
 

American Journal of Theoretical and Applied Statistics 
2015; 4(6): 484-495 

Published online October 22, 2015 (http://www.sciencepublishinggroup.com/j/ajtas) 

doi: 10.11648/j.ajtas.20150406.19 

ISSN: 2326-8999 (Print); ISSN: 2326-9006 (Online) 

 

Use of Exponential Smoothing Technique in Estimation of 
Returns in a Financial Portfolio (A Case of the Matatu Public 
Transport Business in Kenya) 

Jumba Minyoso Sandra
1, *

, Joel Cheruiyot Chelule
2
, Mungatu Joseph

3
 

Department of Statistics and Actuarial Studies, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya 

Email address: 
jminyoso@gmail.com (J. M. Sandra) 

To cite this article: 
Jumba Minyoso Sandra, Joel Cheruiyot Chelule, Mungatu Joseph. Use of Exponential Smoothing Technique in Estimation of Returns in a 

Financial Portfolio (A Case of the Matatu Public Transport Business in Kenya). American Journal of Theoretical and Applied Statistics.  

Vol. 4, No. 6, 2015, pp. 484-495. doi: 10.11648/j.ajtas.20150406.19 

 

Abstract: This study sought to develop consistent estimators for the conditional mean and conditional volatility using 

exponential smoothing technique and to use the estimators for the conditional mean and conditional volatility to estimate VaR 

and ES of a financial asset in a given financial portfolio. In particular, we take the Kenyan Matatu business as our financial 

portfolio and we estimate the ES of the daily returns obtained from Matatus travelling the Nairobi –Eldoret highway as provided 

by CLASSIC SACCO. In estimating the conditional mean and conditional volatility of the returns of our portfolio, the study 

explored the exponential smoothing technique, whereby exponentially decreasing weights were assigned to the returns. The 

study proved that the estimators for the conditional mean and conditional volatility are consistent and also that the estimators for 

the conditional mean and conditional volatility when conditional mean is known, are asymptotically normal. Further the study 

gives the estimators for the VaR and ES and proves that the VaR estimator is consistent. 
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1. Introduction 

1.1. Background Information 

In Kenya, when the demand for public transport began to 

outstrip its supply shortly after Independence in 1963, the 

government decided to tolerate and eventually regularize what 

had previously been informal commercial vehicles commonly 

known as Matatus. By the mid-2000s, it is estimated that half 

of Nairobi’s population relied on Matatus to meet their public 

transport needs 

This Matatu industry has a direct impact on over 500,000 

people who are drivers, touts, or employees of PSV Sacco’s 

and stage attendants . As businesses, Matatus are privately 

owned; they do not enjoy government subsidies and are 

required to be registered and pay taxes. 

In a legal notice issued on 23
rd

 December 2010, by the 

Ministry of transport, all the Matatus were to join SACCOs or 

limited liability companies by the end of the year 2010. By 

this time some of the SACCOs were effectively managing 

their routes, providing credit to their members for purchase of 

vehicles or repairs while one had established a fueling station 

for its members’ vehicles with Classic Sacco being one of 

them. Classic Sacco manages over 170 Matatus plying the 

Nairobi-Eldoret route. Nairobi being the capital city of Kenya 

is approximately 164 miles away from Eldoret making this an 

approximately 5 hour drive distance when using public 

transport. 

Returns from the Matatu business are a complete and 

scale-free summary of the investment opportunity in the 

industry 

Increase of financial risks in financial portfolios the Kenyan 

Matatu industry; for example, have underlined the need for 

better financial risk measures.Matatu business owners deal 

with the risks associated with changes in prices that can be 

summarized by the variances of future returns, directly, or by 

their relationship with relevant covariance in a portfolio 

context. Forecasts of future standard deviations can provide 

up-to-date indications of risk, which might be used to avoid 

unacceptable risks . The nature of financial risks in different 

portfolios keeps on changing with time and therefore the 

methods to measure them should adapt accordingly. 

Furthermore, these methods should be easy to understand 

even in complex situations. It is in this context that 
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quantitative risk measures have become vital in the 

management of risks. This study is therefore motivated by the 

need to know how to estimate market risks in the Matatu 

Industry market. 

There are many types of risks i.e. market risks, credit risks 

and operational risks. In this study, we are focused on one type, 

the market risks. Market risks are risks that arise from the 

changes in the prices of financial assets and liabilities (or 

volatilities) and measured by changes in the value of open 

positions or in earnings.The market risks will be quantified 

using a statistical tool called ES. But we cannot avoid 

mentioning VaR when dealing with ES, since VaR precedes 

ES, by definition and computation. 

1.2. Statement of the Problem 

Matatus account for 80% of the total public transport in the 

country (Muriungi, 2013).The Matatu business can yield good 

returns for an investor if well managed. However the Matatu 

business experiences many challenges. The main challenge is 

keeping track of these returns so as to run a profitable business. 

In most cases, this happens due to poor monitoring of 

exposure to market risks by the management. It has been 

difficult to manage these market risks in the absence of 

accurate details available from regulatory authorities and 

related institutions. We intend to address this challenge by 

estimating ES of the returns as provided by the managing body 

Classic SACCO. 

2. Literature Review 

2.1. Volatility and Value at Risk 

The main characteristic of any financial asset is its return. 

Return is typically considered to be a random variable. Its 

primary usage is to estimate the value of market risk. Volatility 

is also a key parameter for pricing financial derivatives. All 

modern option-pricing techniques rely on a volatility 

parameter for price evaluation. Volatility is also used for risk 

management applications and in general portfolio 

management. 

Volatility concept and its usage in financial risk 

management refer to the spread of all outcomes of an 

uncertain variable. In finance, we are interested in the 

outcomes of assets returns. Volatility is associated with the 

sample standard deviation of returns over some period of time. 

Volatility is a quantified measure of market risk. Volatility is 

related to risk, but it is not exactly the same. Risk is the 

uncertainty of a negative outcome of some event (e.g. stock 

returns) while volatility measures a spread of outcomes. This 

includes positive as well as negative outcomes. 

Volatility can be used in some risk management 

applications, such as Value at Risk (VaR). Accurate estimates 

of volatility are important for option pricing, portfolio analysis 

and risk management methodologies, such as value at risk. 

The observation that many financial series exhibit volatility 

clustering has led to the development of a great many time 

series methods for volatility forecasting 

As a risk measure, volatility is an important concept in 

finance and plays a critical role in a wide range of applications 

such as asset pricing, portfolio management, risk management, 

and option valuation. . Volatility modeling is required for VaR 

estimation. 

The main characteristic of any financial asset is its return. 

Return is typically considered to be a random variable. Its 

primary usage is to estimate the value of market risk 

Value at risk (VaR) is commonly used in the financial 

industry to quantify risk in asset portfolios. Value-at-risk (VaR) 

has become a standard measure used in financial risk 

management due to its conceptual simplicity, computational 

facility, and ready applicability. Many authors suggest that 

VaR has several conceptual problems for example, 

� VaR measures only percentiles of profit-loss 

distributions, and thus disregards any loss beyond the 

VaR level (“tail risk”), 

� VaR is not coherent since it is not sub-additive. 

2.2. Expected Shortfall 

Expected shortfall is defined as the conditional expectation 

of loss given that the loss is beyond the VaR level. ES can be 

used to alleviate the problems present in VaR  since expected 

shortfall considers the loss beyond the VaR level and has been 

proven to be sub-additive which assures its coherence as a risk 

measure. Expected shortfall has less of a problem in 

disregarding the fat tails and the tail dependence than VaR 

does. VaR is not a risk measure because it does not fulfill the 

axiom of sub—additivity  

2.3. Past Reviews on Exponential Smoothing 

The two most popular time series approaches are GARCH 

models and smoothing methods. In contrast to the statistical 

rigor of GARCH models, smoothing methods provide a 

pragmatic, ad hoc approach to volatility forecasting  

Exponential smoothing is a popular approach, which has been 

found to perform well in empirical studies.  It involves the 

allocation of exponentially decreasing weights to past squared 

shocks. Another common application of exponential 

smoothing is inventory control, where it is used to predict the 

level of a time series of demand. 

An advantage of exponential smoothing is that it uses 

declining weights which “captures the cyclical behavior of 

return volatility.” Exponential smoothing’s simple and popular 

approach to volatility forecasting is to estimate the variance as 

a simple moving average of past squared shocks.  writes that 

this estimator has two clear weaknesses. Firstly, if volatility 

clusters, there is strong appeal to giving more recent 

information greater weighting, and, secondly, the choice of 

how many past periods to include in the moving average is 

arbitrary. Exponential smoothing is also widely used to 

produce forecasts for the level of a time series . An alternative 

is to use GARCH the down-side of which is that it adds (some) 

complexity. Exponential smoothing may be a good 

compromise between quality and complexity for Value at 

Risk.  
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The exponential estimator is asymptotically fully adaptive 

to unknown conditional mean functions when its asymptotic 

properties are established and compared with those for the 

local linear estimator and the exponential estimator also shows 

superior performance when it is applied to estimate 

conditional volatility functions, ensuring its non-negativity 

(Su. et al, 2002). shows that the noisy nature of realized 

volatility may benefit from smoothing techniques 

At the same time Exponential smoothing and exponentially 

weighted moving average give one of the best results among 

all volatility forecasting models. These two models have the 

lowest RMSE using the testing set. (Ladokhin, 2009) 

2.4. Concepts and Definitions 

We consider the problem of forecasting a value each period, 

which will be exceeded with probability �1 − ��   by the 

current portfolio, where� ∈ �0,1�  is a specified confidence 

level associated to the Value at Risk (VaR). Let 	
��  be 

real-valued and 	
� , −∞ < � < ∞�   represent information 

available at time �  . We will assume that 	
��  is 	
�� 

measurable. Let the sequence of random variables 	
� , 
���, 
���, … . � taking the values in R be stationary. Here, 	
��  can be considered as the response variable and 	
����(the past information of 	
�� are the predictor variables 

(or covariates). Specifically, we want to estimate the 

conditional mean and the conditional volatility of 	
��, given 

the past information,  	
���� , with the assumption that the 

function is completely determined by 	
��, for � ∈ �0,1�. So, 

we have our underlying process of interest of the form as in 

Mwita (2003). 


� = �� + ���� , � = 1,2           (2.1) 

Where 

1) ��is the conditional mean function of 
� given the past 

information, 
���, 

2) ��is the conditional volatility function of 
� given the 

past information, 
���, 

3) and �� are the standard error terms, which we assume to 

be independent of  
��� and normally distributed with 

mean 0 and variance 1. 

The conditional � −quantile of (2.1) given 
���   is then 

given by 

����, = �� + ��
!�����, �  or simply 

����, = �� + ���  

where 
!�����  is the � − quantile of �� and � ∈�0,1�.Suppose �� are independent and identically distributed 

(i.i.d) standard normal random variables, then 


�~#��� , ����, � = 1,2 

Definition (Risk) 

Risk is the dispersion (volatility) of unexpected outcomes, 

generally the value of assets or liability of interest. 

Alternatively, we can also define risk as the quantifiable 

likelihood of loss or less-than-expected returns. 

Definition (Risk measure) 

Consider a set Q of real-valued random variables. A 

function  $: & → �  is called a risk measure if it is 

(i) monotonous: 


 ∈ &, 
 ≥ 0 ⟹ $�
� ≤ 0, 

(ii) sub-additive: 


, +, 
 + + ∈ & ⟹ $�
 + +� ≤ $�
� + $�+� 

(iii) positivelyhomogeneous: 


 ∈ &, ℎ > 0, ℎ
 ∈ � ⟹ $�ℎ
� = ℎ$�
� 

and 

(iv) translation invariant: 


 ∈ &, � ∈ � ⟹ $�
 + �� = $�
� − � 

Definition (Value at Risk) 

The Value at Risk, ����, , based on negative returns or 

losses at time t given the past information of 
� is defined by, 

����,. = /012
� ∈ �3
45 ≥ �6 � ∈ �0, 1� 

����, is the conditional � -quantile of 
�  given 
��� .In 

essence, we find ����,  such that 

Pr [
� < ����, |
���; = �        (2.2) 

�1 − ��is the probability of extreme losses greater than 

the����,   usually taking the values 5% or 1% corresponding 

to one or ten day(s) periods respectively. 

Definition (Expected Shortfall) 

Suppose 
� is a random variable denoting the negative 

returns of a given portfolio on a specified time horizon  

and ����, is the VaR at the 100�1 − �� percent confidence 

level. The Expected Shortfall is defined by the following 

equation: 

E= = E [
�|
� ≥ ����, ; = �        (2.3) 

2.5. Exponential Smoothing (ES) 

Exponential smoothing is a popular scheme used to produce 

a smoothed time series. This forecasting procedure was first 

suggested by C. C Holt in about 1958. By definition, 

Exponential Smoothing is simply an adjustment technique, 

which takes the previous period’s forecast and adjusts it up or 

down based on what actually occurred in that period. It 

accomplishes this by calculating a weighted average of the 

two values. The formula takes the form: 

=� = >
��� + �1 − >�=��� 

Where 
���  is the yesterday’s actual value; =�  is the 

forecasted value; >   is the weighing factor or Smoothing 

constant and t is the current time period. 

Whereas in single moving averages, the past observations 

are weighted equally, exponential smoothing scheme weight 

past observations using exponentially decreasing weights to 

forecast future values. In other words, recent observations are 

given relatively more weight than the older observations. 

T
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2.5.1. Single Exponential Smoothing 

This smoothing scheme begins by setting =� to 
�, where =�  stands for smoothed observations or exponentially 

weighted moving average (EWMA), and X stands for the 

original observation. The subscripts refer to the time periods 1,2, … , 0 .For � ≥ 3 , the smoothed value =�  is found by 

computing 

=� = >
��� + �1 − >�=���, 0 < > ≤ 1, � ≥ 3    (2.4) 

There is no =� . The smoothed series starts with the 

smoothed version of the second observation. Equation (2.4) is 

the basic equation of Exponential Smoothing and the constant 

or parameter >   is called the smoothing constant.The first 

forecast is very important, and the smaller the value of the > , 

the more important is the selection of the initial exponentially 

weighted moving average. The initial smoothed observation 

plays an important role in computing all the subsequent 

EWMA’s. 

The following are some of the methods of initialization: 

Setting =�  to 
� ; Setting =�  to the target of the process; 

Setting =� to the average of the first four or five observations. 

2.5.2. Double Exponential Smoothing 

Double exponential smoothing uses two constants and is 

better at handling trends. Single exponential smoothing does 

not excel in following the data when there is a trend. This 

situation can be improved by the introduction of a second 

equation with a second constant, 
 
, which must be chosen in 

conjunction with >  .The following are the two equations 

associated with double exponential smoothing: 

=� = >
� + �1 − >��=��� + @����, 0 ≤ > ≤ 1,    (2.5) 

@� = A�=� − =���� + �1 − A�@���, 0 ≤ A ≤ 1,    (2.6) 

Here, we note that the current value of the series is used to 

calculate its smoothed value replacement in double 

exponential smoothing. There are several methods to choose 

the initial values for =�  and @� . =�  is in general set to 
�  

while the following are three suggestions for @�:  @� = 
� − 
� 

@� = [� 
� − 
�� + �
B − 
�� + �
C − 
B�;/3; AND/OR 

@� = � 
E − 
��/0 − 1 

Smoothing equation (2.5) adjusts  directly for trend of 

the previous period, @���, by adding it to the last smoothed, 

=���. This helps to eliminate the lag and brings  to the 

appropriate base of the current value.The second smoothing 

equation (2.6) then updates the trend, which is expressed as 

the difference between the last two values. The equation is 

similar to the basic form of single exponential smoothing but 

here applied to the updating of the trend. 

Why exponential smoothing? 

Exponential smoothing relies on only two pieces of data 

(the last period’s actual value and the forecasted value for the 

same period). Therefore, it minimizes the data storage 

requirements. If we use the moving averages method to 

forecast, we need to have M past values. This is cumbersome 

if there are many items for which forecasting is required. 

Exponential smoothing technique is very simple in concept 

and easy to understand and is often used on large-scale 

statistical forecasting problems because it is both robust and 

easy to apply. 

3. Estimators for the Conditional Mean 

and Conditional Volatility 

3.1. Estimator for the Conditional Mean 

Refer to model (2.1). We want to estimate the conditional 

mean,��  , given past information, 
��� . In improving the 

normal method of estimating�̂, i.e., �̂ = �
G ∑ 
IGJK�  , where  

is the sample size and  
I  are the observations, we introduced 

horizons L  as the time we look back to estimate the 

conditional mean of the returns for the day �. So as to achieve 

better estimate of ��, the horizon should be large enough. In 

our case, we chose to use a horizon of 250 days.We also 

thought about the influence of the past on the today’s mean 

and noted that the behavior of the matatu returns several days 

ago should not influence the �̂� as much as yesterday’s 

behavior. So we weighted the returns with weights, M�  . These 

weights should decrease exponentially as the returns get older. 

That is, recent returns are given relatively more weight than 

older returns. Therefore, the weights are given by 

M� = �1 − >�>��I for some > ∈ �0,1�       (3.1) 

where > is the weighting factor or smoothing constant.It is 

expected that these weights should sum up to 1, but because 

we cannot look back an infinite time span, the sum of the MI′O  

may not sum up exactly to 1. But for horizons,  L , large 

enough, the sum is approximately equal to 1. For example, 

suppose we look at a horizon L of 250 days (as in our case) 

and a >  of 0.95, the MI ′O
 
’s sum up to 0.99997.We now 

define our estimator for the conditional mean. Let 
�, … , 
P , 
PQ�, … . , 
E be a sequence of returns, where L is 

the size of the horizon we take at time � and 0 is the sample 

size large enough such that we can have a number of horizons 

that can give a vector of estimates for the conditional mean. 

The estimator for the conditional mean is given by 

�̂� = ∑ �1 − >�>��I
I�IK��PQ�           (3.2) 

Where ∈ �0,1� , is the smoothing constant; t is the current 

time period; L is the time horizon. 

Definition (Point estimator) 

If we have a random sample   
�, 
�, … … , 
E   from a 

density, say 1�R; �� , which is known except for �
 
, then a 

point estimator of �  is a statistic, say ��
�, 
�, … … , 
E� , 

whose value is used as an estimate of � . 

Definition (Convergence) 

A sequence 	
E�of random variables are said to converge 

in probability to a constant   @  if for every > 0; limE→W Pr	|
E − @| > X� = 0 

or alternatively, limE→W Pr	|
E − @| ≤ X� = 1 

Convergence in probability is denoted by 
E
Y→ @ 

tS

tS

n
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Definition (Weak Consistency) 

Let   Z�, Z�, … … , ZE be a sequence of point estimators of� , 

where  ZE = �� 
�, 
�, … … , 
E�  . The sequence 	ZE�  is 

defined to be a weakly consistent sequence of point estimators 

of � if the following conditions are satisfied: 

limE→W [�ZE� = �; 

limE→W ��\�ZE� = 0 

Assumptions 

(A1) [��]� = 0 

(A2) �� = [��]�� < ∞ 

(A3) lim|]�I|→W ^_`(
] , 
I) = 0  where /  represents an 

observation in one horizon e.g 
�, 
�, … … , 
P  and 

arepresents an observation in another horizon e.g  


�, 
�, … … , 
PQ�.Some remarks on the assumptions are in 

order. Assumption (A2) is made to guarantee that all variables 

in the model have a finite variance and assumption (A3) shows 

that correlation between observations diminishes to zero as the 

distance between 
] and 
I becomes large. 

Theorem 3.1(Consistency for the conditional mean 

estimator) 

Let 
�, 
�, … … , 
P , 
PQ�, … … . 
E be a random sample of 

returns with mean �� and variance ���.Then,  

�̂� = b (1 − >)>��I
I
�

IK��PQ�
 

is a weak consistent estimator of ��. 

Proof of theorem 3.1 

We show that limP→W [(�̂�) = �� and 

limP→W ��\(�̂�) = 0. We proceed as follows: 

�̂� = b (1 − >)>��I
I
�

IK��PQ�
; = (1 − >)>� b 1

>I 
I
�

IK��PQ�
 

[(�̂�) = (1 − >)>� ∑ [{4c
dc

�IK��PQ� }        (3.3) 

= (1 − >)>� ∑ e5
dc  �IK��PQ�           (3.4) 

= (1 − >)>�L e5
dc                  (3.5) 

= (1 − >)>��IL��                       

= (1 − >)>P��L��                 (3.6) 

limP⟶W [(�̂�) = ��               (3.7) 

��\(�̂�) = (1 − >)�>�� ∑ `�\ g4c
dch −�IK��PQ� ^_` g 4c

di , 4c
dch (3.8) 

= (1 − >)�>�� ∑ `�\ gj5k
dkch�IK��PQ�      (3.9) 

(1 − >)�>��L gj5k
dkch               (3.10) 

          (1 − >)�>�(��J)L��� = (1 − >)�>�(P��)L���   (3.11) 

limP→W(��\�̂�) = limP→W{(1 − >)�>�(P��)L���} = 0 

which implies that  �̂�
Y→ �� . 

Remarks 

a) Equation (3.4) is obtained from equation (3.3) by noting 

that L > 30. That is, the time horizon we have selected 

is large. Therefore, by the central limit theorem, the 

returns are normally distributed with mean ��  and 

variance ���  i.e. 
I~#(�� , ���) . Hence, we have 

[ g4c
dch = e5

dc and  ��\ g4c
dch = jk5

dkc  . In a similar way, 

equation (3.9) is obtained from equation (3.8), under 

assumption (A3). 

b) Equation (3.5) is obtained by summing equation (3.4) 

over the horizon, L . Similarly, equation (3.10) is 

obtained from equation (3.9). 

c) Equations (3.6) and (3.11) are obtained by noting 

that .a = � − L + 1 

d) Equation (3.7) is obtained from equation (3.6) by noting 

that the weights sum up to 1 asL → ∞ .  

Definition (Asymptotic normality, see Alexander et al 

(1974)) 

A sequence of estimators Z�∗, Z�∗, … , ZE∗, ….   of �   is 

defined to be best asymptotically normal (BAN) if and only if 

the following four conditions are satisfied: 

(i) The distribution of √0 (ZE∗ − �)   approaches the 

normal distribution with mean 0 and variance �∗k(�) 

as n approaches infinity. 

(ii) For every X > 0 , 

limE→W ne[|ZE∗ − �| > X] = 0 

(iii) Let {ZE} be any other sequence of simple consistent 

estimators for which the distribution of √0 (ZE − �)  

approaches the normal distribution with mean 0 and 

variance ��(�). 

(iv) ��(�)is not less than �∗k(�) for all � in any open 

interval. 

Lemma 3.1 (George, G. (1973)) 

Let {
P}  be a sequence of density functions, and let 
 

be a density function. Let ∅P  be the characteristic 

function corresponding to 
P  and ∅  be the characteristic 

function corresponding to. Then, 

(i) If 
P(R) P→Wpqqr 
(R) for all continuity points Rof 
 , 

then∅P(�) P→Wpqqr ∅(�), for every � ∈ �. 

(ii) If ∅P(�)  converges, as L → ∞  , and � ∈ �  , to a 

function s(�)  which is continuous at � = 0 , then g 

is a characteristic function, and if 
  is the 

corresponding density function, then  


P(R) P→Wpqqr 
(R) 

for all continuity points R of 
. 

Lemma 3.2 (George, G. (1973)) 

Let 
  and {
P}  be density functions such that 
P(R)
P→Wpqqr 
(R) , R ∈ �  , and let 
  be continuous. Then the 

convergence is uniform in R ∈ �. 

Theorem 3.2 (Asymptotic normality for the conditional 

mean estimator) 

Assume (A1), (A2), (A3) hold. Then, √L(�̂� − ��)  is 

asymptotically normal with mean 0 and variance  

F
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L�1 − >�����[L>��P��� − #>��G���;.That is,  

√L��̂� − ��� t→ #�0, ��� as L → ∞, where  

�� = L�1 − >�����[L>��P��� − #>��G���] 
Proof of theorem 3.2 

We apply the central limit theorem. Let  

uP�R� = n[√L��v� − ���
� ≤ R;; 

and Φ�R� = �
√�x y ���k �z {�|

�W  . Then, we show that  

G~�x� ~→Wpqqr Φ�x�  uniformly in x ∈ R . But before we 

proceed to the proof proper, it is in order that we make the 

following comments as in George, G. (1973): 

(i) Let 	�P� , 	@P�  L = 1,2, … 0 be two sequences of 

numbers. We say that	�P�  is 0	@P� and we write 

	�P� = 0	@P�, if  ��
�� P→Wpqqr 0. For example, if 

 �P = L and @P = L�  , then 	�P� = 0	@P� , since P
Pk = �

P P→Wpqqr 0. Clearly, if 	�P� = 0	@P�, then 

�P = @P��1� . Therefore, 0�@P� = @P��1�, . 

(ii) If  �P P→Wpqqr � , then �1 + ��
P �P

P→Wpqqr ��. 

We now begin the proof. Let sP  be the characteristic 

function of uP  and ∅ be the characteristic function of Φ; 

that is, ∅��� = ���k �z
 ,� ∈ � 

By lemma 3.1, it suffices to proof that sP��� P→Wpqqr ∅���; � ∈
�

 
. This will imply that uP�R� → Φ�x�; R ∈ �

 
. Then, by 

lemma 3.2, the convergence will be uniform. We have 

√L��̂� − ���
� = L�̂� − L��

�√L = 1
√L b 
I − ��� = 1

√L b �I
P

IK�

P

IK�
 

where �I = 4c�e5
� ; a = 1,2, … . L  with 

[��I� = 0, ��\��I� = [���I� = 1 . Hence, for simplicity, 

writing ∑ �JIK�  instead of ∑ �IPIK� , when this last expression 

appears as a subscript, we have 

sP��� = s�� √Pz � ∑ �c���c�� = s∑ �cc�� � �
√L� = [s�5� 1

√L�;P 

Now consider the Taylor expansion of around zero up 

to the second order term. Then 

s�5 � �
√L� = s�5�0� + �

√L s�5��0� + 1
2! � �

√L��s�5���0�
+ ����

L� 

Since 

s�5�0� = 1, s′�5�0� = /[���� = 0 

s′′�5�0� = /�[���]� = −1 

we get 

s�5 � �
√L� = 1 − ��

2L + ����
L� 

= 1 − ��
2L + ��

L ��1� = 1 − ��
2L [1 − ��1�; 

Thus 

sP��� = 	1 − �k
�P [1 − ��1�;�P Taking limits as L → ∞  

we have,  sP��� P→Wpqqr ���k �z ;  , which is the characteristic 

function of Φ. Hence, the prove. 

3.2. Estimator for the Conditional Volatility 

Refer to model (2.1).We want to estimate the conditional 

volatility,�� , of 
 

�, given past information, 
��� . As we did 

in section (3.1), we introduced the horizons L. Again, we also 

thought about the influence of the past on the today’s mean 

and noted that the behavior of the matatu returns several days 

ago should not influence the �v� as much as yesterday’s 

behavior. So we weighted the returns with the same weights, MI, as in equation (3.1). 

We now define our estimator for the conditional volatility. 

Let 
�, … , 
P , 
PQ�, … . . , 
E   be a sequence of returns 

defined as in section (3.1). We define the estimator for 

conditional volatility under the following situations: 

1. When the conditional mean, ��, is known, the estimator 

is given by 

�v�� = ∑  �1 − >�  >��I  
I�      (3.12) 

2. When the conditional mean, , is unknown, the 

estimator is given by 

�v�� = ∑  �1 − >�  >��I  �
I − �̂��� �IK��PQ�       (3.13) 

Where in both cases, > ∈ �0,1�,� and Lare as defined in 

section (3.1). 

The justification for squaring the returns, 
I , is as 

follows:Refer to our model (2.1), that is, 
� = �� + ���� . 

Assuming �� = 0, we have 
� = ����. Thus, 
�� = ��� + ������� − 1�. Taking conditional expectation, 

we have E(
��|
���) = ��� + ���[(��
� − 1) = ���. . 

Theorem 3.3 (Consistency for �v�  when �̂�is known) 

Let
�, … , 
P , 
PQ�, … . . , 
E be a sequence of returns with 

mean �� and variance,  

���. 

Then,  

�v� = [ b  (1 − >)  >��I 
I� ]
�

IK��PQ�

� �z
 

is a simple consistent estimator for ��. 

Proof of theorem 3.3 

We show that limP→W [(�v��) = ��� and 

limP→W ��\(�v��) = 0 

We proceed as follows: 

1zg

tµ
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�v�� = b  �1 − >�  >��I  
I� ;
�

IK��PQ�
 

= �1 − >�  >� b   1
>I 
I� ;

�

IK��PQ�
 

E(�v��� =  �1 − >�  >� ∑ [ �4ck
dc �  �3.14��IK��PQ�  

=�1 − >�  >� ∑ gj5k
dc h         �3.15��IK��PQ�  

=�1 − >� >�L j5k
dc                               �3.16� 

= �1 − >� >��JL��� 

= �1 − >� >P��L���                        �3.17� 

limP→W [��v��� = ���                             �3.18� 

`�\��v��� = �1 − >��>�� ∑ `�\�4ck
dc ��IK��PQ� − ^_`�4ck

dc , 4ck
dc � (3.19) 

= �1 − >��>�� b ��I�
>�I�

�

IK��PQ�
  �3.20� 

= �1 − >��>��L��I�
>�I�              �3.21� 

= �1 − >��>��P���L�I�           �3.22� 

= limP→W `�\��v��� = limP→W	 �1 − >��>��P���L�I�� = 0   
which implies that �v�

Y→ �� 

Remarks 

a) Equation (3.15) is obtained from equation (3.14) by 

noting that L > 30. That is, the time horizon we have 

selected is large. Therefore, by the central limit 

theorem, the returns are normally distributed with 

mean ��  and variance ���  i.e. 
I~#��� , ����  . 

Hence, we have [ g4c
dch = ec

dc and ��\ g4c
dch = jk5

dkc. In a 

similar way, equation (3.20) is obtained from equation 

(3.19), under assumption (A3). 

b) Equation (3.16) is obtained by summing equation 

(3.15) over the horizon, . Similarly, equation (3.21) 

is obtained from equation (3.20). 

c) Equations (3.17) and (3.22) are obtained by noting 

that . 

a = � − L + 1 

d) Equation (3.18) is obtained from equation (3.17) by 

noting that the weights sum up to 1 as L → ∞. 

Theorem 3.4 (Asymptotic normality for �v�  when �̂�  is 

known) 

Assume (A1), (A2), (A3) hold. Then, √L��v� − ���  is 

asymptotically normal with mean 0 and variance  

L�1 − >�����[L>��P��� − #>��G���.That is,  

√L��v� − ��� t→ #�0, ��� as L → ∞, where 

 �� = L�1 − >�����[L>��P��� − #>��G���. 
Proof of theorem 3.4 

We apply the central limit theorem. Let  

uP�R� = n[√L��v� − ���
� ≤ R; 

 And Φ�R� = �
√�x y ���k �z {�|

�W  . Then, we show that 

G~�x� ~→Wpqqr Φ�x�  uniformly in x ∈ R  . But before we 

proceed to the proof proper, it is in order that we make the 

following comments as in prove of theorem (3.2): 

I. Let 	�P� , 	@P�  L = 1,2, … be two sequences of 

numbers. We say that	�P�  is _	@P� and we write 

	�P� = _	@P�, if  ��
�� P→Wpqqr 0. For example, if 

�P = L and @P = L�  , then 	�P� = 0	@P� , since P
Pk = �

P P→Wpqqr 0. Clearly, if 	�P� = 0	@P�, then 

�P = @P��1� . Therefore, 0�@P� = @P��1�, . 

II. If  �P P→Wpqqr � , then �1 + ��
P �P

P→Wpqqr ��. 

We now begin the proof. Let sP  be the characteristic 

function of uP  and ∅ be the characteristic function of Φ; 

that is, ∅��� = ���k �z
 ,� ∈ � 

By lemma 3.1, it suffices to proof that sP��� P→Wpqqr ∅���; � ∈
�

 
. This will imply that uP�R� → Φ�x�; R ∈ �

 
. Then, by 

lemma 3.2, the convergence will be uniform. We have 

√L��v� − ���
� = L�v� − L��

�√L = 1
√L b 
I − ��� = 1

√L b �I
P

IK�

P

IK�
 

where �I = 4c�j5
� ; a = 1,2, … . L  with 

[��I� = 0, ��\��I� = [���I� = 1 . Hence, for simplicity, 

writing ∑ �JIK�  instead of ∑ �IPIK�  , when this last 

expression appears as a subscript, we have 

sP��� = s�� √Pz � ∑ �c���c�� = s∑ �cc�� � �
√L� = [s�5� 1

√L�;P 

Now consider the Taylor expansion of around zero up 

to the second order term. Then 

s�5 � �
√L� = s�5�0� + �

√L s�5��0� + 1
2! � �

√L��s�5���0�
+ ����

L� 

Since 

s�5�0� = 1, s′�5�0� = /[���� = 0 

s′′�5�0� = /�[���]� = −1 

we get 

H

1zg
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s�5 � �
√L� = 1 − ��

2L + ����
L� 

= 1 − ��
2L + ��

L ��1� = 1 − ��
2L [1 − ��1�; 

Thus 

sP��� = 	1 − �k
�P [1 − ��1�;�P Taking limits as L → ∞  

we have,  sP��� P→Wpqqr ���k �z ;  , which is the characteristic 

function of Φ. Hence, the prove. 

Theorem 3.5 (Consistency for when  is unknown) 

Let 
�, … , 
P , 
PQ�, … . . , 
E  be a random sample of 

returns with mean ��  and variance, ��� 

Then, 

�v� = [∑ �1 − >�>��I�
 − �̂���;�IK��PQ�
� �z

 is a simple 

consistent estimator for ��. 

Proof of theorem 3.5 

We show that limP→W [��v��� = ��� and  

limP→W ��\��v��� = 0 

We proceed as follows: 

�v�� = b    �1 − >���I  �
I − �̂��� 
�

IK��PQ�
 

= b    �1 − >�P�� �
I − �̂���
�

IK��PQ�
 

=   �1 − >�P�� b   �
I − �̂��� 
�

IK��PQ�
 

= �v���1 − >�P��   = b   �
I − �̂��� 
�

IK��PQ�
 

= �v���1 − >��P������   = ∑   �
I − �̂��� �IK��PQ����  

has a Chi-square distribution with  degrees of 

freedom. Therefore, 

[ � j�k5
���d������jk5� = �L − 1�and  

��\ � �v���1 − >��P������
� = 2�L − 1� 

Hence, 

( ) ( ) ( )
1

2 2
ˆ 1 1

H

t t
E Hσ λ σ

−

= − −        (3.23) 

limP→W [��v��� = ��� 

��\��v��� = �1 − >���P���2�L − 1���C            �3.24� 

limP→W ��\��v��� = 0 

which implies that �v��
Y→ ���and so is �v�. Hence, the proof. 

3.3. The Smoothing Constant 

The choice of the smoothing parameter is very important. 

However, although the theory of selecting this parameter is 

widely expanding, there is yet no one particular method that is 

universally acceptable as the standard. In any case, the basic 

principle underlying the choice of a smoothing parameter, is 

that the chosen value should result in the minimum mean 

square error. 

Definition (Mean-Squared Error (MSE)) 

Let Z = ��
�, 
�, … , 
E�  be an estimator of �. [e[�Z − ���; is defined to be the mean-squared error of the 

estimator Z = ��
�, 
�, … , 
E�. 

3.4. Estimators for Value at Risk and Expected Shortfall 

3.4.1. Estimator for Value at Risk (VaR) 

The Value-at-Risk summarizes the expected maximum loss 

(or worst loss) over a target horizon at a given confidence 

level  �.In our case, we use a target horizon of 250 days and a 

99% confidence level. . That means the Value-at-Risk we give 

is the amount of money we will at maximum lose the next day 

with probability of 99%.Or in other words, the probability to 

lose at the next day more than the calculated Value-at-Risk is 

less than 1%. 

We obtain today’s returns,
�, as 
� = − log� �5
�5��� where 

n� and n��� are today’s and yesterday’s returns respectively.. 

The conditional  �  -quantile function for our econometric 

model (2.1) is given by 

����, = �� + ��     �4.1� 

While the estimator for the conditional -quantile is given 

by 

�����, = �̂� + �v��                 �4.2� 

where �̂� and �v�  are as defined in equations (3.2) and (3.13) 

respectively. 

Consistency for the estimator for Value at Risk 

We show that 

limP→W [������, � = ����, and limP→W ��\������, � = 0  . 

We proceed as follows: 

First, we check the bias 

[������, � = [��̂�� + � [��v��             �4.3� 

�1 − >�P��L�� + � �1 − >�P���L − 1����    �4.4� 

limP→W [���v��, � = �� + ���                             �4.5� 

����,                   (4.6) 

Next, we check the asymptotic variance. 

��\���v��, � = ��\��̂�� + � ���\��v�� − 2� ^_`��̂�, �v�� (4.7) 

tσ̂ tµ̂

( )1−H

θ
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= ��1 − >��>P��L���� + � ���1 − >���P���2�L − 1���C� (4.8) 

�1 − >��>P��L����1 + � ��1 − >��P�������        (4.9) 

limP→W ��\���v��, � = 0             (4.10) 

Hence, the proof. 

Remarks 

a) Equation (4.4) is obtained from equation (4.13) by 

using assumption (A3) and noting that  

[��̂�� = �1 − >�P��L�� 

and [��v�� = �1 − >�P���L − 1���. 

b) Equation (4.5) is obtained from equation (4.4) by 

noting that the weights sum up to 1 as L → ∞. 

c) In equation (4.9),  ��\��̂��  and ��\��v��  are 

obtained as in equations (3.11) and (3.24) respectively. 

3.4.2. Estimator for the Expected Shortfall 

Expected shortfall is the conditional expectation of loss 

given that the loss is beyond the VaR level, and measures how 

much one can lose on average in the states beyond the VaR 

level. 

Suppose  is a random variable denoting the negative 

returns of a given portfolio and ����,   is the VaR at the �- 

confidence level. The Expected Shortfall is given by 

[= = [[
�|
� ≥ ����, ] 
The function for expected shortfall based on our 

econometric model (2.1) is given by 

[= = [[�� + ����|�� + ���� ≥ �� + ����] 
= �� + ��[[�� ≥ � ] 

and the estimator for the expected shortfall is given by 

[=  = �̂� + �v�[[�̂� ≥ �̂ ] = �̂�+�v�
1
¡ b �̂�¢{!̂5£!̂¤}

¥

]K�
 

where �̂� and �v� are as defined in equations (3.2) and (3.13) 

respectively. ¡  is the number of negative returns that exceed 

����,  and ¢{!̂5£!̂¤} is an indicator function defined as 

¢{!̂5£!̂¤} = ¦1 /1 �̂� ≥ �̂ 
0 /1 �̂� < �̂ 

§ 

4. Results and Discussion 

Here, we present analysis of average returns from Matatu 

business from May 2010 to August 2014. The results are given 

in the figures below. 

 

Figure 1. Plot of returns from May 2010 to August 2014. 

In figure 1, the upper (positive) sides are the negative 

returns (losses) while the lower (negative) sides are the 

positive returns (profits). This is because we have used the 

negative log returns. We observe that the returns tend to 

cluster as the threshold increases. This suggests that the 

returns are auto correlated. The clustered returns over time 

represent clustering of volatilities. This is supported by Engle 

and Manganelli (2002) who noted that the distribution of 

returns tend to be auto correlated. The long spikes on either 

side indicate extreme returns. 

 

Figure 2. Matatu conditional means plotted against time. 

In figure 2, we can observe that the conditional mean tend to 

be stationary for a long period of time as it keeps on reverting 

to the long term value, that is, 0. There are also some few 

positive and negative “outliers” or extreme means that seem 

not be consistent with the rest of the means. The negative 

“outliers” suggests that the market conditions were very 

favorable and the positive outliers suggest that the market 

conditions were very unfavorable. 

In figure 3, it is evident that volatility varies with time. We 

can also observe that large volatilities tend to be followed by 

large volatilities. Similarly, small volatilities tend to be 

followed by small volatilities. We can also see that there was a 

shock as indicated by the extremely large volatilities that 

lasted for a short period (around day 500 to 550). A shock 
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indicates either extreme gain or extreme loss in the market, 

depending on the conditions. 

 

Figure 3. Matatu Conditional volatilities plotted against time. 

 

Figure 4. Matatu returns plotted together with . 

  

Figure 5. Plot of MATATU returns with  and Expected Shortfall. 

In figure 4, we have superimposed 0.99-conditional 

quantile on the returns. VaR is always based on negative 

returns hence the plot of ����,¨.©©  on the upper side. From 

the definition of VaR, 0.99-conditional quantile means that 

there is one chance in a hundred chances, under normal market 

conditions, for a loss greater than the VaR set by a given 

portfolio’s management, to occur in a given day. Therefore, 

the 0.99-conditional quantile measures the maximum loss a 

portfolio can incur at 99% confidence level. It is clear from 

figure 4 that the 0.99-conditional quantile responds well to the 

distribution of the returns. We can also see from the figure that 

there are some few returns that exceed the VaR. 

In figure 5, we have superimposed the ����,¨.©©  and 

expected shortfall over the ����,¨.©©  on the returns. The 

straight line represents the expected shortfall. We can observe 

from the figure that the straight line representing the expected 

shortfall is slightly above the line representing the ����,¨.©©. 

Therefore, it is clear from the figure that VaR tells us the most 

we can expect to lose if a tail event does not occur while the 

expected shortfall tells us what we can expect to lose if a tail 

event does occur. 

In our study, we have analyzed 963 MATATU returns. As 

per the definition of VaR at 99% confidence level, we expect, 

under normal market conditions, about 10 returns to exceed 

the ����,¨.©©. In our results, we have obtained 9 exceedences 

and expected shortfall of 0.1688. Therefore, our risk 

measuring method is good. 

5. Conclusion 

In estimating the conditional mean and conditional 

volatility of the returns of our portfolio, we explored the 

exponential smoothing technique, whereby we assigned 

exponentially decreasing weights to the returns. We noted that 

exponential smoothing technique is easy to understand and 

apply. We proved that the estimators for the conditional mean 

and conditional volatility are consistent. We also proved that 

the estimators for the conditional mean and conditional 

volatility when conditional mean is known, are asymptotically 

normal. Further, we have given the estimators for the VaR and 

ES and proved that the VaR estimator is consistent. 

Recommendations 

Exponential smoothing techniques has a few demerits 

including that it lags i.e. the forecast will be behind as the 

trend increases over time and it also may fail to account for the 

dynamic changes at work in the real world, and the forecast 

may constantly require updating to respond to new 

information. 

In this respect, we note that exponential smoothing 

technique may not be the best estimation technique and that 

other techniques, GARCH estimation may be explored. 

We also suggest that the following work may be done in 

future as a continuation of this research: 

a) The choice of the optimal smoothing parameter. In our 

case, we have just fixed its value. 

b) The proof of the asymptotic normality for the conditional 

volatility estimator when the conditional mean is 

unknown. Also, the asymptotic normality for the VaR 

estimator should be shown. 
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