

American Journal of Software Engineering and Applications
2013; 2(6): 150-155
Published online December 20, 2013 (http://www.sciencepublishinggroup.com/j/ajsea)
doi: 10.11648/j.ajsea.20130206.14

Software security metric development framework
(an early stage approach)

A. Agrawal
1, *

, R. A. Khan
2

1Department of Computer Science, Khwaja Moinuddin Chishti Urdu, Arabi-Farsi University, Lucknow, India
2Department of IT, Babasaheb Bhimrao Ambedkar University, Lucknow, India

Email address:
alka_csjmu@yahoo.co.in (A. Agrawal), khanraees@yahoo.com (R. A. Khan)

To cite this article:
A. Agrawal, R. A. Khan. Software Security Metric Development Framework (An Early Stage Approach). American Journal of Software

Engineering and Applications. Vol. 2, No. 6, 2013, pp. 150-155. doi: 10.11648/j.ajsea.20130206.14

Abstract: This paper does an extensive survey on software security metrics and put forth an effort to characterize design

time software security. Misconceptions associated to security metrics have been identified and discussed. A list of

characteristics good security metrics should posses is listed. In absence of any standard guideline or methodology to develop

early stage security metrics, an effort has been made to provide a strong theoretical basis to develop such a framework. As a

result, a Security Metrics Development Framework has been proposed in this paper. Our next effort will be to implement the

proposed framework to develop security metrics in early stage of software development life cycle.

Keywords: Software Security, Software Security Metrics, Metric Development, Design Phase

1. Introduction

The increasing use of information system led to

dramatically improve the functionality with respect to safety,

cost and reliability. The exponential growth of technology

and the prospect of increased public access to the computing,

communications, and storage resources have made these

systems more vulnerable to attacks. A system cannot be

considered as of high assurance if it has poor security.

Security problems involving computers and software are

frequent, widespread, and serious. In an era riddled with

asymmetric cyber attacks, claims about system reliability,

integrity and safety must also include provisions for built-in

security of the enabling software.

Generally, software developed and implemented has bugs,

and many of the bugs available with the software system

have security implications. As reported by various

researchers and practitioners, security incidents seem to

have increased exponentially. Security engineering as a

discipline is still in its infancy. The field is hampered by its

lack of adequate measures of goodness. Without such a

measure, it is difficult to judge progress and it is particularly

difficult to make engineering trade-off decisions when

designing systems [1]. A widely accepted management

principle is that an activity cannot be managed if it cannot be

measured. Software security also falls in this rubric [2]. All

security vulnerabilities in software are the result of security

bugs or defects within the software. In most cases, these

defects are created by two primary causes including

non-conformance, or a failure to satisfy requirements, and

an error or omission in the software requirements.

Software security is a concept that still lacks

unambiguous definitions. It is important to understand the

nature of software when developing methods for measuring

software security. A common way to try to understand

software security is to find different dimensions of it

including confidentiality, integrity and availability [3]. Most

commercial software suffers from significant design and

implementation security vulnerabilities because of two most

important factors including complexity and motivation.

Software developers are producing more complex software

and work constantly on the boundary of manageable

complexity. Most of the software contains security flaws

because of the complex nature. Developers are readily

capable of preventing them. The second cause of software

insecurity is because of the lack of motivation to the vendors

for creating more secure software as the economics of the

software industry provide them with little incentive [4].

Security vulnerabilities are increasingly due to software.

Researchers and practitioners have carried out much work

on code-level vulnerabilities including buffer overflows. But,

at the same time, there is a great demand in identifying and

American Journal of Software Engineering and Applications 2013; 2(6): 150-155 151

mitigating security vulnerabilities at design level [5]. In

August 2006, first-time Steve Bellovin, argued that for

software, meaningful security metrics are not yet possible

because 100 percent security of software is not possible, i.e.,

one cannot measure what cannot possible exist [6][7].

Regulatory, financial, and organizational reasons drive the

requirement to measure software security performance.

Software security metrics provide a practical approach to

measuring security by facilitating decision making and

accountability through collection, analysis, and reporting of

relevant performance data [8].

2. Security Measurement

Measurement is a decision aid and what needs to be

measured depends on the decision. Measurement in any

science and engineering can be done by involving three

main steps including data collection, data validation, and

data processing. Data collection defines what to collect and

how to collect the data. The kind of data to be collected is

directly linked to the kind of behavior to be analyzed and to

the quantitative measures to be evaluated to characterize

such behavior. Data validation analyzes the collected data

for correctness, consistency, and completeness. Data

processing performs statistical analysis on the validated data

to identify and analyze trends and to evaluate quantitative

measures that characterize security [9]. Software security

measurement requires [10]:

• Identifying measurable security characteristics;

• Specify security metrics to be utilized;

• Map identified measurable characteristics to security

metrics;

• Associate sub-sets of security characteristics to

software system entities;

• Develop or use methodology to assess security strength

of system entities.

There is a noticeable difference between metrics and

measurements. Measurements provide single-point-in-time

views of specific, discrete factors. On the other hand,

metrics are derived from comparing two or more

measurements taken over time with a predetermined

baseline [11]. Alger differentiates measurements from

metrics and believes that measurements are generated by

counting, whereas metrics are generated from analysis [12].

Software measurement is at the foundation of software

engineering. Software security metrics are quantitative

measurements that are important for assessing the effects of

proposed improvements in security engineering. Metrics

serve an equally important role in risk analysis, scheduling,

planning, resource allocation, and cost estimation. This

results in implications on what should and may be measured.

Actual Measurable: Security metrics are fundamental in

order to specify what is actually to be measured. In a

simplified manner, a metric may be defined as a framework

in which raw data (measurements) are given a signification

or meaning.

Aggregation: There is a common agreement between

researchers and practitioners that there is no single measure

available to capture the security value of software system.

Thus, security measurement methods have to be able to

combine several measurements into software system

wide-values.

A security metric measures or assesses the extent to which

a system meets its security objectives. Since meaningful

quantitative security metrics are largely unavailable, the

security community primarily uses qualitative metrics for

security.

3. Security Metrics

Building secure software highly depends on quantitative

measurement of software security. Security measurement

defines the target security level and achievable security

levels. Metrics and measurements are the cornerstones of

any scientific discipline [13]. Software security

measurement is essential in order to make good decisions

about how to design security countermeasures. A measure is

a dimension compared against a standard. Security measures

assists in choosing alternative security architectures, and

improving security during design and operations [14].

It is essential to be able to define the actual meaning while

security is measured. Security metrics is a term that has been

used for the purpose. The need and significance of security

metrics has been emphasized by researchers [15] [16] as

well as by the industry practitioners [17]. A metric is a

system of related measures enabling quantification of some

characteristic. Security metrics are essential to meeting

organizations security objectives. Without good security

metrics, it is very difficult to assert a certain level of security

[13]. A security metric is a system of related dimensions

enabling quantification of the degree of freedom from

possibility of suffering damage or loss from malicious attack

[14]. An exhaustive review of literatures on software

security reveals that the field of defining security metrics

systematically is too young to have a well acceptable

definition. The problem behind the immaturity of security

metrics is that the current practice of software security is still

a highly diverse field and holistic and widely accepted

approaches are still missing [18].

Plenty of work has been done in defining and proposing

security metrics. Various security metrics exist in literature

and are widely used by the security community. Most of the

metrics proposed fall short of meeting the set objectives of

quantifying the measures, as well as scientifically defining

the same. A lot of attention has been devoted to metrics

focusing on operational security of deployed systems,

analyzing defect rates, known and un-patched vulnerabilities,

configuration of systems.

Security metrics are hard to quantify because the

discipline itself is still in the early stages of development.

There is not yet a common vocabulary and not many

documented best practices to follow [2]. Security metrics

refer to the quantitative measurements of trust indicating

how well a system meets the security requirements.

152 A. Agrawal and R. A. Khan: Software Security Metric Development Framework (An Early Stage Approach)

4. Security Metrics Collection

Security metrics is the measurement of the effectiveness

of the organization’s security efforts over time. Security

metrics have always been difficult to evaluate. It helps in

determining an organization whether it is secure. Several

software security metrics have been proposed, and are under

development, by researchers and practitioners. Some of the

pertinent security metrics are listed in the following section.

Computer Viruses per Malicious Code (CVMC): This

metrics counts the ratio of number of computer viruses to

total number of malicious code caught: This metric

measures effectiveness of automated antivirus controls [19].

Relative Attack Surface Quotient (RASQ): It is developed

and used by Microsoft. This metric measures the

attackability of a system, i.e., the likelihood that an attack on

the system will occur and be successful. It is calculated by

finding the root attack vectors, which are features of the

targeted system that positively or negatively affect its

security [7].

Relative Vulnerability Metric (RVM): This metric

compares the calculated ratio of exploitable vulnerabilities

detected in a system’s software components when an

intrusion prevention system (IPS) is present, against the

same ratio calculated when the IPS is not present [7][20].

Security Incidents and Investigations (SII): This metrics

counts the number of security incidents and investigations

performed to find out such an incident. This metrics assists

in monitoring security events [19].

Cost of security breaches (SBC): This metrics estimates

total cost of security breaches. It gives a measure to true

business loss related to security failures [19].

Time and materials (TMA): This gives measures to time

and materials assigned to security functions. It presents a

true business cost of running a security program [19].

Security Compliance (SC): This metrics measures

compliance with security rules. It produces level of

compliance matching security program goals [19].

Static Analysis Tool Effectiveness Metric (SATE): The

metric combines the actual number of flaws with the tool’s

false positive and false negative rates, and then weights the

result according to the intended audience for the resulting

measurements [21].

Predictive Undiscovered Vulnerability Density Metric

(UVD): This metrics is the extrapolation of Vulnerability

Discovery Rate metrics. It gives measure to undiscovered or

hypothetical vulnerabilities [22].

Flaw Severity and Severity-to-Complexity Metric (FSC):

This metrics gives a rating reported software flaws as critical,

high, medium, or low severity. It also determines whether it

is possible to make a direct correlation between the number

and severity of detected vulnerabilities and bugs and the

complexity of the code that contains them [23].

Security Scoring Vector (S-vector) for Web Applications

(SSV): This metrics is used to rate a web application’s

implementation against its requirements for technical

capabilities, structural protection, procedural methods in order

to produce an overall security score for the application [24].

Martin listed another set of metrics in his paper on

software security evaluation based on a top-Down Mc

Call-Like Approach [25][26].

Inalterability Metrics (IM): This metric defines the

difficulty of illegal modification of the code by a potential

hacker.

Physical Difficulty Metrics (PD): This metric measures

the physical difficulty of code modification.

Checksum Efficiency Metrics (CE): This metrics

measures the efficiency of the checksum algorithm.

Selftest Validity Metrics (SV): This metrics synthesizes an

assessment on the validity of the whole selftest mechanism.

Diversity Metrics (DM): This metrics assess the diversity

of code.

Number of Versions (NV): This metrics counts the

different versions of the same mechanism. The code is

difficult in every version, but the functionality remains the

same.

Diversity Factors (DF): This metrics gives an estimate of

the independence of the different versions.

Multiplicity Metrics (MM): This metric assess the number

of invocations of the same mechanism. The more a

mechanism is used, the more difficult it will be to

circumvent.

Multiplicity Factor (MF): This metrics measures the

difficulty of modification of the code implementing the

mechanism.

Frequency of Use (FU): This metrics measures how often

the mechanism is used.

Isolation Metrics (IM): This metrics is used to assess the

isolation of the mechanism from the rest of the application

and/or system.

Code Isolation (CI): This metrics assess the physical

isolation of the code segment implementing the mechanism.

Data isolation (DI): This metrics addresses the data

segment of the software implementing the mechanism.

Data Reuse (DR): This metrics addresses the difficulty of

modifying the operational parameters of the mechanism

when it is not in use.

Context Isolation (CI): This metrics address the isolation

provided from the context.

Interruptibility Metrics (IM): This metrics addresses the

resistance of the mechanism against interrupt driven attacks.

Mandatory Mediation (MM): This metrics is to assess of

the mechanism is used every time it could.

Mediation Factor (MF): This metrics establishes the ratio

between the effective use of a mechanism and its potential

use.

Mediation Efficiency (ME): This metrics estimates the

efficiency of use, taking into account that this efficiency is

related to the situation of the mechanism in the total system.

Number of Mediation (NM): For each function using the

mechanism, this metrics measures the number of times it is

used.

Auditability Metrics (AM): This metrics is aimed to assess

if the software leaves auditable traces of its use.

American Journal of Software Engineering and Applications 2013; 2(6): 150-155 153

Listing of Access Denial (AD): This metrics evaluates the

performance of the mechanism when it denies an access or

any operation.

Alarm Triggering Metrics (AT): This metrics evaluates

the performance of the alarm triggering mechanism.

Non Standard Behavior Detection (BD): This metrics

aims at assessing the efficiency of such systems detecting

when the behavior of a subject deviates from its standard.

Listing of Granted Access (GA): This metrics evaluates

the performance of the system when it keeps tracks of the

granted accesses.

5. Security Metrics Characteristics

It is inevitable facts that metrics are important to software

security to measure the success of security policy,

mechanism, or implementations. Metrics can be an effective

tool for software security practitioners to measure the

security strength and levels of their systems, products,

processes, and readiness to address security issues they are

facing. Metrics can also help identify system vulnerabilities,

providing guidance in prioritizing corrective actions, and

raising the level of security awareness within the

organization [9]. Software security metrics are quantifiable,

feasible to measure, and repeatable. They provide relevant

trends over time and are useful in tracking performance and

directing resources to initiate performance improvement

actions [8].

Jelen believes that a good metric should be Specific,

Measurable, Attainable, Repeatable and Time-dependent

(SMART) [11]. Payne remarks that truly useful security

metrics indicate the degree to which security goals such as

data confidentiality are being met [18] [27][28].

Characteristics of good security metric should include the

followings [14]:

• A good security metrics should be able to measure the

right thing, for which it has been written;

• It should also provide quantitative measurement to

make some decisions;

• It should be capable enough to be measured accurately;

• A good metrics should be validated in prior of its use;

• Metrics should be less expensive

• It should be available in early stage of software

development life cycle;

• It should be able to predict overall security of software

and vulnerability of software under development;

• The security metrics should be able to be refereed

independently;

• It should be repeatable in nature so that the results are

independent of the analyst performing the measuring;

• Good security metrics should be scalable from small

single-computer systems to large nation-scale

enterprise networks.

• It should generate reproducible and justifiable

measurements

• It should measure something of value to the

organization

• It should be able to determine real progress in security

posture

• It should be capable of applying to a broad range of

organizations while producing similar results

• It should help determining the order in which security

controls should be applied

• It should determine the resources needed to apply to the

security program

A measurement, by itself, is not a metric. Time has to be

brought into the picture, and a metric alone is not the answer

to all the organization’s problems. The metrics have to

enlighten the organization by showing some type of

progress.

6. Security Metrics Development

Process

Organizations that measure successes and failures of past

and current security investments may use security metrics to

justify and direct future security investments. It is well

understood and common believe that metrics assists in

improving accountability to stakeholders, ensuring an

appropriate level of mission support, determining software

security program effectiveness, and improving customer

confidence [8]. In absence of any standard framework for

identifying and developing security metrics, it appears to be

advantageous to make an effort to design such a framework

to carryout security metrics early in the development life

cycle. The framework facilitates tailoring security metrics to

a specific organization and to different stakeholders groups

in each organization.

6.1. Generic Guidelines

The guidelines before following the process to develop

the security metrics early in the development life cycle may

be listed as follows:

• Assure compliance/ adherence to collect a

generally-accepted set of characteristics that good

design possesses.

• Identify and persist with all the security-specific issues

involved in design phase.

• Identify policies and standards as a source of software

security metrics.

• Assure to control somehow all the extraneous and

intervening factors that may affect the outcome based

prediction.

6.2. Premises

The following premises have been considered when the

proposed framework is being used to develop a security

metrics:

• There is no universally agreed-upon definition for each

of high-level security factors.

• The set of security attributes used in the development of

the framework has been defined operationally in the

context.

154 A. Agrawal and R. A. Khan: Software Security Metric Development Framework (An Early Stage Approach)

• A common set of features for the desired metrics may

be used to form the basis for its development.

• The recourse optimization in SDLC depends on the

early use of procedure for metrics specification and

uncovering of vulnerabilities as far as possible.

• The approach to risk estimate should be more

applicable to identifying low security software than the

highly secured code.

6.3. The Framework

The development process of the metrics is comprised of

six phases together with prescriptive steps for each and has

been depicted pictorially in Fig. 1 Such a framework has

been proposed on the basis of integral and basic components

for designing good security metrics. The first phase starts

with the conceptualization. Planning for the desired metrics

is treated as an important task and has been putforth as a

second phase, followed by the phases termed as

development, theoretical validation, experimental validation

and packaging. An attempt has been made to symbolically

represent the spirit of designing a security metric and make

the framework prescriptive in nature followed by a brief

description of each o f the phases comprising the depicted

steps in the special reference to development of metrics.

Conceptualization: Conceptualization is one of the

foremost tasks of any comprehensive problem-solving

activity, where an initial brainstorming activity is undertaken

to understand the problem, jot down ideas for solution and to

realize problem-related facts. In this phase, the need and

significance of the metrics to be developed is assessed. The

developmental feasibility will also be checked. A strong

theoretical basis will be prepared to develop such a metrics.

Metrics attributes will be selected and features will be

identified.

Planning: Planning assists to get success in a problem

solving situation. A precisely defined plan provides

guidance to the developer as it works as a roadmap. There is

no doubt, that a metric will have little value if it is designed

outside a well-developed structural framework. Strategic

planning will be carried out for the metrics development.

Security policies, guidelines and procedures are reviewed.

Security factors are identified and design characteristics are

explored. A link is established between identified security

factors and design characteristics.

Development: Software security metrics are an integral

part of the state-of-the-practice in software security

engineering. Well designed metrics with documented

objectives may help the organization to mitigate the

vulnerabilities. Thus, designing is the most important and

critical step towards the development of desired security

metrics. As a subtask, stakeholders and interests are

identified. Metrics program goals and objectives are defined.

The metrics to be generated are decided. A metrics

computation is established and finally a security metrics is

formulated. Theoretical Validation: Theoretical validation of

software security metrics provides the supporting evidence

as to whether a measure really captures the internal

attributes that it purports to measure. The main goal of

theoretical validation is to assess whether a metric actually

measures what it supposed to measure. A theoretical basis is

examined in this phase. Experts review is conducted and

observations are examined critically. On the basis of the

observations made, changes are identified to be

incorporated.

Empirical Validation: Testing is one of the best empirical

research strategies, performed through quantitative analysis

of experimental data on implementation. Hence it is

necessary to place the developed security metrics under

testing. A viable experiment is designed and pre-tryout is

performed and reviewed. Changes are identified and tryout

is performed. Result from tryout is analyzed, and as a

conclusion, metrics is finalized.

Packaging: This is the conclusive phase of the metric

development process. During this phase the developed

metric is prepared with the needed accessories to become a

ready-to-use product, like any other usable product. Metrics

is introduced and its all accessories are described. A usage

guideline is prescribed and a typical example is worked out.

An implementation mechanism is prescribed at last.

Fig 1. Security Metrics Development Framework

7. Conclusion

With this technological advancement, security is a

relatively new concept for many of the organizations. Within

the security realm, quantify security is still a relatively new

theme. Every software system has security vulnerabilities

and risks to certain degrees. It is critical for software security

researchers and practitioners to identify these security risks,

assessing the probability of their occurrences and the

damage they could cause, and then develop security policy

and mechanism to prevent or reduce the potential damages

from the exploits of those security vulnerabilities. There are

no well-established processes or methods to measure

software security. To a great extent, different organizations

American Journal of Software Engineering and Applications 2013; 2(6): 150-155 155

have developed and deployed their own methods in

measurements. Security Metrics provides a way to measure

your security program. It facilitates collecting and

documenting program status and reporting on the current

situation and gap analysis. A framework to develop security

metrics early in the development life cycle has been

proposed. The proposed framework comprises of six steps

including conceptualization, planning, development,

theoretical validation, empirical validation and packaging.

Our next step will be to implement the proposed framework

in order to develop a design time security metrics.

References

[1] O. S. Saydjari, Risk: A Good System Security Measure,
Proceedings of the 30th Annual International Computer
Software and Applications Conference (COMPSAC'06)
0-7695-2655-1/06 $20.00, IEEE, 2006.

[2] S. Naqvi and M. Riguidel, Quantifiable Security Metrics for
Large Scale Heterogeneous Systems,
1-4244-0174-7/06/$20.00, IEEE, pp. 209-215, 2006.

[3] W. Qu, D. Zhang, Security Metrics Models and Application
with SVM in Information Security Management
1-4244-0973-X/07/$25.00, IEEE pp. 3234-3238, 2007.

[4] A. Ozment, Software Security Growth Modeling: Examining
Vulnerabilities with Reliability Growth Models, in: Quality
of Protection: Security Measurements and Metrics, Dieter
Gollman, Fabio Massacci and Yautsiukhin, Artsiom.

[5] J. M. Wing, Software Security, First Joint IEEE/IFIP
Symposium on Theoretical Aspects of Software Engineering
(TASE'07), 0-7695-2856-2/07 $20.00, IEEE, 2007.

[6] Since Metricon 1.0, a second “mini-Metricon” was held in
February 2007 at the University of San Francisco. See
“Metricon 1.0” web page. securitymetrics.org [Last updated
September 20, 2006, by Andrew Jaquith].

[7] ‘Software Security Assurance”, State-of-the-Art Report
(SOAR) Information Assurance Technology Analysis Center
(IATAC) Data and Analysis Center for Software (DACS)
Joint endeavor by IATAC with DACS July 31, 2007.

[8] G. Agarwal, IT Security Metrics, 08Feb,
2008.http://cobitexpert.com/index.php?itemid=3

[9] A. J. A. Wang, Information Security Models and Metrics,
43rd ACM Southeast Conference, ACM, March 18-20
Kennesaw, GA, USA. pp. 178-184, 2005.

[10] J. Hallberg, A. Hunstad and M. Peterson, A Framework for
System Security Assessment, Proceedings of the 2005 IEEE
Workshop on Information Assurance and Security, United
States Military Academy, West Point, NY, pp. 224-231, 2005

[11] G. Jelen, SSE-CMM Security Metrics. NIST and CSSPAB
Workshop, Washington, D.C., June 2000.

[12] J. I. Alger, On Assurance, Measures, and Metrics: Definitions
and Approaches. Proc. of Workshop on Information Security
System Scoring and Ranking (WISSSR), ACSA and MITRE,

Williamsburg, Virginia, May, 2001, proceedings published
2002.

[13] Z. Abbadi, ST13: Security Metrics: What can you test? Web
Reference, 21 January, 2008.

[14] O. S. Saydjari, Is Risk a Good Security Metric? QoP’06,
Alexandria, Virginia, USA. ACM 1-59593-553-3/06/0010,
pp. 59-60, , October 30, 2006.

[15] ACSA (2002), Proc Workshop on information Security
System Scoring and Ranking, Applied Computer Security
Associates, 2002.

[16] M. Greenwald, C. Gunter, E. Knutsson, A. Sccdrov, J. Smith &
S. Zdancewic, Computer Security is not a Science, Large-Scale
Network Security Workshop, Landsdome, VA, 2003.

[17] Seemet, Security metrics consortium, 2004.
http://www.secmet.orp

[18] Department of Homeland Security, Security in the Software
Lifecycle, Making Software Development Processes—and
Software Produced by Them—More Secure, DRAFT
Version 1.1 - July 2006.

[19] D. A. Chapin and S. Akridge, How Can Security Be
Measured? Information Systems Control Journal, Volume 2
2005.

[20] C. Cowan, Relative Vulnerability: An Empirical Assurance
Metric, Presented at the 44th International Federation for
Information Processing Working Group 10.4 Workshop on
Measuring Assurance in Cyberspace (Monterey, CA, 25-29
June 2003).

[21] F. Stevens, Validation of an Intrusion-Tolerant Information
System Using Probabilistic Modeling, MS thesis, University
of Illinois, Urbana-Champaign, IL, 2004.

[22] O.H. Alhazmi, Y. K. Malaiya, and I. Ray, Security
Vulnerabilities in Software Systems: a Quantitative
Perspective, Proceedings of the IFIP WG 11.3 Working
Conference on Data and Applications Security, Storrs, CT,
August 2005.

[23] Pravir Chandra, “Code Metrics”, Presented at Metricon 1.0
(Vancouver, BC, Canada, 1 August 2006).

[24] R. R. Barton, W. J. Hery, and P. Liu, An S-vector for Web
Application Security Management, working paper,
Pennsylvania State University, University Park, PA, January
2004.

[25] S. Martin, Software Security Evaluation Based on a
Top-Down Mc Call-Like Approach, IEEE 1988, pp. 414-418.

[26] D. B. Aredo, Metrics for Quantifying the Impacts of
Monitoring on Security of Adaptive Distributed Systems,
Master Thesis Proposal – II, December 2005.

[27] S. C. Payne, A Guide to Security Metrics, SANS Institute
Information Security Reading Room, June 2006.

[28] R. Savola, Towards a Security Metrics Taxonomy for the
Information and Communication Technology Industry,
International Conference on Software Engineering
Advances(ICSEA 2007) 0-7695-2937-2/07,2007, IEEE.

