
 

American Journal of Theoretical and Applied Statistics 
2013; 2(5): 142-148 

Published online September 10, 2013 (http://www.sciencepublishinggroup.com/j/ajtas) 

doi: 10.11648/j.ajtas.20130205.14 

 

Optimum allocation of multi-items in stratified random 
sampling using principal component analysis  

Apantaku Fadeke Sola.
1
, Olayiwola Olaniyi Mathew

1
, Adewara Amos Adedayo

2
 

1Department of Statistics, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria 
2Department of Statistics, University of Ilorin, Nigeria 

Email address: 
laniyimathew@yahoo.com(O. M. Olayiwola) 

To cite this article: 
Apantaku Fadeke Sola., Olayiwola Olaniyi Mathew, Adewara Amos Adedayo. Optimum Allocation of Multi-Items in Stratified Random 

Sampling Using Principal Component Analysis. American Journal of Theoretical and Applied Statistics. Vol. 2, No. 5, 2013, pp. 142-148.  

doi: 10.11648/j.ajtas.20130205.14 

 

Abstract: The problem of allocation with more than one characteristic in stratified sampling is conflicting in nature, as 

the best allocation for one characteristic will not in general be best for others. Some compromise must be reached to obtain 

an allocation that is efficient for all characteristics. In this study, the allocation of a sample to strata which minimizes cost 

of investigation, subject to a given condition about the sampling error was considered. The data on four socioeconomic 

characteristics of 400 heads of households in Abeokuta South and Ijebu North Local Government Areas (LGAs) of Ogun 

State, Nigeria were investigated. These comprised of 200 households from each LGA. The characteristics were occupation, 

income, household size and educational level. Optimal allocation in multi-item was developed as a multivariate 

optimization problem by finding the principal components. This was done by determining the overall linear combinations 

that concentrates the variability into few variables. From the principal component analysis, it was seen that for both 

Abeokuta and Ijebu data sets, the variance based on the four characteristics as multivariate is less than that of the variables 

when considered as a univariate. From the results, it was seen that there was no difference in the percentage of the total 

variance accounted for by the different components from the merged sample when compared with the individual sample. 

Optimum allocation was achieved when there was stratification 

Keywords: Stratified Sampling, Optimum Allocation, Stratification, Optimization 

1. Introduction 

In social research, special emphasis is placed on the 

comparative and analytical use of samples. Knowledge, 

attitudes, and actions in everyday life are based to a very 

large extent on samples (Cheang, 2011; Cochran, 1977).  In 

survey, samples are used instead of population and most of 

these samples are prepared by Statisticians and one of the 

areas of Statistics that is most commonly used in all fields of 

scientific investigation is that of probabilistic sampling. 

Surveys used by social scientists are based on complex 

sampling designs (Lumley, 2004; Winship and Radbill, 

1994). 

One of the main problems in sampling survey is the 

optimal allocation of resources. Usually, the solution of this 

problem is rather arbitrary due to the fact that no best 

allocation is defined. In this study, the allocation of a sample 

to strata which minimizes cost of investigation, subject to a 

given condition about the sampling error was considered. 

2. The Data 

The data on four socioeconomic characteristics of 400 

heads of households in Abeokuta South and Ijebu North 

Local Government Areas (LGAs) of Ogun State, Nigeria 

were investigated. These comprised of 200 households 

from each LGA. The characteristics were occupation, 

income, household size and educational level. 

3. Methodology 

3.1. Introduction 

The procedure for estimation from multiple frames was 

given by Hartley (1962, 1964). According to Hartley, 

choosing a simple cost function provides rules for optimal 

choices of subject to a given value.  Saxens et al. (1986) 

considered the extension of Hartley’s procedure to the case 

of two stage sampling of the multi-stage sampling. They 
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worked out optimal choices of the variable of interest 

considering suitable cost functions and recommended 

replacement of unknown parameters occurring in the 

optimal solutions by sample analogues. Hence the problem 

of small domain statistics and a special method of 

estimation is needed for the parameters relating to small 

domains. Bankier (1996) discussed a few issues involved in 

small area or local area estimation. The problem is how to 

estimate the domain. These estimators make a minimal use 

of data that may be available. To improve upon the 

estimators, the database is broadened and strengths are 

borrowed from data available on similar domains and 

secondary external sources. According to Bankier (1996), 

post-stratified estimators of auxiliary data, is to be used. 

These post strata may stand for age, sex, or ethnic groups in 

usual practices. 

3.2. The Multivariate Optimum Allocation 

The problem of allocating sample to various strata may 

be viewed as minimizing the variances of various 

characters subject to the conditions of the given budget and 

tolerance limits on certain variances. The problem turns out 

to be nonlinear programming problem with several linear 

objective functions and single convex constraint. Pizada 

and Maqbool (2003), solved the resulting linear 

programming problem through Chebyshev approximation. 

The criteria behind the Chebyshev approximation are to 

find a solution that minimizes the single worst. Suppose 

that −p characteristics are measured on each unit of a 

population which is partitioned into L  strata. Let ,in  be 

the number of units drawn from the ith  stratum 

).,.....,2,1( Li =  For the jth  character an unbiased 

estimate of the population mean, ,jY is jsty which has the 

sampling variance. 
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iX
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By introducing a new variable ,kLx + the problem (4) 

transforms to 
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The constraints in (5b) are convex (Kokan and Khan, 

1967) and the constraint (5c) and the bounds (5d) are linear. 

The problem (5a)-(5d) is therefore a convex programming 

problem with linear objective and can be solved by using 

any method of convex programming. The Chebyshev 

approximation formulation of the multiple objective 

allocation problems in (5) is the following linear 

programming problem (LPP): 

Minimize    δ  
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The p  solutions 00

2

0

1 ,....,, pXXX  have been obtained by 

minimizing the individual objective functions subject to the 

linearized constraints by letting the minimum values of kZ
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to be found as ,
0

kZ pk ,...,2,1=  at the corresponding 

minimal points .,....,2,1,
0

pkX k =  This gives the 

aspiration levels being used in Chebyshev approximation. 

Formally the problem of optimum allocation in stratified 

sampling can be presented as a multi-objective, nonlinear 

optimization as 
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Where C is the total cost, 0c is the fixed cost and 
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The solutions in (7) take real values and the sample sizes 

hn must be integers. There is the problem of estimating the 

variance on the basis of the sample size in each stratum and 

also the problem of over sampling, that is, when hh Nn ≥  

for at least some .h  
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Where Ν denotes the set of natural numbers. The 

methods for resolving a multi-objective optimization 

programme can be classified by considering the amount of 

information possessed concerning the study population, 

with three different scenarios, namely complete, partial or 

zero information (Steuer, 1986; Miettinen, 1999; Diaz-

Garcia and Ulloa, 2006). Diaz-Garcia and Ulloa (2006) 

consider problem (3.79) from the stand-point of the multi-

objective optimization methods by using complete 

information such as value function and lexicographic, 

partial information method such as −ε constraint and also 

zero information such as the distances. 

3.3. Optimum Allocation via Multi-objective Optimization 

The estimator of the population mean in multivariate 

stratified sampling for the jth characteristic is defined as 
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3.4. Value Function 

Under the value function technique, programme (8) is 

expressed as 
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Where 
)(⋅v

is a scalar function that summarizes the 

importance of each of the variances of the G characteristics. 

Evidently for every problem the value function 
)(⋅v

 may 

take an infinite   number of forms and this constitutes the 

difficulty for the evaluator in defining such a function. 

Some simple functions have given excellent results in 

applications and one of these particular forms is the 

weighting method. Under the weighting approach, (12) can 

be expressed as 
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weighs the importance of each characteristic. In the context 

of multi-objective optimization, (13) is without doubt the 

method that has been mostly thoroughly studied. Its 

popularity is due to the fact that the value function is 

unique. The value function method is utilized for recurrent 

studies in which over time, the results obtained using (13) 

help in reaching a better inference for future experiment

in which the appropriate weighting can be applied.

3.5. Optimal Design for a Multivariate Stratified 

Sampling Adopted in this Study 

The idea of optimal allocation under a multivariate 

stratified sampling in this study is based on an alternative 

approach as in Diaz-Garcia and Ramos-

The linear programming problem is assumed to be

θ min
n

 

Subject to 

∑
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0

hh Nn ≤≤2  

Where )( styCov=θ . This is the matrix of variance

covariances of the vector 

ỹ st = (ỹst, ……………….. ỹst). 

the sub index h = 1,2, ….. H denotes the stratum i  = 

1,2,…..Nh or nh within stratum h and j = 1,2,…., G. denotes 

the characteristic (variable). 

The covariance matrix of ỹ st denoted as cov (ỹ

defined in matrix 

and the estimated covariance of ỹ
i
st 

and ỹ
j
st). 
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i
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j
st) =  Cov (ỹ
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st and ỹ
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j
st) =      -

and Cov (ỹi
st, ỹ

i
st) =     

and Ch is the cost per G – dimensional sampling unit in 

stratum h and its vector 

C = ( C1, …………CG)
1
. 

3.6. Principal Component Analysis 

Optimal allocation in multi-item is developed as a 

multivariate optimization problem by finding the principal 

components. This was done by determining the overall 
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linear combination of the original set of variables,

pXXX ,.....,, 21
. One of the motivations for determining 

such a collection is in of, if we derive a set that 

concentrates the overall variability into the first few 

variables, it is perhaps easier to see what accounts for the 

variation in the data. 

Indeed, if a few of the }{ iY

the variation in the data, then it could be argued that the 

effective dimensionality is less than 

in a simplified analysis based on a smaller set of variables 

(Khan and Ahsan, 2003; Garcia and Cortez, 2006).

3.7. Finding Principal Components

Suppose that ,( 1= XXX

vector with mean µ  and covariance matrix

principal components of X

satisfies the following conditions:

i. 
pYYY ,......,, 21

 are mutually uncorrelated.

ii. )()( 21 YVarYVar ≥≥
iii. XaXaY jjj += 2211

where ,......,,( 21= jjj aaa

constants satisfying 

jjj aaa ′=
2

                                                      

=  ∑
=

p

k

kja
1

2
                                                

= 1                 for all

In addition, the j
th

 principal component

XaY jj
′=  

is the linear compound of X

subject to being uncorrelated with the preceding 

components .,........., 21 jYYY

Since  XaY j
′=  is a linear compound,

then 

)(   )( XaVarYVar jj
′=                                           

=        1, 2, .......,j ja a j p′ Σ =

To derive the first principal component of

111)( aaYVar Σ′=  

The idea is to select 1a  in such a way that 

large as possible, subject to the constraint  
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This is a standard problem in constrained optimization 

and may be solved using the method of LaGrange 

multipliers. 

To use this method the LaGrangian is formed as 

)1()(1 −′−Σ′= aaaaaL δ           (25) 

The required 1a  is the value of a  that is a stationary 

point of (13). 

Now define 
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A non-trivial solution )0( 1 ≠a  to the above exists if, 

and only if 

0|| =Ι−Σ δ  

Where •  is the determinant operator. 

Thus δ must be an Eigen value of ∑, with 1a  being its 

corresponding Eigen vector: 

Since ∑ is a pp ×  symmetric matrix, then there can be 

up to p  distinct Eigen values.  Since ∑ is positive (semi) 

definite, then all of its Eigen values are non-negative. 

Assume, for the moment, that the Eigen values of ,Σ  

pλλλ ,.....,, 21
   are all distinct, 

That is 

0......................21 ≥>>> pλλλ  

)( )( 1XaVarYVar =                                                (21) 

= 11 aa Σ′  

= )( 11 aa Ι′ δ  

Using (14), which is equal to δδ =′
11aa  will take it 

largest value at 1λδ = , since this is the value of the 

largest Eigen value, with 1a  
being the Eigen vector 

corresponding to 1λ . 

4. Results 

The data from the survey were grouped for each of the 

four characteristics. Occupation was grouped into 

unemployed, paid employment and self employment. 

Income was grouped into 0 – < N10,000, N10,000 - < 

N20,000,  N20,000 and above. Household size was grouped 

into small (1-3), moderate (4-7), large (7 and above) and 

educational level was grouped into primary, secondary and 

tertiary. S-plus was for the analysis. 

The stratification technique in this study divided up the 

population into sub-population or strata. The strata for the 

four characteristics are in Table 1, 2, 3, and 4 

Table 1: Stratified Data on Occupation of Heads of Household in both 

Abeokuta South and Ijebu North 

Strata Occupation 

Number in 

Abeokuta South 

population 

Number in 

Ijebu North 

population 

1 Unemployed 10 2 

2 Paid employment 47 54 

3 Self employment 143 144 

  200 200 

Table 2: Stratified Data on Income of Heads of Household in both 

Abeokuta South and Ijebu North 

Strata Income N(000) 

Number in 

Abeokuta 

South 

population 

Number in 

Ijebu North 

population 

1 0 to under N10,000 42 28 

2 N10,000< N20,000 73 91 

3 N20,000 and over 85 81 

  200 200 

Table 3: Stratified Data on Dependant Size of Heads of Household in both 

Abeokuta South and Ijebu North 

Strata Dependant Size 

Number in 

Abeokuta South 

population 

Number in 

Ijebu North 

population 

1 Small (1 to 3) 138 140 

2 Mrate (4 to 7) 58 55 

3 Large (7 and over) 4 5 

  200 200 

Table 4: Stratified Data on Educational Level of Heads of Household in 

Abeokuta South and Ijebu North 

Strata 
Educational 

Level 

Number in 

Abeokuta South 

population 

Number in 

Ijebu North 

population 

1 Primary 53 44 

2 Secondary 74 85 

3 Tertiary 73 71 

  200 200 
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The merged stratified data for the four socioeconomic 

characteristics of Abeokuta South and Ijebu North LGAs 

are shown in Table 5. 

Table 5: Stratified Data on Occupation, Income, Dependant Size and 

Educational Level of Heads of Households in Abeokuta South and Ijebu 

North 

Item 

No. 
Name 

Stratum 

No.      Name 

Size of 

Stratum 

Abeokuta 

South  and  

Ijebu-North 

1 Occupation 

1    Unemployed 

2    Paid employment 

3    Self employment 

12 

101 

287 

2 Income (in N’000) 

1       0-10 

2       10-20 

3       20+ 

70 

164 

166 

3 Dependant Size 

1      Small (1-3) 

2      Moderate (4-7) 

3      Large (7+) 

278 

113 

9 

4 Educational Level 

1      Primary 

2      Secondary 
3      Tertiary 

97 

159 
144 

Using the data set for Abeokuta and Ijebu, the general 

multi-objective optimisation programme as in (8) is 
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To extend the idea of this approach, the matrix of 

variance-covariances of the vector   

.),.......,(
1 ′= G

ststst yyy was computed. The Eigen-values 

of the covariance matrix of Abeokuta and Ijebu data sets 

are as shown in Table 6. 

Table 6: Eigen-values of the Covariance Matrix of Abeokuta and Ijebu 

Data Set 

Eigenvalues )( iλ  Abeokuta Ijebu 

1 0.7593 0.7788 

2 0.3970 0.3391 

3 0.2297 0.2089 

4 0.1539 0.1266 

The summary estimates of the sample statistics for 

Abeokuta South and Ijebu North samples are as shown in 

Tables 7 and 8 

Table 7: Summary Estimates of Abeokuta South Sample Statistics 

  Income Dependant Size 

Mean   2.067 1.3000 

)(Vsrs y   0.0214 0.0062 

Var(post)  0.0073 0.0036 

)(Vmod sty   0.0045 0.0023 

Table 8: Summary Estimates of Ijebu North Sample Statistics 

  Income Dependant Size 

Mean   2.033 1.333 

)(Vsrs y   0.0206 0.0016 

Var(post)  0.0067 0.0014 

)(Vmod sty   0.0038 0.0011 

The variance-covariance matrix for Abeokuta and Ijebu 

data sets are shown in tables 9 and 10 respectively 

Table 9: Variance-Covariance Matrix of Abeokuta Data Set 

 Occupation Income 
Dependant 

Size 

Educational 

Level 

Occupation 0.2361 -0.0272 -0.0391 -0.1333 

Income -0.0272 0.2924 0.0677 0.2052 

Dependant 
Size 

-0.0391 0.0677 0.4046 0.0447 

Educational 

Level 
-0.1333 0.2052 0.0447 0.6068 

Table 10: Variance-Covariance Matrix of Ijebu Data Set 

 Occupation Income 
Dependant 

Size 

Educational 

Level 

Occupation 0.2197 -0.0508 -0.0392 -0.1744 

Income -0.0508 0.3020 0.0761 0.2132 

Dependant 
Size 

-0.0392 0.0761 0.3832 0.1059 

Educational 

Level 
-0.1744 0.2132 0.1059 0.5484 

The principal component analysis ensured that the 

variance-covariance matrix was decomposed and the eigen-

values and eigenvectors calculated from the multivariate 

data representing information from the households. The 

principal component on the basis of the sample covariance 

matrix for the merged sample data sets for Abeokuta South 

and Ijebu North are:
 

)( sty

)( sty
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Using Principal Component Analysis 

43211 812.0278.0428.0283.0 XXXXY +++−=  

43212 309.0948.00169.0069.0 XXXXY +−−−=  

43213 118.0010.0729.0667.0 XXXXY +−−−=  

43214 481.0116,0534.0686.0 XXXXY −−+−=  

with corresponding sample variance 0.7788, 0.3391, 0.2089 

and 0.1266 respectively. The total variance is 1.4534 and 

the principal components  
4321 ,,, YYYY
����

 

accounts for 53,6%, 23.3%, 14.4% and 8.7% of the total 

variance. Similarly, the principal components based on the 

merged sample correlation matrix are given by 

43211 425.0131.0151.0000.1
~

XXXXY −−−=  

43212 505.0211.0000.1151.0
~

XXXXY +++−=  

43213 158.0000.1211.0131.0
~

XXXXY +++−=  

43214 000.1158.0505.0425.0
~

XXXXY +++−=  

The sample variance of the new principal components 

4321 ,,, YYYY
����

 
are 1.8381, 0.9244, 0.8323 and 0.4052 respectively while 

the total variance is 4. The principal components account 

for 44.6%, 23.1%, 20.8% and 10.1% of the total variance. 

Using the Eigen function, Eigen values of the merged 

sample covariance matrix were 0.76516, 0.36722, 0.21742 

and 0.14319 with standard deviations 0.8747, 0.6060, 

0.4663 and 0.3784 respectively. 

5. Conclusion 

In this study, optimal allocation in multi-item is 

developed as a multivariate optimization problem by 

finding the principal components. This was done by 

determining the overall linear combinations that 

concentrates the variability into few variables.
 

From the principal component analysis, it was seen that 

for both Abeokuta and Ijebu data sets, the variance based 

on the four characteristics as multivariate is less than that of 

the variables when considered as a univariate. From the 

results, it was seen that there was no difference in the 

percentage of the total variance accounted for by the 

different components from the merged sample when 

compared with the individual sample. Optimum allocation 

was achieved when there was stratification. 
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