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Abstract: Generating a spatial random field in which the observations are binary random variables with a particular 

covariance function may be impossible, because there are restrictions on the parameters of Bernoulli variables. This paper 

develops a conditional method based from spatial GLMM for generating spatial correlated binary data, which can generate 

spatial correlated binary data, with the variograms of the simulated data are similar to the variograms of the corresponding latent 

Gaussian random field. However, the closed form for their spatial correlation is not available specifically. 
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1. Introduction 

The main goals of this paper are to offer a method to 

generate spatially correlated binary data, named as 

conditional method, which is based on spatial generalized 

linear mixed model (GLMM). Simulating spatial data is very 

important on theory research, as the worth of a spatial 

statistical method can be established convincingly only if the 

method proved to be long-run satisfactory. In many cases, the 

assessments of the spatial models are mainly based on 

simulated data. In this paper, the authors only focus on 

spatially correlated binary data, which are encountered in 

many applications ranging from epidemiology to forestry. 

Infectious disease data often have spatially clustered 

observations. In forestry binary responses, for example, the 

presence or absence of some disease is often observed. 

Generating a spatial random field is not a simple task 

unless it is a Gaussian random field (GRF). However, 

generating a random field in which the observations are 

binary random variables with a particular covariance 

function may be impossible, because there are restrictions on 

the parameters of Bernoulli variables. What can be done is to 

generate random deviates whose marginal moments (mean 

and variance) “behave like” those of binary variables 

(Schabenberger and Gotway (2005), Chapter 7). 

Schabenberger and Gotway (2005) suggested the 

convolution representation method to generate spatially 

correlated binary data. However, their method can only 

simulate second-order stationary data, i.e., constant mean 

and constant variance for all observations. 

Several authors have proposed different methods for 

generating correlated binary data. A study of their methods 

was performed and it was tried to extend their methods to 

spatially correlated binary data. However, the majority of 

these methods have limitations with respect to generating 

spatially correlated binary data with non-constant mean. For 

example, Lunn and Davies (1998) showed a method of 

generating correlated binary variables with a very simple 

correlation structure, which is suitable for generating 

variables with correlation structures which are exchangeable, 

and is easily extended to cater for correlation structures 

which are autoregressive or stationary M-dependent. 

However it is impossible to extend their method to general 

spatial correlation structures and also their method only 

generates binary data with constant means. 

Park et al. (1996) developed a method for generating 

spatial binary data based on generating correlated Poisson 

random variables which are then recoded as zero or one. The 

approach by Park et al. relies on the property that any 

Poisson random variable can be expressed as a convolution 

of several other independent Poisson random variables. The 

binary variables have desired correlations by sharing 

common independent Poisson variables. The authors used 

this property for generating correlated Poisson variates, 

which are used in turn for generating correlated binary 
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variates. Their method allows unequal means and only 

positive correlations, and thus may be extended to generate 

spatially correlated binary data. Park et al. (1996) did discuss 

some restrictions of their method. Firstly, for Bernoulli data, 

there is a natural restriction on the correlation coefficient ρ�� 
between two binary variates Z� and Z�. Note that E�Z�Z�� ≤
min�P�Z� = 1�, P�Z� = 1�� = min�p�, p�� . Therefore 

cov�Z�, Z�� ≤ min�p�q�, p�q�� , where q� = 1 − p�  and 

q� = 1 − p�. So ρ�� is not free on �0,1� but is constrained by 

ρ�� ≤ min ��p�q�/�p�q�� !/", �p�q�/�p�q�� !/"#. Based on this 

natural restriction, if $p�% varies a lot, all the �ρ��� will be 

much smaller than 1. Then a spatial correlation structure that 

satisfies this restriction is difficult to find, because the spatial 

correlations ρ��  should decrease from 1 to 0 as distances 

increase. Park et al. (1996) did not spell out the restrictions of 

their method but they gave three conditions that if they were 

held, their method would succeed in generating correlated 

binary as desired. However, to generate spatially correlated 

binary data, even assuming they have a constant mean, these 

three conditions are still not easily to satisfy in a simulation 

algorithm. 

In this paper, a conditional method based from spatial 

GLMM for generating spatially correlated binary variables 

are developed that do not have the shortcomings of the 

methods above. The conditional approach listed here is 

similar to the simulation method in Crainiceanu, Diggle and 

Rowlingson (2008). 

2. Methods 

2.1. Spatial GLMM 

To better explain the conditional method for generating 

spatial binary data, the spatial GLMM model is firstly 

described in detail. For the spatial GLMM model, the spatial 

data are assumed conditionally dependent on an underlying, 

smooth, spatial process $S�s�: s ∈ D%. Given S(s), Z(s) has a 

Bernoulli distribution given by 

Z�s��|	S�s��~	Bernoulli�μ�s���; 
S�s�~G�0, σ7"R7�α7��; 

E�Z�s��|	S�s��� = μ�s��; Var�Z�s�|S�s�� = σ"V<�7�; 

logit$μ�s��% = X�s��@β + S�s��. 
Here $S�s�% is a Gaussian random field with mean 0 and 

covariance function σC"ρC�s� − s�; α7�. Thus, the assumption 

of conditional independence defers treatment of spatial 

autocorrelation to the $S�s�%  process. V<�7�  is a diagonal 

matrix with μ�s���1 − μ�s���  in the diagonal. σ"  is the 

parameter for modeling the over-dispersion in the data. As 

explained in the Introduction 3.1, in theory a conditional 

model has a marginal formulation, but the closed marginal 

form of E�Z� and Var�Z� is unavailable 

The marginal mean of Z�s�� for this model is 

E�Z�s��� = E7�E�Z�s��DS�s��� = E FGH	�I�7J�KLMC�7J��
!MFGH	�I�7J�KLMC�7J�� dFC�7J�                          (1) 

FC�7J� is the probability-distribution function of S�s��, so 

FC�7J�  is a Gaussian probability-distribution function with 

mean 0 and variance σ7", i.e. N(0, σ7"). It is difficult to obtain a 

theoretical expression for E�Z�s���, but its numerical value 

can be easily calculated using Riemann summation. For a 

continuous function f�x� on �a, b�, E f�x�S
T dx always exists 

and can be computed by Riemann summation as 

U f�x�
S

T
dx = limV→X Y f�x�∗�∆x�

\

�]!
 

for any choice of x�∗  in �x�^!, x��  with ∆x� = x� − x�^! , 

∑ ∆x�\�]! = b − a and ∆x� → 0. 

The variance of Z�s�� and the covariance function between 

$Z�s��% are as follows: 

Var�Z�s��� = E�Z�s��"� − �E�Z�s����",         (2) 

Cov�Z�s��, Z�s�� = E�Z�s��Z�s�� − E�Z�s���E�Z�s�� ,  (3) 

Corr�Z�s��, Z�s�� = abc�d�7J�,d�7e� 
fgTh�d�7J��igTh�d�7e� 

 .      (4) 

The numerical value of (2) can be calculated through the 

numerical value of (1). The numerical value of E�Z�s��Z�s��  
can also be calculated by a Riemann summation, thus the 

numerical values of (3) and (4) can be obtained. However, the 

theoretical mean and covariance of Z(s) are not available for 

binary data generated by this conditional method. 

2.2. Algorithm of Conditional Method 

Based on the definition of conditional GLMM above, the 

algorithm below generates spatially correlated binary data by 

a conditional method: 

1. Generate S�s�, S�s�~G�0, σ7"R7�α7��, 

2. Obtain L�s�� by L�s�� = x�s��@β + 	S�s��, 

3. Obtain μ�s��  by μ�s�� = exp�L�s��� /�1 +
exp	�L�s����, 

4. Generate Z�s�� using a random number generator from 

Bernouli	�μ�s���. 

The algorithm above for simulating GLMM data is a new 

method but very similar to that of Crainiceanu, Diggle and 

Rowlingson (2008). In the simulation part of their paper, they 

simulated binomial data, and comparing with steps 1 and 2 in 

this algorithm they used random effects vector with a design 

matrix instead of a Gaussian random field S�s�. 

2.3. Description of the Simulation Study 

Spatial binary data Z�s� with sample size 100 on a regular 

grid were generated. The grid is on �0,40� × �0,40�  with 

intervals of 4 in both directions. The maximum distance 
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between the data points was 50.91 and a half

S�s�  was a zero-mean intrinsically stationary

process whose variogram was continuous 

Gaussian, exponential and spherical 

considered. Gaussian and exponential variograms

Matérn class of variogram functions with no

by 

γ�h� � σo" � σo"
1
Γ�ν� r

θh
2 u

v
2Kv�θh�	�

The smoothness of the process increases 

the most commonly used parametric variogram

Gaussian (ν � ∞), Whittle (ν � 1) and exponential

The spherical variogram given by 

γ�h� � σo"�
3
2
h
α �

1
2 �
h
α�

z�

is also commonly used. A nugget effect can 

adding a constant. Figure 1 gives an illustration.

model attains its sill, but the Matérn models

only asymptotically and thus their practical 

as where 95% of the sill is attained. 

Figure 1. Variograms for Gaussian, Whittle, exponential

models with nugget {o � 0 , sill {o B |o" � 1  and

indicated by the vertical line. The horizontal line denotes

The sill of S�s� was 1 with nugget 0 and

was 20 for each of the three variograms.

variogram attains its sill at the range, and 

corresponding to a practical range of 20. So

ranges of the three variograms were close
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half of this was 25.46. 

stationary Gaussian 

 at the origin. The 

 variograms were 

variograms are from 

no nugget is given 

� �	ν } 0, ~ } 0. 

 with ν and among 

variogram models are the 

exponential (ν � 0.5). 

� 

 be incorporated by 

illustration. The spherical 

models achieve their sill 

 ranges are defined 

 

exponential and spherical 

and practical range 40 

denotes 95% of the sill. 

and its practical range 

variograms. The spherical 

 its range is 24.65 

So now the practical 

close to one half of 

maximum distance between the

the spherical variogram was less

equation for the conditional mean

X�s��@β  is defined as �2 B x
random number from a uniform

choice of x!�s��  in L�s��  was

important part of the model, since

and to make the mean of the generated

When a uniform random number

the same for all simulations. 

conditional method using SAS

Institute Inc., Cary, N.C.). The 

method were generated by the SAS

3. Results 

In this section, spatial binary

procedure described in Method

Z�s�  was generated on a regular

logit$Z�s��|	S�s��% � x�s��@β B
all simulations but the variogram

simulations. Three spatial binary

generated conditionally with the

exponential and spherical respectively.

A typical realized dataset from

random field S�s� and the corresponding

generated by the conditional method

From the plots, it can be seen 

generated binary data are similar

corresponding latent Gaussian

conditional method procedure 

large value of S�s�� may lead to

Z�s��, and thus Z�s�� is likely to

patterns in Z�s� generated by different

difference was found between 

exponential and spherical variograms.

binary data generated by Gaussian

spatial pattern from the data by

being more smooth. The reason

corresponding realizations of 

shown in (a), (c), (e) of Figure

with Gaussian variogram is more

Above all, the Algorithm of

paper can generate spatial correlated

variograms of the simulated data

of the corresponding latent Gaussian

the theoretical variogram of the

still unavailable. Further work

approximations to the correlation

generated by the conditional method.
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the data points, and the range of 

less than this distance. In the 

mean L�s�� � X�s��@β B 	S�s��, x!�s�� ∙ 1 , where x!�s��  is a 

uniform distribution on �0.5,1.5�. This 

was made so that S�s��  is an 

since exp(-1)/(1+exp(-1))= 0.27, 

generated Z�s� to be around 0.3. 

number was generated, it was kept 

 Data were simulated by the 

SAS software (SAS® 9.2, SAS 

 spatial S�s� in the conditional 

SAS SIM2D Procedure. 

binary data were simulated by the 

Method section, and the binary data 

regular grid and in the model 

S�s�� , x�s��@β  was same for 

variogram of S�s� varied in different 

binary datasets of Z�s�  were 

the variogram of S�s�, Gaussian, 

respectively. 

from one simulation of a Gaussian 

corresponding spatial binary data 

method is shown in Figure 2. 

 that the spatial patterns in the 

similar to the spatial patterns in the 

Gaussian random field. Recall the 

 in Method section, where a 

to a large μ�s��, the mean of the 

to be 1. Comparing the spatial 

different variogram types, little 

 the binary data generated by 

variograms. However, the spatial 

Gaussian variogram had a different 

by the other variogram types, 

reason can be found from their 

 Gaussian random fields. As 

Figure 2, the Gaussian random field 

more smooth than the other two. 

of conditional method in this 

correlated binary data, with the 

data are similar to the variograms 

Gaussian random field. However, 

the binary data thus generated is 

work is needed to find good 

orrelation function of the data 

method. 
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Figure 2. The Gaussian random fields ���� with Gaussian, exponential and spherical variograms were generated on the grid �0,40� × �0,40� with intervals of 

4 in both directions and shown in (a), (c), (e) respectively. Plots (b), (d), (f) are for the corresponding spatial binary data ���� generated by the conditional 

method. 
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