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Abstract: In this work, we applied the first order time independent Rayleigh–Schrödinger Perturbation Theory, as an 

approximation method to calculate numerically the corrections in atomic spectra due to nuclear structure effects. The results 

showed that the nuclear structure effects distort the atomic spectra in different ways: The combined fine structure effect which 

decreases with increasing values of n, split the quantum number n into l ± ½ and the magnitude of the energy levels shift is of 

order of 10
-6

 eV relative to the energy levels calculated from the non-relativistic Schrodinger equation. An energy level 

determined by the total angular momentum j of the orbiting electron are found to split further due to hyperfine structure effects 

with the energy difference of 5.9 × 10
-6

 eV. This corresponds to a wavelength is 21 cm. The energy shift between 2s1/2 and 2p1/2 

states due to the effects of vacuum fields on orbiting electron was calculated as 5.52 × 10
-6

 eV. We then continue to investigate the 

change in atomic spectra caused by the finite size nuclear structure effects. The finite-size nuclear structure effect on atomic 

spectra computed is of order of the scaling factors, ξ, ξ
2 
and ξ

3 
for n = 1, n = 2 and n = 3 atomic energy levels respectively. This 

showed that as the energy levels increased the effects of the finite – size nucleus on the orbiting electron is diminishing. Therefore 

the concept of finite nuclear size model has an extremely small impact on atomic spectra. These theoretical findings revealed 

some of the behavior of atomic spectra which may develop the understanding of spectroscopy and spectroscopic methods. 

Keywords: Spectroscopy, Electron Transitions, Schrödinger Equation, Quantum Numbers, Energy Shift,  

Finite – Size Nucleus 

 

1. Introduction 

The investigation of the radiation emitted or absorbed by 

atoms or molecules is called spectroscopy [1, 2]. The 

spectrum is the intensity of the emitted radiation as a 

function of its frequency, f or its wavelength, λ [3]. 

Spectroscopy can be categorized in to atomic spectroscopy, 

ultraviolet and visible spectroscopy, fluorescence 

spectroscopy, x-ray fluorescence spectroscopy, infrared 

spectroscopy, Raman spectroscopy, nuclear magnetic 

resonance spectroscopy, electron spin spectroscopy and mass 

spectroscopy [4, 5]. Atomic spectra arise from electron 

quantum leaps between orbits. The difference in energy 

between the orbits jumped by the electron comes out of the 

atom as spectral lines. These lines depend on the orbital from 

which the electron jumped [6, 7]. The internal molecular 

structure may respond to radiant energy in addition to 

electron transitions. In some molecules the bonding electrons 

also have natural resonant frequencies, giving rise to 

molecular vibration, while others exhibit a rotation. The 

differences in energy levels associated with vibration and 

rotation are much smaller than those involved in electron 

transitions, therefore excitation resulting from these 
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phenomena will occur at comparatively longer wavelengths; 

vibrational excitation is typically associated with infrared 

radiation, while rotational excitation are associated with far–

infrared or even microwave radiation. Despite vibrational 

and rotational excitation being primarily associated with 

spectral regions other than ultraviolet–visible, they do have 

an effect on electron transitions within this range. The 

principal effect is of ‘broadening’, that is the deviation of an 

observed absorption region from its predicted region.  

For most species, especially in solution, excitation does not 

appear as sharp absorbance points at highly differentiated 

wavelengths, but rather as bands of absorbance over a range of 

wavelengths. A principal reason is that absorbance at the 

electron transition level are frequently accompanied by 

smaller structures at the vibrational level. In the same way 

each vibrational structures may have even smaller associated 

structures at the rotational level, so an absorbance spectrum 

due to electron transitions may display far more complex 

structures than expected [3]. 

It is observed that the frequencies of the spectral lines of the 

atoms or molecules are not exactly as predicted by 

Schrödinger equation. Certain splitting in the spectrum 

appears when observed using a high-resolution spectrometer 

[8]. The observed splitting in the spectral lines is due to the 

structure of the atomic nucleus. The nuclear structure affects 

atomic spectra in many ways. For example the hyperfine 

interaction between electrons and the nuclear magnetic 

moment, this results in a small splitting of spectral lines. 

Electrons are also sensitive to other properties of the nucleus 

they are bound to, such as nuclear mass, charge distribution or 

spin. These nuclear properties which act simultaneously, 

distort the atomic spectra in different ways. Small distortions 

in the atomic spectra can give insight into the structure of the 

atom [9], molecules or other chemical species. To account for 

these nuclear effects, one must often applied nuclear theory 

and any additional experimental information which may 

provide useful calibration for the calculated values.  

The description of atomic or molecular spectra is important 

tools in understanding spectroscopy and spectroscopic 

methods [10]. Spectroscopy is a widely used and accepted 

technique capable of determining trace (µgdm
–3

) and ultra 

trace (< µgdm
–3

) levels of elements (or) metals in a wide 

variety of samples with good accuracy and acceptable 

precision [11]. It Spectroscopy applied across research, quality, 

and manufacturing, with continuing focus on life science and 

pharmaceutical environments, they are equally as relevant in 

agriculture, food safety, inorganic and organic chemistry, 

biochemistry, clinical chemistry, geochemistry, geological 

exploration, environmental sciences (air, soil and water 

pollutions), industrial control processes, and many 

manufacturing industries to name a few [12-17]. In this study, 

we investigated the change in atomic spectra cause by the 

nuclear structure effects. 

2. Theoretical Procedures 

The road to understanding the origins of atomic spectra 

began with Johann Balmer in 1885, when he noticed the 

regularities in the wavelengths of the spectrum and described 

it with the formula: 

�� = ��� � ��� − �	�
                   (1) 

where n is an integer and takes on the values 3, 4, 5,... and λ0 is 

a constant wavelength of 364.56 nm. He denoted the Balmer 

series by Hα, Hβ, Hγ,…, starting at the long wavelength end in 

the visible region of the electromagnetic spectrum. The 

empirical result equation (1) was later generalized by 

Johannes Rydberg in 1900, to describe the entire observed 

spectrum by the formula: 

�� = ℛ � ��� − �	�
 ,� = 1,2,3, … , � > �        (2) 

where ℛ, known as the Rydberg constant, has the value 1.097 

× 10
7
m

-1
. Later, a similar series named the Lyman series was 

discovered in the ultraviolet, and several similar series were 

found in the infrared, named after Paschen, Brackett, Pfund, 

Humphreys, Hansen and Strong, and successively less famous 

people. Neil Bohr made an assumption that all these spectral 

lines arise from electron quantum leaps between orbits, n = 1, 

2, 3, …. The increasing values of n represent higher energy 

levels or greater distance from the nucleus. The difference in 

energy, ∆E between the orbits jumped by the electron is 

related to the wavelength, according to the following equation 

[18, 19]: 

∆� = �	 − �� = ���                  (3) 

where h = 6.62 × 10
-34

Js is the Plank’s constant and c is the 

speed of light in a vacuum. This energy comes out of the atom 

as light of a specific color which depends on the orbital from 

which the electron jumped [20]. The energies Em and En can be 

found from quantum mechanics by solving the Schrodinger 

wave equation: 

����� = − ℏ���� ∇����� + !�������	      (4) 

using electrostatic potential [21,22] of a fixed charge +Ze: 

!��� = − #$%�&                    (5) 

where me, k = (4π'0)
-1 

and e are the electronic mass and charge, 

respectively [23]. According to equation (4), the allowed 

energies En of an electron are given by: 

�	 = − $%��(� #
�	� , � = 1,2,3, …          (6) 

Where a0 = ℏ2
/me

2 
= 5.29 × 10

-11 
m is the Bohr radius. 

Comparing (6) and (3) and using the relation: h = 2πħ, we find 

that the spectral lines of atoms occur at wavelengths: 1) = − *+�4-ℏ./0 1� 2 1�� − 1��3 
The series can be obtained in terms of wave number: 45�,	 

as: 

45�,	 = ℛ1� � ��� − �	�
 , � = 1,2,3, . . . , � > �    (7) 



41 Aliyu Adamu et al.: Determination of Nuclear Structure Effects on Atomic Spectra by Applying   

Rayleigh – Schrödinger Perturbation Theory 

Equation (7) can be used to generate the wave numbers of 

the lines in each of these series; n = 1, 2, 3, 4, 5, 6… for the 

Lyman, Balmer, Paschen, Brackett, Pfund, Humphreys… 

series respectively.  

When the lone orbiting electron is solely subject to the 

electrostatic influence of the nucleus, its energy level depends 

exclusively on the principal quantum number, n [24-26]. It is 

clearly observed that the frequencies of the spectral lines of 

the atoms or molecules are not exactly as predicted by 

equation (7). Other splitting in the spectrum appears when 

observed using a high-resolution spectrometer [27]. This is 

due to the following nuclear structure effects: 

a. Fine Structure Splitting 

i. Relativistic motion 

ii. Spin – orbit interaction 

iii. Quantization of electric fields 

b. Nuclear Contributions 

i. Hyperfine splitting  

ii. Finite – size nuclear effects 

c. Lamb Shifts 

i. Vacuum fields fluctuations 

ii. Vacuum polarization 

These nuclear structures affect the atomic spectra in many 

ways and as a result distort the atomic spectra obtained using 

(7) [28]. The corrections to the spectra obtained from (7) due 

to nuclear structure, can be corrected by adding a small change 

λU (r), in potential (5) caused by these effects: !׳��� = !��� + )!���               (8) 

This small change in potential will also produce a small 

change in the Hamiltonian. The new Hamiltonian can be 

written as the sum of two terms: 78 = 780 + )78                  (9) 

where )78 , is the perturbation and λ is taken to be 

dimensionless small number, λ ≪ 1, so that the perturbation )78 is small compared to the original Hamiltonian780. We will 

seek to calculate the change in energy En and wave function ψn 

produced by an arbitrary small change in the Hamiltonian 78, 

by solving a new eigen functions 9	 and eigen values �:	 as ;780 + )78<9	 = �:	9	             (10) 

Where the energy eigenstates 9	�0� could correspond to the 

hydrogen wave function, the spin eigenfunction of electron in 

a magnetic field or any other set of wavefunction that are exact 

solutions of Schrödinger’s equation. Written 9	  and �:	  as 

power series in λ, we have 

�:	 = �:	�)� = �:	�0� + )�:	��� + )��:	��� +⋯9	 = 9	�)� = 9	�0� + )9	��� + )�9	��� +⋯>   (11) 

Here �:	�0� is the 0
th

 order correction to the n
th 

eigen value, 

and 9	�0� is the 0
th

 order correction to the n
th 

eigen function; �:	���  and 9	���  are the 1
st
 order corrections; �:	���  and 9	��� 

are the 2
nd

 order corrections and so on. Substituting (11) into 

(10) and doing some algebra (see Ref [29]), the generalized 

eigen value of the energy is obtained using Rayleigh – 

Schrödinger perturbation theory as: 

�:	�?� = 〈9	�0�A)78A9	�?B��〉            (12) 

3. Derivation and Discussion 

Equation (12) allowed us to compute the approximate 

solutions of the energy eigenvalue to any desired accuracy. 

The 1
st
 order (N = 1) perturbative corrections is be given by 

∆�	��� = D9	�0�A)78A9	�0�E           (13) 

Equation (13) can be applied to calculate the splitting of the 

spectral line caused by the nuclear structure effects. 

3.1. The Fine Structure Corrections 

The fine structure was known experimentally long before 

a proper theoretical understanding was achieved, and it was an 

important driving force in theoretical developments at a 

certain stage in the history of atomic physics. In addition to its 

intrinsic interest and importance in atomic spectra, the fine 

structure is interesting as a window on relativistic quantum 

mechanics. 

3.1.1. The Relativistic Corrections to the Kinetic Energy of 

the Electron 

In relativistic classical mechanics, the total energy of a an 

electron is is 

� = F�G.�� + ��.��� 

Now we are interested only in the case where the particle is 

only slightly relativistic so that v < c. In this limit we can 

expand the square root to obtain 

� = �.�H1 + � IJ��
� = �.� K1 + �� � IJ��
� − �L � IJ��
M +⋯ N = �.� + IJ��� − ;IJ�<�L�O�� + P�GQ�       (14) 

The first term in (14) is interpreted as the rest energy of the 

electron; the second term is the non-relativistic kinetic energy 

that we are familiar with in everyday life. Hence, we use the 

third term in writing the perturbed Hamiltonian: 

7&� = − ;IJ�<�L�O�� = − ����� �70 + #$%�& 
�        (15) 

Using the Perturbation Theory (15), the relativistic 

correction for a new state |�S〉 can be expressed as: 
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 T�S|7&�|�SU = − 12�.� V�SW X70 + 1*+�� Y X70 + 1*+�� Y W�SZ = − 12�.� [�	�0�� + 2�	�0�1*+�〈�B�〉	 + �1*+���〈�B�〉	\] 
Using the following equation, 

〈�B�〉	 = 1��/0 〈�B�〉	\ = 1�^/0� �S + ��
 
We obtain 

〈7&�〉	\ = − ����� _�	� + 2�	 #$%�	�(� + ;#$%�<�	O(���\`a�
b = cd���� #$%��(�	� _ M	�\`a�
 − 3b = −�	 �#e	 
� 	M f −
Mg + 	̂ , �h = S + ��
− Mg`�+ 	̂ , �h = S − ��
  (16) 

The number j in (16) represents the total angular 

momentum of the electron, and can take on the values j = 1/2, 

3/2, …, n/2. 

3.1.2. Spin-Orbit Coupling of Electron 

From relativity, an electron moving in an electric field	�iJ, 
feels a small magnetic field in its reference frame given by 

jiJ = 1.� kJ × �iJ + P �k.
� 

where velocity kJ [30]. For a central field the corresponding 

electric field due to potential (5) can be determined by 

�iJ = &J& mn�&�m& = −1*+ &J&O             (17) 

However, there is another contribution to the effective 

magnetic field arising from the relativistic effect connected 

with the precession of axes under rotation, called Thomas 

precession. This suggests multiplying (17) further by a factor 

of 1/2 and gives rise to total spin-orbit interaction energy: 

7op = −qr ∙ jiJ = 1*+�2��.�� 1�^ [tJ ∙ �GJ × �J�] 
= 1*+�2��.�� 1�^ ;uiJ ∙ tJ< 

where the angular momentum uiJ = �J × GJ. The total angular 

momentum, vJ = uiJ + tJ. Taking their square 

vJ� = uiJ� + tJ� + 2uiJ ∙ tJ or uiJ ∙ tJ = �� ;vJ� − uiJ� − tJ�< 
Therefore, spin-orbit coupling 

;uiJ ∙ tJ<|�hS�g〉 = ℏ�� wh�h + 1� − S�S + 1� − M̂x   (18) 

Since the unperturbed states are degenerate, it is easy to see 

that the spin-orbit coupling is diagonal in the eigenstates of the 

total angular momentum and hence the energy of a dipole 

moment in a magnetic field will be given as 

y�hS�gA7opA�hS�gz = #$%������ ℏ�� 〈 �&O〉	\ × f �h − ��
 , �h = S + ��
�−h − �̂
 , �h = S − ��
                           (19) 

The expectation of r
-3

 for the dipole interaction was first 

estimated by Goldsmith and by Fermi and Segre by 

comparison with the hydrogenic wave functions: 

〈�B^〉	\ = 2 1�/03^ 1S �S + ��
 �S + 1� 
We obtain 

〈7op〉 = −�	 �#e	 
� 	M × {
�g�g`a�
 , �h = S + ��
− ��g`a�
�g`�� , �h = S − ��
   (20) 

3.1.3. The Darwin Term 

Schrödinger suggested [30] that the relativistic electron 

undergoes a Zitterbewegung motion due to the interference 

between positive and negative energy term in the solution 

[31-34]. The angular frequency at which an electron zitters is 

given by  

| = 2�.�ℏ  

This corresponds to a characteristic length of  

) = .| = ℏ2�. = )02  

where λ0 = ℏ/mc is the Compton wavelength [35]. 

Therefore the potential energy the electron experience is 

not strictly at a particular position, but rather an “average” 

around that point, as illustrated in Figure 1. In order to 

quantify this correction we shall define an effective 

potential that is the average of the potential over a fuzzy 

ball about the size of λ0. 
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Figure 1. Set up of the Darwin correction. 

!%}} = 1~�S��+�!��J + 'J��^' 
We shall perform the integration over a sphere of Volume: 

~ = 43-)�̂ = 43- 2 ℏ�.3^ 

The correction can be computed in a Taylor expansion 

around the average position 'J: 
!��J + 'J� = !��J� + 'J ∙ ∇U + � 12 '�'g

^
�,g��

���� ���g ! +⋯ 

Let us perform the integration term by term for clarity. 

~% = �� K�!��J��^' + � 'J ∙ ∇U�^' + ��� '�'g ���� ����!�^'N  (21) 

and the spherical symmetry of Zitterbewegung says 

�!��J��^' = !��J� × ~�S��+	           (22) � 'J ∙ ∇U�^' = ∇! ∙ � 'J�^' = 0          (23) 

Since there is no preferred direction and we are integrating 

over all directions. This is also the reason why 

� '�'g�^' = ���g = )0���g = � ℏ��
� ��g	        (24) 

Putting (23) into the average of the third term in (21) we 

obtain 

� '�'g ���� ����!�^' = �̂ � ℏ��
� ∇�!��g	     (25) 

So in the end we have obtained an expression for the 

effective potential. 

~% = !��J� + �Q � ℏ��
� ∇�!��g         (26) 

This argument leads to the Darwin term, 

7�(&��	 = �Q � ℏ��
� ∇�!��g          (27) 

A full relativistic calculation gives us our third perturbation 

given by: 

7�(&��	 = �L � ℏ��
� ∇�!��g          (28) 

For the Coulomb potential (5) the Laplacian ∇iiJ2, is given by 

∇�!��� = ∇� #$��& = −4-1*+��^��J�        (29) 

Where +Ze is the charge of the nucleus and δ(r) is the 

three-dimensional Dirac delta function and it is zero 

everywhere except at s states (r = 0). Therefore, 

7�(&��	 = ℏ�L����� 4-1*+��^��J�          (30) 

The Darwin term has an expectation value only for the 

s-states, because 

〈�|7�(&��	|�〉 = ℏ�L���� 4-1*+�|�	�0�|�       (31) 

The intensity of the wave function corresponding to s states 

is 

|�	�0�|� = #O�	O(�O             (32) 
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The expectation value then is 

〈�|7�(&��	|�〉 = M�#$%�ℏ�L����� #O�	O(�O = −�	 �#e	 
� 	M �4�   (33) 

where the use of α = e
2
/ћc have been made. When l = 0, j = ½ 

in (20), the expression (32) coincides with that of the 

spin-orbit coupling. 

Thus, the Darwin term exactly compensates for the absence 

of the spin-orbit interaction [36]. Finally, putting (16), (20) 

and (33) together we obtained the fine structure correction as: 

��p��, h� = |�	| 21�� 3� �4 ���
�� −4h + 3� + 2h �h + ��
 , 2h = S +

123
− 4h + 1 + 3� − 2�h + ��
 �h + 1� , 2h = S −

123 

The Combination of the three Corrections gives rise to the 

fine structure for hydrogen atom: 

��p��, h� = |cd|M �#e	 
� wM̂− �	�g`�x          (34) 

Combining the spin and angular momentum, the total 

angular momentum takes values j = l ± 1/2. 

3.2. The Hyperfine Splitting 

Taking into account the coupling between the nuclear spin I 

and the total angular momentum j of the orbiting electron, an 

energy level determined by j will be split further, forming a 

hyperfine structure. To determine the magnitude of hyperfine 

structure let us start by defining the magnetic moment of the 

nucleus as 

qJ? = `#%��� �?�J              (35) 

where I
r

s the nuclear spin vector. The complete action from 

which the Maxwell’s equations are derived for the Quantum 

Electrodynamics is 

t = ����^� w �L� ;�iJ� − jiJ�< − 9  + �� �J ∙ ¡Jx     (36) 

A magnetic moment couples to the magnetic field with the 

Hamiltonian7¢� = −qJ% ∙ jiJ , and therefore appears in the 

Lagrangian as u = +qJ% ∙ jiJ. We add this term to the above 

action 

t = ����^� w �L� ;�iJ� − jiJ�< − 9  + �� �J ∙ ¡J + qJ ∙ jiJ��Jx  (37) 

Where �J	 is the position of the magnetic moment. The 

equation of motion for the vector potential is obtained by 

varying the action with respect to �J 
∇iiJ × BiiJ = �� �iJ¤ + M�� ¡J − 4-q × ∇iiJ��J        (38) 

In the absence of time – varying electric field or electric 

current, the equation is simply 

∇iiJ × BiiJ = −4-q × ∇iiJ��J            (39) 

It is tempting to solve it immediately as 

BiiJ = −q��J                    (40) 

To solve it, we use Coulomb gauge and write (39) as 

−∇iiJ�AiiJ = −4-q × ∇iiJ��J             (41) 

Because ∇iiJ��rJB�� = −4-q��J, we find 

�J��J� = −qJ? × ∇iiJ��J = qJ? × ∇iiJ� &J|&J|�            (42) 

The magnetic field is its curl, 

jiJ��J� = ∇iiJ × �J = − wqJ?∇iiJ� �|&J| − ∇iiJ;qJ? ∙ ∇iiJ< �|&J|x     (43) 

Finally the interaction of two magnetic moments, qJ% 	and qJ?, is given by the magnetic field jiJ��J� created by the second 

magnetic moment at �J 
7¢� = −qJ% ∙ jiJ��J� = − +�% tJ% ∙ KqJ?∇iiJ� 1|�J| − ∇iiJ;qJ? ∙ ∇iiJ< 1|�J|N 
= − +�% tJ% ∙ K 1+2�? �?�J∇iiJ� 1|�J| − ∇iiJ 2+1+2�? �?�J ∙ ∇iiJ3 1|�J|N 

= − #%�§������ wtJ% ∙ �J∇iiJ� �|&J|− t��g∇iiJ;∇iiJ< �|&J|x  (44) 

According to perturbation theory, the first order correction 

to the energy is the expectation value of the unperturbed 

Hamiltonian: TS¨h�©ª�|7¢�|S¨h�©ª�U 
= − #%�§������ K〈tJ% ∙ �J∇iiJ� �|&J|〉 − 〈t��g ���� ���� �|&J|〉N      (45) 

where l, sand j are respectively the quantum numbers of 

orbital angular momentum, spin and total angular momentum 

of the electron, I is the quantum number of the nuclear spin, F 

is the quantum number of the total angular momentum of the 

atom and MF is of its z-component quantum number. The 

second term in (45) can be simplified because of the spherical 

symmetry of s states. (Basically the derivative with respect to 

x is odd in x so when the integral is done, only the terms where 

I = j are nonzero). 

��^ �|�	00|� ���� ���� �|&J| = «��^ ��^ �|�	00|�∇iiJ� �|&J|	   (46) 

So we have 
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〈7¢�〉 = − �̂ #%�§������ 〈tJ% ∙ �J∇iiJ� �|&J|〉          (47) 

Now working out the ∇iiJ� term in spherical coordinates, 

∇iiJ�= X ����� − 2� ���Y 1� = 2�^ + 2� 2 1��3 = 0 

We find that it is zero everywhere but we must be careful at 

r = 0. To find the effect at r = 0 we will integrate. 

〈∇iiJ� 1�〉 = � ∇iiJ� 1�
¬

&�0 �^� = � ∇iiJ ∙ 2∇iiJ 1�3
¬

&�0 �^� 

= �2∇iiJ 1�3 ∙ � J̈ = � ��� 1� � J̈ 
� J̈ = � −1��

¬
&�0 � J̈ = �4-'��−1'� = −4- 

So the integral is non zero for any region including the 

origin. Therefore 

〈7¢�〉 = −23 1+��?2�?�% tJ% ∙ �J�−4-|�	00�0�|�� 
= M̂ �1��M �����
 ��%.���? �	O �pJ�∙­Jℏ� 
       (48) 

Now, just as in the case of the tJ ∙ uiJ, spin-orbit interaction, 

to solve (48) it is convenient to define the total spin ©J = tJ + �J. 
Then we have 

tJ ∙ �J = �� ;©J� − tJ� − �J�< = ��ℏ� w®�® + 1� − M̂− M̂x  (49) 

The energy of the electron in magnetic field, due to the 

proton’s magnetic dipole moment, is 

�¢� = −�	 M̂ �#e	 
� � �����
 �? w®�® + 1� − �̂x  (50) 

If the spins are parallel (or, more precisely, if they are in the 

triplet state), the total spin is 1, and hence f (f + 1) = 2, the 

energy is higher than it is when the spins are antiparallel (the 

single state) where the total spin is 0, and f (f + 1) = 0. 

 

a 

 

b 

Figure 2. (a) The triplet state (b) The singlet state. 

Thus 

�¯&�I\%¯ = −�	 �̂ �#e	 
� �����
 ��?�r�	§\%¯ = −�	 �#e	 
� �����
 ��? °      (51) 

The measured value of gyromagnetic ratio of proton gN is 

5.59. Therefore the energy difference is 

∆�¢� = �̂�	 �#e	 
� �����
 ��? = 5.9 × 10BQ+~ (52) 

 

Figure 3. Hyper fine splitting in the ground state of hydrogen atom. 

3.3. Vacuum Fields Fluctuations 

As the electron moves through the vacuum fields, it jiggles 

slightly and as the result the coupling of the electron with the 

nucleus weakens and therefore the average value of its 

potential energy required additional displacement δr. Since δr 

is very small, the effective potential at point U (r +δr) can be 

simplified using the Taylor expansion as: 

!�� + ��� = !��� + �� ∙ ∇iiJ!��� + 12 ;�� ∙ ∇iiJ<�!��� +⋯ 

 

Figure 4. A cartoon depicting the jittery motion of a point – like electron due 

absorption and emission of virtual photons. 
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And therefore, the average modified potential can be 

written as: 〈!�� + ���〉 
= 〈!���〉 + 〈��〉 ∙ ∇iiJ!��� + �� 〈;�� ∙ ∇iiJ<�〉 !��� + ⋯ (53) 

Since δr is an oscillator, 〈��〉 = 0 but its average square 

value: 

〈;�� ∙ ∇iiJ<�〉 = �̂ 〈���〉∇iiJ�            (54) 

Thus, equation (53) can take the form: 

〈!�� + ���〉 = 〈!���〉 + �Q 〈���〉∇iiJ�!���       (55) 

The perturbed potential is therefore: 

!³��� = �Q 〈���〉∇iiJ�!���          (56) 

We can determine the displacement δr by considering the 

lowest (or zeroth) energy level of the electromagnetic field 

quantized as a harmonic oscillator is 

� = 2� + 123 ℏ| 

where ħω is the quantum of energy and n the number of 

photons, n = 0 when there are no photons. Thus, there exists an 

energy given by 

�´ = 12ℏ| 

But if we have fluctuating electric and magnetic fields ℇ	and ℋ	respectively, then the fluctuating electric field is 

�´ = 18-��ℇ� +ℋ���| = ℇ0�4- Ω 

where 〈ℇ�〉¯ = 〈ℋ�〉¯  since we have a set of plane waves. 

From (54) and (55) we find: 

〈ℇ0�〉 = ��¹ ℏω               (57) 

To calculate the displacement δr of the electron motion, we 

consider the equation of motion of a simple harmonic 

oscillator of mass m and frequency ω, that is �» = −|��                  (58) 

If it is assumed that the electron is bound to the atom 

harmonically, then �|��� = −+ℇ0 ⟹ 	�� = − %�´� ℇ0               (59) 

Since ��  is an oscillation it means that 〈��〉¯ = 0 . 

Therefore its mean square oscillation is 

〈���〉¯ = %���´½ 〈ℇ0�〉¯ = ��¹ ħ%���´O        (60) 

The full mean square fluctuation is the result of 

non-coherent action of all components of the field, 〈��0�〉¯ = �〈���〉¯ �|��|	         (61) 

where  �|� is the density of states for the field and has the 

value 

 �|��| = Ω|��|-�.^  

Therefore, 

〈��0�〉¯ = �ħ%�����O � m´́¿́� 	            (62) 

This result is formally divergent, but there are physical 

factors that cut off the integral. At large frequencies there 

occurs the relativistic growth of the electrons mass; for small 

frequencies, ћω ≪ distance to the first excited state, the 

perturbation does not work.  

The divergence is only logarithmic so that it is sufficient to 

estimate those limits approximately, so we have ℏ|�(�~�.�; ℏ|��	~∆�¢Ãm&Ä§%	~�1����.� 

With these approximations we can evaluate the integral and 

have the mean square oscillation as 

〈�0�〉 = �ℏ%�����O S� w }�#e��x              (63) 

where f is a numerical factor. Since the electron wave function 

varies slowly over the nuclear volume, the energy level ∆En of 

an electron in a state ψn will depend partly on the expectation 

of the perturbed potential: 

Δ�	 = 16�∇iiJ�!���〈�0�〉|�	|��Ç 
The intensity of the wavefunction corresponding to s states 

is 

|�	�0�|� = 1^-�^/0̂  

The Laplacian of a potential (5) corresponding to a nucleus 

of charge density ρ0 is given by: 

∇iiJ�!��� = 4-+ 0 

Using equation (56), we can calculate the direct effect of 

vacuum fields’ fluctuation as 

Δ�	 = |�	| L̂��^ #�	 S� w }�#e��x           (64) 

where the use of equation (56) have been made. 

The Quantum mechanics calculation of vacuum field 

fluctuations due to Bethe [37, 38] results in an energy shifts: 

∆�	\� = |�	| L̂��^ #�	 S� w�ÈÉÊ�È�dx            (65) 

By virtue of the modified Dirac equation, Das and Sidharth 

[39] obtained the energy shift ∆E of frequency f ≈ 1056 MHz 
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which is very nearly equal to the Lamb shift. 

3.4. The Finite-Size Nucleus 

The atomic spectra are slightly affected by the finite-size of 

atomic nucleus. If the nucleus is being described as a 

finite-size source with a uniform distribution of charges of 

radius R, then the electron wave function can penetrate to r ≤ R, 

and thus the electron spends part of its time inside the nuclear 

charge distribution, there it feels a very different interaction 

and the potential for a finite-size nucleus is given as [9, 40, 

41]: 

!�Ë� = − #$%�Ì ��̂− �� &�Ì�
             (66) 

where R = r0A
1/3

, with r0 = 1.2 × 10
-15 

m. The magnitude of the 

nuclear size effect can be accurately calculated by the use of 

perturbation theory [42, 43]. 

 

Figure 5. The Finite-Size Nucleus. 

The energy level shifts ∆Enlm of an electron in a state ψnlm 

due to the finite size of nucleus can be calculated using (13) as 

Δ�	\� = ��	\�∗ Î!�Ë� − !���Ï�	\��Ç = #$%�M�Ì � Ð &��Ì� − Ì& − �̂Ñ |�	\�|�����              (67) 

The normalized wave function ψnlm is given by: 

�	\���, Ò, 9� = K� �	(�
^ �	B\B��!�	�	`\�!Na� +BÔÕ� ����\u	B\B��\`� ����Υ\��Ò, 9�                    (68) 

Regular solutions exist for n ≥ l + 1 and the lowest state 

with l = 1 (called a 2p state) occurs only with n = 2 [44, 45]. 

Thus, electrons can be grouped related to the quantum 

number n they occupy, as 1s, 2s, 2p, 3s, 3p, 3d, and so on. 

Taking the approximation r ≪ a0, i.e., e
-Zr/a0 

≈ 1 and for a 

constant wave function over the region of integration, the 

perturbative corrections in the states s, p and d can be obtain 

using the normalized wave function above as: 

Δ��00 = 1*+�Ë �× ��2Ë� − Ë� − 32> |��00|��Ç = 0.8|�^|Ø0 

Δ��00 = 1*+�Ë �× ��2Ë� − Ë� − 32> |��00|��Ç = 0.2|��|Ø� 

Δ���0 = 1*+�Ë �× ��2Ë� − Ë� − 32> |���0|��Ç = 0.008|��|Ø� 

Δ���Ù� = 1*+�Ë �× ��2Ë� − Ë� − 32> A���Ù�A��Ç = 0.008|��|Ø� 

Δ�^00 = 1*+�Ë �× ��2Ë� − Ë� − 32> |�^00|��Ç = 0.23|�^|Ø� 

Δ�^�0 = 1*+�Ë ��^�0∗ × ��2Ë� − Ë� − 32>�^�0�Ç = |�^|Ø� 

Δ�^�Ù� = 1*+�Ë �× ��2Ë� − Ë� − 32> A�^�Ù�A��Ç = 0.01|�^|Ø� 

Δ�^�0 = 1*+�Ë �× ��2Ë� − Ë� − 32> |�^�0|��Ç = 0.00002|�^|Ø^ 

Δ�^�Ù� = 1*+�Ë �× ��2Ë� − Ë� − 32> A�^�Ù�A��Ç = 0.0001|�^|Ø^ 

Δ�^�Ù� = 1*+�Ë �× ��2Ë� − Ë� − 32> A�^�Ù�A��Ç = 0.013|�^|Ø^ 
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This correction is therefore of order ξ = (R/a0)
2 
= 5 × 10

-10
. 

4. Results and Conclusions 

Table 1 showed spectral lines calculated using equation (7). 

The spectrum depends exclusively on the principal quantum 

number n since an electron is solely subject to the electrostatic 

influence of the nucleus. 

Table 1. The electromagnetic spectrum as described by Bohr. 

Transitions (n → m) λ (nm) Spectrum 

 Layman Series (n = 1) 

2 → 1 122.324 Ultraviolet 

3 → 1 103.209 Ultraviolet 

4 → 1 97.859 Ultraviolet 

5 → 1 95.565 Ultraviolet 

6 → 1 94.366 Ultraviolet 

7 → 1 93.653 Ultraviolet 

8 → 1 93.206 Ultraviolet 

9 → 1 92.895 Ultraviolet 

 Balmer Series (n = 2) 

3 → 2 660.550 Red 

4 → 2 489.296 Violet 

5 → 2 436.872 Violet 

6 → 2 412.844 Violet 

7 → 2 399.578 Violet 

8 → 2 391.562 Violet 

9 → 2 386.124 Violet 

 Paschen Series (n = 3) 

4 → 3 1887.718 Infrared 

5 → 3 1290.339 Infrared 

6 → 3 1101.359 Infrared 

7 → 3 1011.500 Infrared 

8 → 3 960.660 Infrared 

9 → 3 928.950 Infrared 

 Brackett Series (n = 4) 

5 → 4 4077.719 Infrared 

6 → 4 2642.371 Infrared 

7 → 4 2179.689 Infrared 

8 → 4 1957.395 Infrared 

9 → 4 1829.374 Infrared 

 Pfund Series (n = 5) 

6 → 5 7507.620 Infrared 

7 → 5 4683.161 Infrared 

8 → 5 3764.592 Infrared 

9 → 5 3320.417 Infrared 

 Series (n = 6) 

7 → 6 12448.184 Infrared 

8 → 6 7550.874 Infrared 

9 → 6 5945.763 Infrared 

 Series (n = 7) 

8 → 7 20969.855 Infrared 

9 → 7 11986.297 Infrared 

 Series (n = 8) 

9 → 8 27978.993 Infrared 

It can be observed from our results (34), (52), (64) and (69) 

that there is a deviation in the atomic spectra calculated from 

equation (7). Equation (34) showed that the combined energy 

shifts due to fine structure effect yield one formula in which l 

drops out. This showed that the fine structure effect depends 

on the principle quantum number, n and the total angular 

momentum, j and that the splitting between the j = l + ½ and 

the j = l – ½ states is of order (Zα)
2
En. 

Table 2 showed that with l = 0 and j = -½, both 1s1/2 and 

2s1/2 states, experience a energy shift, while with j = +½, both 

the former 2s1/2 state, and the latter 2p1/2 states share the same 

shift in energy and the pairs of states 3s1/2 and 3p1/2, and 3p3/2 

and 3d3/2 each remain degenerate while the state 3d5/2 is unique. 

The very small energy shift between the states: 2s1/2 and 2p1/2; 

3s1/2 and 3p1/2; 3p3/2 and 3d3/2 is known as the Lamb shift. 

The Lamb shift of 2S1/2 and 2P1/2 states for hydrogen atom 

(Z = 1) for n = 2 was measured from equation (64) as Δ�	 = 5.52 × 10BQ+~ 

And the corresponding frequency is ≈ 1023 MHz. Lamb and 

Retherford calculated the splitting using equation (65) and 

found that the 2S1/2 state is shifted by about 1000MHz. 

Table 2. The nuclear structure corrections to energies of n = 1, n = 2 and n = 

3 states of hydrogen atom. 

Orbitals 
Energy Shift (eV) 

Fine structure The Lamb Shift 

1S1/2 1.8115 × 10-4  

2S1/2 2.8305 × 10-6 
5.52 × 10-6 

2P1/2 2.8305 × 10-6 

2P3/2 8.4898 × 10-6  

3S1/2 2.4843 × 10-7 
The Lamb Shift 

3P1/2 2.4843 × 10-7 

3P3/2 7.4543 × 10-7 
The Lamb Shift 

3D3/2 7.4543 × 10-7 

3D5/2 1.7393 × 10-6  

 

Figure 6. The Fine Structure splitting and the Lamb shift, ∆En. 

Since the proton has spin ½, the quantum number f has 

possible values f = j + ½, j - ½. Hence every energy level 

associated with a particular set of quantum numbers n, l, and j 

will be split into two levels of slightly different energy, 

depending on the relative orientation of the proton magnetic 

dipole with the electron state. The energy separation of the 
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hyperfine interaction is given by (52). Therefore, for ground 

state of the hydrogen atom (n =1), the energy separation 

between the states of f = 1 and f = 0 is 5.9 × 10
-6

eV. The 

frequency of the photon emitted in a transition from the triplet 

to the singlet state is 

® = ∆�¢�Ú = 1420ª7Û 

with a corresponding to a wavelength of 

) = .® = 3 × 10BLm/s1420 × 10Q7Û = 21.� 

Thus, transitions between these levels occur at 21 cm. 

The corrections to energies of n = 1, n = 2 and n = 3 states of 

hydrogen atom due to finite – size charge distribution of 

nucleus were computed using the results obtained by equation 

(67) and the results are shown in Figure 7. 

 

Figure 7. The finite nuclear size corrections ∆�	\����  to energies of n = 1, n = 2 and n = 3 states of hydrogen atom with their corresponding values of l and m. 

Figure 7 shows the corrections factor for the 1s, 2s and 3s 

energy orbital is ξ and for the 2p and 3p energy orbital is ξ
2
 

while the 3d energy orbital has the correction factor of ξ
3
. 

Thus the effect of a finite size of the nucleus on energy level is 

largest in the lowest state, 1s electron than that in any other 

state. Next come 2s, 3s, 2p, 3p, 3d, etc. Non – s orbitals have a 

much smaller fraction inside the nucleus and so cause smaller 

perturbation, the energy shift is much smaller. The finite-size 

nucleus gives an extremely small effect on the 3d orbitals. 

The atomic spectra can be described in the first 

approximation by solving the Schrodinger equation for the 

electrons in the central potential which described the spectral 

terms by the principal quantum number n and the orbital 

angular momentum quantum number l. In the Schrödinger 

equation, the spin of the electron is not taken into 

consideration. 

Dirac using his equation describes the relativistic effects 

which in which the orbital angular momentum quantum 

numbers are further split into l ± ½ states due to a coupling 

between the electron spin s and orbital angular momentum. 

Consequently the spectral lines arising from transitions 

between the energy levels are each split into several lines. 

These effects play a significant role in systems containing 

heavy atoms.  

The solution of the Dirac version of Schrodinger equation 

leaves several states degenerate. However, Lamb and 

Retherford showed that, there is an energy shift in the 2S1/2 and 

2P1/2 caused by the interaction of the electron with the 

quantum radiation field and the corresponding frequency is 

measured as about 1000 MHz.  

In the first approximation, both Schrödinger and Dirac 

equation was derived based on the assumptions that the atomic 

nucleus has a point-like charge of infinite mass. The results 

obtained from the proton and neutron investigations [46-51] 

have been interpreted as evidence that the atomic nucleus is 

not truly point-like, instead exhibits finite-size structure in 

both its mass and charge distribution. Although the results 

obtained from this correction (Figure 7), is very small as 

compared to other effects, it will reflect on the nature of the 

atomic spectra. 

Atoms, molecules or ions absorb radiation in different 

regions of the electromagnetic spectrum in which the energy 

of such radiation is in proportion with its energy of 

wavelength. Thus, splitting or shifts in energy or wavelength 

will significantly alter the spectrum. 

Correct identification of nuclear structure effects in atomic 

transitions is very important in connection with accurate 

theoretical atomic or molecular structure calculations 

involving quantum chemistry, quantum physics or quantum 

electrodynamics corrections. This can be tested in 
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high-precision experiments. 
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