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Abstract: In application, one major difficulty a researcher may face in fitting a multiple regression is the problem of 

selecting significant relevant variables, especially when there are many independent variables to select from as well as having 

in mind the principle of parsimony; a comparative study of the limitation of stepwise selection for selecting variables in 

multiple regression analysis was carried out. Regression analysis in its bi-variate and multiple cases and stepwise selection 

(forward selection, backward elimination and stepwise selection) was employed for this study comparing the zero-order 

correlations and Beta (β) weights to give a clearer picture of the limitation of stepwise selection. Subsequently, from the 

comparisons, it was evident that including the suspected predictor (suppressor) variable that was not significant in the bi-

variate case as suggested by the stepwise selection improved the beta weight of other predictors in the model and the overall 

predictability of the model as argued. 
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1. Introduction 

When selecting a set of study variables for regression 

analysis, researchers frequently test correlations between the 

outcome variables (i.e., dependent variables) and 

theoretically relevant predictor variables (i.e., independent 

variables) (Cohen, Cohen, West, & Aiken, 2013). In some 

instances, one or more of the predictor variables are 

uncorrelated with the outcome variable. This situation poses 

the question of whether researchers’ multiple regression 

analyses should exclude independent variables that are not 

significantly correlated with the dependent variable (Shanta 

& William, 2010). Questions such as this are routine, and our 

article provides a theoretical answer to these questions. In the 

multiple regression equations, suppressor variables increase 

the magnitude of regression coefficients associated with 

other independent variables or set of variables(Shanta & 

William, 2010). However, this situation leads us to the issue 

of variable selection procedures and methods. 

Variable Selection 

Often, theory gives only general direction as to which of a 

pool of explanatory variables (including transformed variables) 

should be included in the regression model. The actual set of 

predictor variables used in the final regression model must be 

determined by analysis of the data. Determining this subset is 

called the variable selection problem.(Conger, 1974) 

Finding this subset of regressors (independent) variables 

involves two opposing objectives. First, the regression model 

should be as complete and realistic as possible (Darlington, 

1968), every regressor that is even remotely related to the 

dependent variable to be included (a holistic view). Second, 

we want to include as few variables as possible (principle of 

parsimony) because each irrelevant regressor decreases the 

precision of the estimated coefficients and predicted values. 

Also, the presence of extra variables increases the complexity 

of data collection and model maintenance (Mendershausen, 

1939). The goal of variable selection becomes one of 

parsimony: to achieve a balance between simplicity (as few 

regressors as possible) and fit (as many regressors as needed) 

(Lancaster, 1999). In ordinary least square regression 

analysis, many variable selection methods (processes) are 

available. Most of these selection rules depend mostly on the 

discretion of the researcher on which to apply (Loukas, 2005). 

However some of the variable selection methods are: forward 

selection, backward elimination and stepwise selection to 
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mention but a few. 

2. Methodology 

A review of literatures related to the subject matter was 

undertaken to have a better understand the role and dynamic 

of suppressor variables. Also, a sample study was designed 

for the purpose of illustrating the possible disadvantages for 

not including such variables in a multiple regression analysis 

as well as the limitation of stepwise selection for variable 

selection. 

Stepwise Selection 

Stepwise selection is a combination of the forward and 

backward selection techniques (Yao, 2013). It was very 

popular at one time, stepwise regression is a modification of 

the forward selection so that after each step in which a 

variable was added, and all candidate regressor variables in 

the model are checked to see if their significance has been 

reduced below the specified tolerance level. If a non-

significant variable is found, it is removed from the model. 

Stepwise regression requires two significance levels: one 

for adding variables and one for removing variables. The 

cutoff probability for adding variables should be less than the 

cutoff probability for removing variables so that the 

procedure does not get into an infinite loop. 

Theoretically, the stepwise process employs the F statistic 

in the partial F-test for its selection process. The test statistic 

for the stepwise process is denoted by �∗ and compares the 

Means Square of the Regressors (���)  and the Mean 

Square of the Error (��	) for selecting relevant variables. 

�∗ =	��
���	                                             (1) 

The stepwise process begins by fitting a simple regression 

model for each of the � − 1 potential � variables: 

�∗ = 
��
(��)
���(��)                                        (2) 
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��
���/��,……….,�����
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Assuming �& is the variable entered in step 1, the stepwise 

process will fit all regression models with all variables where 

�& is one of the pair. Therefore for such regression model, 

the partial F test statistic will be: 

�∗= 
��
	���/��,�'…,����,��(�,..,�����

���               (3) 

If )* holds, then �∗ ~ �(�,+,-). Large values of �∗ leads to 

the conclusion of ). . Recall that ���	(� )  = SSR (� ) 
measures the reduction in the total variation of / associated 

with the use of variable � . The variable � with the largest 

�∗ values is selected as the candidate variable for addition if 

�∗ value exceeds a predetermined level. Thus, the variable � 

is added otherwise the program terminates with no � variable 

is considered sufficiently helpful to enter into the regression 

model (John, William, & Michael, 1983). 

However, after careful considerations, the above mentioned 

procedures for variable selection has been found to mainly 

base its selection criterion on the correlation between the 

regressor(s) and the response variable. Which implies that the 

above mentioned variable selection process does not take into 

account the correlation within the regressors themselves that is 

(multicollinearity) which leads us to the idea that stepwise 

selection is limited in the sense that it is seemingly deficient in 

identifying predictor variable(s) that is significantly correlated 

with one or more predictor variables which is a severe draw 

back to the stepwise selection method. 

Solely for the purpose of illustration, a simulated data was 

employed for this study. The data were generated using 

MINITAB statistical software. These data are 5 variables data, 

arbitrary names were also assigned to the variables which 

include: Grain Yield, Plant Heading, Plant Height, Tiller Count 

and Panicle Length respectively. A limitation of this study is 

that it is sometimes nearly impossible to have a set of data 

which has no correlation between them which informed our 

choice of a simulated data. However, having our objective in 

mind; that is, to show the limitation of stepwise selection in 

been able to select a variable with zero or near zero correlation 

with the response variable but significantly related to other 

predictors, we therefore require a set of predictor variables that 

exhibit the basic nature of the effect this work intends to show 

which is; the inability of stepwise selection to handle 

multicolinearity. 

The statistical packages used for this study are MINITAB 

(version 14), and Microsoft Excel 2007. The choice of these 

packages is due to preference. 

3. Analysis and Results 

Quite a number of authors have proposed the understanding 

suppressor variables by evaluating regression weights (Conger, 

1974) (Darlington, 1968). Instead of the regression weights, 

some researchers have preferred squared semipartial 

correlation of the suppressor variable in evaluating suppressor 

effect of a variable (Pedhazur, 1997). This current study 

intends to show the limitation of stepwise selection by 

evaluating the regressor weights and the general predictability 

of the regression model. 

3.1. Hypothesis 

We hypothesized that the Grain Yield of wheat if solely 

dependent on Plant Heading, Plant Height, Tiller Count and 

Panicle Length. 

3.2. Measures 

Five variables were picked from the wheat grain yield data: 

(a) Grain yield (b) Plant Heading (c) Plant Height (d) Tiller 

Count and (e) Panicle Length. Plant heading, Plant height, 

Tiller count and Panicle length were regarded as predictor 

(independent) variables while Grain yield was regarded as 
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response (dependent) variable. 

3.3. Results 

The first step of analysis involves a Pearson zero order 

correlation of the five variables that is, Grain yield, plant 

heading, plant height, tiller count and panicle length. From 

table (1) below it can be clearly seen that Tiller count is not 

correlated with grain yield (0 = 0.006) but is significantly 

related with plant heading (0 = 0.342), plant height (0 =
−0.106) and panicle length (0 = 0.285) respectively. Also 

the correlation result shows that just two out of the four 

predictor variables are positively correlated with the outcome 

(response) variable (that is, plant heading and panicle length) 

therefore we might just conclude that the variables to be 

selected should be plant heading and panicle length leaving 

out plant height and tiller count. 

4. Corellation 

Table 1. Bi-variate Person zero order correlation. 

 
Grain 

Yield 

Plant 

Heading 

Plant 

Height 

Tiller 

Count 

Panicle 

Length 

Grain yield 1     

Plant Heading 0.342344 1    

P-Value 0.015     

Plant Height -0.10686 0.124313 1   

P-Value 0.460 0.390    

Tiller Count 0.006782 0.176542 0.265493 1  

P-Value 0.963 0.220 0.062   

Panicle Length 0.285442 -0.05968 -0.07567 0.25715 1 

P-Value 0.045 0.681 0.601 0.021  

The second analytic step involved examining any potential 

adverse effect of correlated independent (predictor) variables. 

To this end, an investigation for the possibility of multi-

collinearity among these four independent (predictor) 

variables was carried out. Also the correlation values 

between the four independent variables are: 

� Plant heading and plant height, tiller count, panicle 

length (0 = 0.124, 0.176, −0.059) 

� Plant height and tiller count and panicle length (0 =
0.265, −0.075) 

� Tiller count and panicle length (0 = 0.257) 

More so, it can be clearly seen that indeed the Tiller Count 

variable is not significantly correlated with the Grain Yield 

(response) variable but it is correlated with the other 

predictor variables that is; Plant Heading, Plant Height and 

Panicle Length. This shows the presence of multicollinearity 

within the data. 

The third analytic step is to employ the already existing 

methods of variable selection in regression analysis to get a 

clear picture of the potentially relevant variable(s) that will 

be suggested by the various methods of variable selection so 

as to further buttress our point. 

4.1. Forward Selection 

Stepwise Regression: Grain Yield versus Plant Heading, 

Plant Height, Tiller Count and Panicle Length. 

Response is Grain Yield on 4 predictors, with :	 = 	50 

Table 2. Forward Selection. Alpha-to-Enter: 0.5 (;). 
Step 1 2 

Constant 255.4 140.5 

Plant Heading 0.38 0.40 

T-Value 2.52 2.78 

P-Value 0.015 0.008 

Panicle Length  0.34 

T-value  2.37 

P-Value  0.022 

S 0.981 0.937 

R-Sq 11.72 21.11 

R-Sq (Adj) 9.88 17.75 

Mallows C-P 5.7 2.2 

From table 2 above, the forward selection process selected 

the plant heading and panicle length variable at 0.05 (α) as 

the significant variables to be included in the model as 

suggested by the correlation result in table 1 above with their 

corresponding p-values. 

4.2. Backward Elimination 

Stepwise Regression: Grain Yield versus Plant Heading, 

Plant Height, Tiller Count and Panicle Length. 

Response is Grain Yield on 4 predictors, with :	 = 	50. 

Table 3. Backward Elimination. Alpha-to-Remove: 0.5 (;). 
Step 1 2 3 

Constant 138.4 141.3 140.5 

Plant Heading 0.41 0.42 0.40 

T-value 2.76 2.88 2.78 

P-value 0.008 0.006 0.008 

Plant Height -0.14 -0.13  

T-value -1.07 -1.00  

P-value 0.291 0.321  

Tiller Count 0.06   

T-value 0.43   

P-value 0.670   

Panicle Length 0.34 0.33 0.34 

T-value 2.31 2.29 2.37 

P-value 0.026 0.027 0.022 

S 0.946 0.937 0.937 

R-Sq 23.11 22.80 21.11 

R-Sq (Adj) 16.28 17.76 17.75 

Mallows C-P 5.0 3.2 2.2 

Table 4. Stepwise Selection Alpha to Enter: 0.05 and Remove: 0.05 (;). 
Step 1 2 

Constant 255.4 140.5 

Plant Heading 0.38 0.40 

T-value 2.52 2.78 

P-value 0.015 0.008 

Panicle Length  0.34 

T-value  2.37 

P-value  0.022 

S 0.981 0.937 

R-Sq 11.72 21.11 

R-Sq (Adj) 9.88 17.75 

Mallows C-P 5.7 2.2 

Also, from table 3 above, the backward selection process 

selected the plant heading and panicle length variable at 0.05 
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(α) as the significant variables to be included in the model as 

suggested by the correlation result in table 1 above with their 

corresponding p-values. 

4.3. Stepwise Selection 

Stepwise Regression: Grain Yield versus Plant Heading, 

Plant Height, Tiller Count and Panicle Length. 

Response is Grain Yield on 4 predictors, with :	 = 	50. 

Also, from table 4 above, the stepwise selection process 

selected the plant heading and panicle length variable at 0.05 

(α) as the significant variables to be included in the model as 

suggested by the correlation result in table 1 above with their 

corresponding p-values. 

From the three methods of variable selection (Tables 2, 3 

and 4) (that is, forward selection, backward elimination and 

stepwise selection) above, it was deduce that plant heading 

and panicle length were the potentially relevant variables to 

be included in the model as suggested by the three variable 

selection methods. But it is against this backdrop that the 

limitation of stepwise selection is been argued considering 

the fact that the tiller count variable is positively correlated 

with the other predictors which is a case multicollinearity 

within the variables. To this end we are saying the Tiller 

Count variable should be included in the model. 

The fourth analytic step is to run a regression of the 

variables both in the bi-variate and multiple variable cases to 

explicitly determine the significance of each variable in the 

bi-variate level. 

5. Regression Analysis 

5.1. The Bi-variate Case 

5.1.1. Regression Analysis: Grain Yield Versus Plant 

Heading 

The regression equation is 

<0=>?	/>@AB	 = 	255	 + 	0.379	DA=?E	)@=B>?F      (1.1) 

Table 5. Summary of Regression Coefficients. 

Predictor Coef SE Coef T-value P-value 

Constant 255.44 37.55 6.80 0.000 

Plant Heading 0.3790 0.1501 2.52 0.015 

�	 = 	0.981207	� − �G	 = 	11.7%	� − �G	(=BI) 	= 	9.9% 

Table 6. Analysis of Variance. 

Source  Df 
Sum of 

Squares 

Mean 

Square 

F-

ratio 

P-

value 

Regression 1 6.1357 6.1357 6.37 0.015 

Residual Error 48 46.2128 0.9628   

Total 49 52.3485    

Table 7. Summary of Regression Coefficients Table7. 

Predictor Coef SE Coef T-value P-value 

Constant 351.796 2.085 168.75 0.000 

Plant Height -0.1044 0.1400 -0.75 0.460 

�	 = 	1.03833	� − �G	 = 	1.1%	� − �G	(=BI) 	= 	0.0% 

5.1.2. Regression Analysis: Grain Yield Versus Plant Height 

The regression equation is 

<0=>?	/>@AB	 = 	352	 − 	0.104	DA=?E	)@>FℎE     (1.2) 

Table 8. Analysis of Variance. 

Source Df 
Sum of 

Squares 

Mean 

Square 
F-ratio P-value 

Regression 1 0.599 0.599 0.56 0.460 

Residual 

Error 
48 51.750 1.078   

Total 49 52.349    

5.1.3. Regression Analysis: Grain Yield versus Tiller Count 

The regression equation is 

<0=>?	/>@AB	 = 	350	 + 	0.007	K>AA@0	LMN?E       (1.3) 

Table 9. Summary of Regression Coefficients. 

Predictor Coef SE Coef T-value P-value 

Constant 350.213 0.735 476.55 0.000 

Tiller Count 0.0065 0.1378 0.05 0.962 

�	 = 	1.04429	� − �G	 = 	0.0%	� − �G(=BI) 	= 	0.0% 

Table 10. Analysis of Variance. 

Source Df 
Sum of 

Squares 

Mean 

Square 
F-ratio P-value 

Regression 1 0.002 0.002 0.00 0.962 

Residual Error 48 52.346 1.091   

Total 49 52.349    

5.1.4. Regression Analysis: Grain Yield versus Panicle 

Length 

The regression equation is 

<0=>?	/>@AB	 = 	248	 + 	0.314	D=?>OA@	P@?FEℎ      (1.4) 

Table 11. Summary of Regression Coefficients. 

Predictor Coef SE Coef T-value P-value 

Constant 248.14 49.49 5.01 0.000 

Panicle Length 0.3141 0.1522 2.06 0.045 

�	 = 	1.00088	� − �G	 = 	8.1%	� − �G	(=BI) 	= 	6.2% 

Table 12. Analysis of Variance. 

Source Df 
Sum of 

Squares 

Mean 

Square 
F-ratio P-value 

Regression 1 4.264 4.264 4.26 0.045 

Residual Error 48 48.085 1.002   

Total 49 52.349    

Result obtained from tables (5 to 12) the regression 

analysis in the bi-variate cases shows that the significant 

predictors among the four predictor variables are plant 

heading and panicle length. This implies that in the bi-variate 

level only plant heading and panicle length has significant 

relationship with the response (dependent) variable grain 

yield as suggested by the three variable selection methods 

above. The next step is to carry out the regression analysis in 

the multiple variable cases. 
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5.2. Multiple Variable Cases 

5.2.1. Regression Analysis: Grain Yield Versus Plant 

Heading and Panicle Length 

The regression equation is 

<0=>?	/>@AB	 = 	141	 + 	0.399	DA=?E	)@=B>?F	 +
	0.338	D=?>OA@	P@?FEℎ          (1.5) 

Table 13. Summary of Regression Coefficients. 

Predictor Coef SE Coef T-value P-value 

Constant 140.55 60.39 2.33 0.024 

Plant Heading 0.03993 0.1437 2.78 0.008 

Panicle Length 0.3378 0.1428 2.37 0.022 

�	 = 	0.937380	� − �G	 = 	21.1%	� − �G(=BI) 	= 	17.8% 

Table 14. Analysis of Variance. 

Source Df 
Sum of 

Squares 

Mean 

Square 
F-ratio P-Value 

Regression 2 11.0505 5.5252 6.29 0.004 

Residual 

Error 
47 41.2981 0.8787   

Total 49 52.3485    

5.2.2. Regression Analysis: Grain Yield Versus Plant 

Heading, Tiller Count and Panicle Length 

The regression equation is 

<0=>?	/>@AB	 = 	155	 + 	0.465	DA=?E	)@=B>?F	 +
	0.023	K>AA@0	LMN?E + 	0.344	D=?>OA@	P@?FEℎ         (1.6) 

Table 15. Summary of Regression Coefficients. 

Predictor Coef SE Coef T-value P-value 

Constant 154.66 61.39 2.27 0.028 

Plant Heading 0.4648 0.1472 2.68 0.010 

Tiller Count 0.0233 0.1312 0.18 0.860 

Panicle Length 0.3444 0.1491 2.31 0.025 

�	 = 	0.947191	� − �G	 = 	22.4%	� − �G(=BI) 	= 	20.0% 

Table 16. Analysis of Variance. 

Source Df 
Sum of 

Squares 

Mean 

Square 
F-ratio P-value 

Regression 3 11.0787 3.6929 4.12 0.011 

Residual Error 46 41.2698 0.8972   

Total 49 52.3485    

6. Discussion 

From the four regression analyses in the bi-variate case: 

Model 1.1, the outcome variable Grain Yield was regressed 

on the predictor variable Plant Heading, which was 

significant and accounted 11.7% of the variance in the 

outcome variable. Plant Heading was positive associated 

with grain yield ( Q� = .37, E = 2.52	� < .05 ). As Plant 

Heading increases by one unit Grain Yield increases by 37%.  

In model 1.2, Grain yield versus Plant Height which was 

insignificant as expected. This account for only 1.1% of the 

variance in the outcome variable, Plant Height and Grain 

Yield were negatively associated (Q� = −.10, E = −.75	� >
.05 ), as Plant Height decreases by one unit Grain Yield 

Increases by - 11%.  

In model 1.3, Grain Yield versus Tiller Count was 

insignificant as expected. Tiller Count and Grain Yield were 

not associated this does not account for any variability in the 

outcome variable (Q� = .0	E = .05	� > .05).  

In model 1.4, Grain Yield versus Panicle Length which 

was significant and accounted for 8.1% of the variance in the 

outcome variable. Panicle Length which was positively 

associated with Grain yield has (Q� = .31, E = 2.06	� < .05). 

This implies as Panicle Length increases by one unit Grain 

Yield increases by 31%. 

In model 1.5, Grain Yield versus Plant Heading and 

Panicle Length is significant as suggested by the stepwise 

variable selection method and it accounted for about 21.1% 

of the variance in the outcome variable. Plant Heading and 

Panicle Length were positively associated with the Grain 

Yield (Q� =. 39, E = 2.78	� < .05	=?B	Q& = .33, E =
2.37	� < .05) 

More so, in model 1.6, Grain Yield versus Plant Heading, 

Tiller Count and Panicle Length was found also to be 

significant as against what the stepwise selection suggested. 

It accounted for about 22.4% of the variance in the outcome 

variable. 

Furthermore, the inclusion of the Tiller Count variable in 

the model because of its correlation with the Plant Heading 

and Panicle Length variable improved the beta (Q) weight of 

Plant Heading from (0.399 to 0.465, p<.05) and that of 

Panicle Length from (0.338 to 0.344, p<.05). It also 

improved the overall predictability of the model as against 

the two predictor variable case. 

7. Conclusion 

Our ultimate objective in this paper was to call the 

attention of readers to the limitations of stepwise selection in 

for variable selection in regression analysis. The idea that a 

variable, which is unrelated to the dependent variable, should 

be retained not only for theoretical purposes but also to 

improve overall predictive power of the model is appealing. 

(Horst, The prediction of personal adjustment, 1941) 

recommended that researchers should retain a variable, even 

if it has near zero correlation with the response variable but 

have a significant correlation with other predictor variables. 

Further, other benefits accrue from including such a variable 

in multiple regression model(s). 

Including such a variable will eliminate the danger of 

rejecting a true hypothesis as false (Shanta & Williams, 

2010). As shown in this article, variables of this kind enrich 

the results of a multiple regression model, whereas premature 

elimination of such a variable reduces the predictive power 

of a model. Ideally, including this kind of variables in a 

model should be theory based and every regression model 

should include using a test for such an effects (Liebscher, 

2012). This approach allows researchers to become aware of 

the limitations of stepwise selection in selection of 

potentially relevant variable to be included in a multiple 

regression model. 

We have shown that it is possible to enhance the predictive 
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power of a model by including a variable that was 

uncorrelated (or weakly correlated) with dependent variable, 

as long as the variable is correlated with other independent 

variable(s). Given this discussion of the limitations of 

stepwise selection, we suggest that researchers retain their 

list of independent variables, even if those variables are not 

significantly related with the dependent variable at the 

bivariate level, until they examine the variables for such an 

effect (suppression). 
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