given in Equation (8). The 

expected values of the second partial of the log-likelihood 

function of Z given X are calculated as follows; 

( ) ( )
( )

1
1 1

; , ,
1

j j

j j j j j

j

z z
f z z x z x

x

θλ λ

θλ

λθ
θ λ

−− −
= = >

−
 

( )

( ) ( )

ln ;

ln( ) ( 1) ln

ln 1 ( 1) ln 1

>

= + −

− − + − −

z x jk jk j

j

j j

f z z x

z

x zλ λ

η

λθ λ

θ θ
     (16) 

( )2

( )

112 2

ln ; 1z x jk jk j j
d f z z x

E I
d

η
θ θ

 >
 − = =
 
 

   (17) 
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( )

( )
( )

( ) ( )}{

2

( )

12

ln ;

1ln
(2, 1) 2 1

1 1

 >
 −
 
 

−
= − + − Ψ − Ψ + =

− −

z x jk jk j

jj j j

j
j

d f z z x
E

d d

xx x
I

x x

λ

λ θλ

η
θ λ

θ β θ θ
λ

 (18) 

( )

( )
( )

( )
{ [ ] }

2

2

2

2 2

2' '

2

( )

22

ln ;

ln1

1

( 1)(1 ) (2, 2)
(2) ( ) (2) ( )

1

z x jk jk j

j j

j

j

j

j

d f z z x
E

d

x x

x

x

x

I

λ

λ

θλ

η
λ

θ
λ

θ θ β θ
ψ ψ θ ψ ψ θ

λ

 >
 −
 
 

= − +
−

− − −
− + −

−

=

 (19) 

Note that !���
�'&&   is a function of )�  and η, since the 

expectation is taken with respect  �� ; therefore, the expected 

information matrix is simply 

( )

1

( ) ( )
m

j

miss j miss

j

I R Iη η
=

=∑               (20) 

( ) ( )

11 12

1 1

( ) ( )

12 22

1 1

( )

m m
j j

j j

j j

miss m m
j j

j j

j j

R I R I

I

R I R I

η = =

= =

 
 
 =
 
  
 

∑ ∑

∑ ∑
 

Hence ( ) ( ) ( )
obs c miss

I I Iη η η= −  

( ) ( )

11 12

1 111 12

( ) ( )12 22

12 22

1 1

( )

m m
j j

j j

j j

obs m m
j j

j j

j j

R I R I
I I

I
I I

R I R I

η = =

= =

 
 

   = −       
 

∑ ∑

∑ ∑
 

Therefore, the variance–covariance matrix of parameter η 

can be obtained by 

[ ] 11 ( ) ( ) ( )obs c missI I Iη η η −− = −             (21) 

Using equation (21) an approximate 100(1−α) % 

confi-dence intervals for θ and λ is obtained respectively, as; 

( ) ( )
2 2

ˆ ˆ ˆ ˆvar varZ and Zα αθ θ λ λ   ± ±      
     (22) 

Where ( )
2

1
2

th

Zα
α= −  is the percentile of the standard 

normal distribution. 

3. Numerical Results and Discussion 

In this section a simulation study is conducted to 

investigate how the above estimators perform in estimating 

the parame-ters of Kumaraswamy distribution based on 

progressive type II censored data. The samples were 

generated based on the algorithms of Balakrishnan and 

Sandhu and Aggarwala and Balakrishnan (1998). [25, 26] 

The censoring schemes con-sidered are given in table 1 

below; 

Table 1. Censoring schemes. 

Scheme Censoring rate 

1 11 121 : .... 0, 6= = = =r r r
 

1 5 7 12 62 : .... ... 0, 6= = = = = = =r r r r r
 

2 12 13 : .... 0, 6= = = =r r r
 

1 14 154 : .... 0, 3= = = =r r r
 

1 5 9 15 6 7 85 : .... ... 0, 1= = = = = = = = =r r r r r r r

 

2 15 16 : .... 0, 3= = = =r r r
 

1 17 187 : .... 0, 7= = = =r r r
 

1 8 11 18 9 108 : .... 0, 3, 4= = = = = = =r r r r r r

 

2 18 19 : .... 0, 7= = = =r r r
 

1 22 1810 : .... 0, 3= = = =r r r
 

1 8 11 22 9 1011 : .... 0, 2, 1= = = = = = =r r r r r r
 

2 22 112 : .... 0, 3= = = =r r r
 

1 29 3013 : .... 0, 10= = = =r r r  

1 14 17 30 15 1614 : .... ... 0, 5= = = = = = = =r r r r r r
 

2 30 115 : .... 0, 10= = = =r r r
 

1 35 3616 : .... 0, 4= = = =r r r
 

1 17 20 36 18 1917 : .... ... 0, 2= = = = = = =r r r r r r
 

2 36 118 : .... 0, 4= = = =r r r
 

Clearly from table 1, schemes 1, 4, 7, 10, 13 and 16 are right 

censored schemes; 2, 5, 8, 11, 14 and 17 are centre censored 

while 3, 6, 9, 12, 15 and 18, are left censored schemes. The 

right, centre and left censored schemes are respectively 

denoted as n:m-R, n:m-C and n:m-L. 

All the computational results were computed using R 

software 

Table 2. MLEs, variances and confidence intervals of MLEs of Kumaraswamy distribution when λ=0.6 and θ=1.0. 

Scheme n:m 
⌢

λλλλ  
⌢

θθθθ  v(λ) v(θ) LL(λ) UL(λ) LL(θ) UL(θ) 

1 18:12-R 0.7645 1.19158 0.09871 0.06021 0.0938 1.26118 0.46808 1.42109 

2 18:12-C 0.76556 1.20544 0.10043 0.07087 0.08922 1.2679 0.47492 1.44196 

3 18:12-L 0.7799 1.23841 0.10648 0.07514 0.0841 1.30169 0.4912 1.49161 
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Scheme n:m 
⌢

λλλλ  
⌢

θθθθ  v(λ) v(θ) LL(λ) UL(λ) LL(θ) UL(θ) 

4 18:15-R 0.73095 1.16709 0.09782 0.05675 0.06311 1.22478 0.49642 1.34377 

5 18:15-C 0.73096 1.17661 0.09803 0.05771 0.06983 1.2353 0.5064 1.35768 

6 18:15-L 0.73957 1.18491 0.0984 0.05855 0.06983 1.23548 0.50154 1.36982 

7 25:18-R 0.70526 1.15949 0.08395 0.05137 0.08526 1.15125 0.51389 1.31109 

8 25:18-C 0.71061 1.16257 0.09091 0.05163 0.0661 1.18113 0.51562 1.31551 

9 25:18-L 0.722941 1.16529 0.09452 0.0519 0.06311 1.20278 0.51715 1.31943 

10 25:22-R 0.67157 1.08667 0.08123 0.03801 0.06148 1.10766 0.5117 1.16765 

11 25:22-C 0.6744 1.10452 0.09203 0.03923 0.05838 1.11043 0.51955 1.18949 

12 25:22-L 0.60212 1.14617 0.08358 0.04214 0.06138 1.13377 0.54489 1.24747 

13 40:30-R 0.63614 1.05911 0.06865 0.03183 0.07146 1.02082 0.51958 1.09867 

14 40:30-C 0.63612 1.06611 0.06993 0.03223 0.06637 1.02603 0.52407 1.10815 

15 40:30-L 0.6439 1.07324 0.06475 0.03258 0.05516 1.05262 0.52865 1.11783 

16 40:36-R 0.60099 1.02478 0.0483 0.02668 0.12739 0.89458 0.52168 1.02787 

17 40:36-C 0.62299 1.03134 0.0521 0.0271 0.13385 0.9381 0.5291 1.03958 

18 40:36-L 0.62611 1.04616 0.05868 0.02762 0.10667 0.97156 0.53908 1.05925 

From table 2, it is observed that irrespective of the censoring rate and the position at which the censored units are removed 

from the sample, for increasing sample size; 

(i) the estimated value of the parameter becomes closer to the true value, 

(ii) the variances of the MLEs decrease 

Table 3. Effect on the Confidence intervals of the estimates. 

Scheme n:m width of λ width of θ 

1 18:12-R 1.16738 0.95301 

2 18:12-C 1.17868 0.96704 

3 18:12-L 1.21759 1.00041 

4 18:15-R 1.16167 0.84735 

5 18:15-C 1.16305 0.85614 

6 18:15-L 1.16547 0.86382 

7 25:18-R 1.06599 0.7972 

8 25:18-C 1.11503 0.79989 

9 25:18-L 1.13967 0.80228 

10 25:22-R 1.04618 0.65595 

11 25:22-C 1.05205 0.66994 

12 25:22-L 1.06329 0.70258 

13 40:30-R 0.94936 0.57909 

14 40:30-C 0.95966 0.58408 

15 40:30-L 0.99746 0.58918 

16 40:36-R 0.76719 0.50619 

17 40:36-C 0.80428 0.51048 

18 40:36-L 0.86489 0.52017 

Table 3 clearly shows that the widths of 95% confidence intervals tend to be lesser as the sample size increases. 

Table 4. Effect of the number of censored units on estimates. 

scheme n:m 
⌢

λλλλ  
⌢

θθθθ  v(λ) v(θ) LL(λ) UL(λ) LL(θ) UL(θ) 

1 18:12-R 0.7645 1.19158 0.09871 0.06021 0.0938 1.26118 0.46808 1.42109 

2 18:12-C 0.76556 1.20544 0.10043 0.07087 0.08922 1.2679 0.47492 1.44196 

3 18:12-L 0.7799 1.23841 0.10648 0.07514 0.0841 1.30169 0.4912 1.49161 

4 18:15-R 0.73095 1.16709 0.09782 0.05675 0.06311 1.22478 0.49642 1.34377 

5 18:15-C 0.73096 1.17661 0.09803 0.05771 0.06983 1.2353 0.5064 1.35768 

6 18:15-L 0.73957 1.18491 0.0984 0.05855 0.06983 1.23548 0.50154 1.36982 

Table 4 has been extracted from table 2, so as to clearly illustrate the effect of censored units on the parameter estimates. The 

results in table 4 show that when the sample size is kept constant, then better estimates are obtained when the censored units are 

reduced. Schemes 4-6 have better estimates compared to schemes 1-3 because the number of censored units in schemes 4-6 are 

each 3 units while in schemes 1-3, we have 6 units censored from each. 
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Table 5. Effect of position of removal of units in the scheme on estimates. 

scheme n:m 
⌢

λλλλ  
⌢

θθθθ  v(λ) v(θ) LL(λ) UL(λ) LL(θ) UL(θ) 

1 18:12-R 0.7645 1.19158 0.09871 0.06021 0.0938 1.26118 0.46808 1.42109 

2 18:12-C 0.76556 1.20544 0.10043 0.07087 0.08922 1.2679 0.47492 1.44196 

3 18:12-L 0.7799 1.23841 0.10648 0.07514 0.0841 1.30169 0.4912 1.49161 

The removal of units in scheme 1, 2 and 3 was done at the 12th, 6th, and 1st failures respectively and from the results it was 

observed that scheme 1 which is right censored, gave a better estimate followed by scheme 2 (centre censored scheme) and lastly 

scheme 3 (left censored scheme). The same trend was observed across all the censoring schemes i.e all the right censored 

schemes resulted in better estimates followed by centre censored and left censored in that order. 

Table 6. MLEs, variances and confidence intervals of MLEs of Kumaraswamy distribution when λ=2.2 and θ=3.5. 

scheme n:m 
⌢

λλλλ  
⌢

θθθθ  v(λ) v(θ) LL(λ) UL(λ) LL(θ) UL(θ) 

1 18:12-R 2.60598 3.83061 0.19357 0.76331 1.82916 3.46218 2.09551 5.46764 

2 18:12-C 2.62011 3.84161 0.19533 0.76442 1.84026 3.48123 2.10042 5.4826 

3 18:12-L 2.62426 3.84951 0.20058 0.76795 1.8317 3.49804 2.10432 5.49451 

4 18:15-R 2.56329 3.82357 0.19383 0.63367 1.83556 3.37081 2.23806 5.30889 

5 18:15-C 2.57632 3.826872 0.18148 0.61554 1.84254 3.41778 2.24078 5.31627 

6 18:15-L 2.5967 3.83107 0.17294 0.61644 1.82001 3.4502 2.24209 5.31985 

7 25:18-R 2.50917 3.85857 0.15119 0.53091 1.83915 3.2591 2.28034 5.1366 

8 25:18-C 2.51364 3.78588 0.15352 0.53985 1.83733 3.26975 2.29568 5.17589 

9 25:18-L 2.5252 3.82177 0.15546 0.5517 1.84372 3.28649 2.31584 5.2275 

10 25:22-R 2.45423 3.69152 0.13098 0.40743 1.84118 3.14707 2.39035 4.8925 

11 25:22-C 2.45571 3.72075 0.14127 0.41493 1.81306 3.17816 2.40812 4.93319 

12 25:22-L 2.47865 3.75515 0.14529 0.42384 1.82476 3.21234 2.42903 4.98107 

13 40:30-R 2.38023 3.62095 0.12241 0.32467 1.79288 3.04738 2.45403 4.68767 

14 40:30-C 2.38451 3.63553 0.12243 0.32771 1.7971 3.05173 2.46339 4.70746 

15 40:30-L 2.55376 3.64016 0.12327 0.32868 1.86378 3.12353 2.46637 4.71376 

16 40:36-R 2.30453 3.61267 0.10232 0.26913 1.78206 2.90681 2.54577 4.57938 

17 40:36-C 2.33327 3.61775 0.11919 0.27001 1.75586 2.99047 2.54918 4.58612 

18 40:36-L 2.37704 3.61798 0.12067 0.27005 1.79505 3.03882 2.54934 4.58642 

Table 6 also shows that for increasing sample size the estimated value of the parameter becomes closer to the true value and the 

variances of the MLEs decrease. 

However, these variances are much higher than those obtained in table 2. 

Table 7. Effect on the Confidence intervals of the estimates. 

Scheme n:m width of λ width of θ 

1 18:12-R 1.163302 3.37213 

2 18:12-C 1.64097 3.38218 

3 18:12-L 1.66704 3.39019 

4 18:15-R 1.53525 3.07083 

5 18:15-C 1.57524 3.07549 

6 18:15-L 1.6302 3.07776 

7 25:18-R 1.41985 2.85626 

8 25:18-C 1.43242 2.88021 

9 25:18-L 1.44277 2.91166 

10 25:22-R 1.30589 2.50215 

11 25:22-C 1.3651 2.55204 

12 25:22-L 1.38758 2.52507 

13 40:30-R 1.2545 2.23364 

14 40:30-C 1.25463 2.24407 

15 40:30-L 1.25975 2.24739 

16 40:36-R 1.12475 2.03361 

17 40:36-C 1.23461 2.03694 

18 40:36-L 1.24377 2.03708 

The widths of the confidence intervals are also higher under these set of parameter values and tend to be lesser for an 

increasing sample size. 
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Table 8. Effect of the number of censored units on estimates. 

scheme n:m 
⌢

λλλλ  
⌢

θθθθ  v(λ) v(θ) LL(λ) UL(λ) LL(θ) UL(θ) 

7 25:18-R 2.50917 3.85857 0.15119 0.53091 1.83915 3.2591 2.28034 5.1366 

8 25:18-C 2.51364 3.78588 0.15352 0.53985 1.83733 3.26975 2.29568 5.17589 

9 25:18-L 2.5252 3.82177 0.15546 0.5517 1.84372 3.28649 2.31584 5.2275 
10 25:22-R 2.45423 3.69152 0.13098 0.40743 1.84118 3.14707 2.39035 4.8925 

11 25:22-C 2.45571 3.72075 0.14127 0.41493 1.81306 3.17816 2.40812 4.93319 

12 25:22-L 2.47865 3.75515 0.14529 0.42384 1.82476 3.21234 2.42903 4.98107 

Table 6 as well reveals that reducing the censored units leads to better estimates for a constant sample size. In schemes 7-9, the 

number of units censored are each 7, while in schemes 10-12, the censored units are each 3 and we see from the results that 

schemes 10-12 gave better estimates compared to schemes 7-9. 

Table 9. Effect of position of removal of units in the scheme on estimates. 

scheme n:m 
⌢

λλλλ  
⌢

θθθθ  v(λ) v(θ) LL(λ) UL(λ) LL(θ) UL(θ) 

7 25:18-R 2.50917 3.85857 0.15119 0.53091 1.83915 3.2591 2.28034 5.1366 

8 25:18-C 2.51364 3.78588 0.15352 0.53985 1.83733 3.26975 2.29568 5.17589 
9 25:18-L 2.5252 3.82177 0.15546 0.5517 1.84372 3.28649 2.31584 5.2275 

 

The removal of units in scheme 7, 8 and 9 was done at the 

18
th

, 9
th
 and 10th, and 1

st
 failures respectively and from the 

results it was observed that scheme 7, gave a better estimate 

followed by scheme 8 and finally scheme 9. This trend was 

observed to cut across all the censoring schemes i.e all the 

right censored schemes resulted in better estimates followed 

by centre censored and left censored in that order. 

4. Conclusion 

This study has addressed the problem of estimation of 

parameters of the Kumaraswamy distribution based on 

progressive Type-II censored data. It is shown that the MLEs 

of the scale and shape parameters can be obtained by using 

EM algorithm. 

A comparison of the MLEs and their variances as well as 

their confidence intervals is made by simulation for different 

censoring schemes. It is observed that: 

i. for an increasing sample size, the estimated value of the 

parameter becomes closer to the true value, the 

variances of the MLEs decrease and the widths of the 

confidence intervals become less. 

ii. better estimates are obtained when the removal of units 

is from the right, followed by those at the centre and 

poorest for those removed from the left. 

iii. reducing the number of units to be removed in the 

censoring scheme, leads to better estimates for a fixed 

sample size. 

iv. an increase in the true parameter values leads to 

estimates with large variances and increased widths of 

the confidence intervals. 
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