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Abstract: The decay rates of 
	���	
� mesons, consisting of a quark-anti quark, as a weak decay in the presence of strong 

interactions have been studied by means of the Effective Hamiltonian Theory. One of the most important key factors for 

calculating Effective Hamiltonian is Wilson coefficients. In this paper, effective Wilson coefficients in renormalization scale 

� = 1
�� are calculated. 
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1. Introduction 

One of the successful models in particle phenomenology is 

the quark model which is applied to calculate the decays of 

various particles with a few differences. The particles called 

kaons, or K mesons, were first observed in the late 1940s in 

cosmic-ray experiments. By today’s standards, they are 

common, easily produced, and well understood. Over the last 

four decades research into how kaons decay has played a 

major role in the development of the Standard Model. Yet, 

after all this time, kaon decays may still prove to be a 

valuable source of new information on some of the remaining 

fundamental questions in particle physics. 

When first observed, kaons seemed quite mysterious. 

Experiments showed that they were produced in reactions 

involving the strong force, or strong interaction—the most 

powerful of the four fundamental forces in nature—but that 

they did not decay (that is, transform into two or more less 

massive particles) through the strong interaction. This is 

because kaons have a property, ultimately labeled 

“strangeness,” which is conserved in the strong interaction 

[10]. 

One of the most interesting and unique observed particles 

in the nature is kaon. There are two neutral kaons which are, 

in fact, strange mesons. 

( )
( )

k ds s 1

k sd s 1

= = −

= = +

�

�
                         (1-1) 

s  is the Eigenvalue of the strange state. Since each kaon 

under CP effect turns into another kaon, neither of these 

kaons have determined CP number. k�  and k �  are not 

eigenstate of CP. However, when CP acts on them, they are 

conjugate of each other. 

CP k k

CP k k

= −

= −

� �

� �
                          (1-2) 

 

But theorists can make a pair kaon with determined CP 

from combination of wave function k� and k � .According to 

Quantum Mechanics rules, these combinations corresponding 

with real particles and have a mass and determined lifetime. 

Therefore normalized eigenstate CP are [3, 9]: 
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So, 
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                 (1-4) 

1
k  just can decays to CP 1= +  state, while 2

k  should go 

to CP 1= −  state. Neutral kaons usually decay to two or 

three pions. Arrangement of two pions has +1 parity and 

three pions system has -1 parity and both of them have a 

C 1= + . As a result, 1
k  decays to two pions and 2

k  decays 

to three pions [11]. 

1

2

k 2

k 3

→ π
→ π

                                 (1-5) 

Since a kaon has hardly enough mass to produce three 

pions, two pion decays are fast but three pion decays are 

longer. Observed lifetimes are about 1010 s−  and 710 s− , 

respectively [3, 12]. 

K  mesons decay as a weak decay in the presence of 

strong interactions requires a special approach. The main tool 

to investigate these decays is the effective Hamiltonian 

theory. Beginning of any phenomenological weak decay of 

hadrons is the effective weak Hamiltonian that its structure is 

as follows [4, 6]: 

iF

eff CKM i i

i

G
H V C ( )Q

2
= µ∑                 (1-6) 

Where F
G  is the Fermi constant that in terms of the w

g  

weak coupling constant and W  boson mass is defined as 

follows: 

2

wF

2

W

gG

8M2
=                             (1-7) 

And i
Q  are the local operators that decays discussed in 

turn controlled. 
i

CKMV  Cabibbo – Kobayashi – Maskawa 

factors and i
C  Wilson  Coefficients are described the force 

with which an operator enters the Hamiltonian. In fact, the 

effective point-like vertices are represented by local operators 

can correct picture of the decay of hadrons with a mass of the 

order of b c
O(m , m )  a better way to provide. i

C  The Wilson 

coefficients to be used as coupling constants (depending on 

scale) corresponding to the vertices are considered. Select the
µ  scale is optional, but it is customary that to choice µ  the 

order of the mass of hadrons decay, eg for B and D  mesons 

decays, the value of µ  are respectively the order of b
m  and 

c
m . For kaon decays the common choice of µ  is the order of 

1 2 Gev−  instead of K
m  order [1]. 

2. Theoretical Framework 

In this paper, Wilson coefficients of �	 quark and �̅ 

antiquark decays are calculated [2]. General framework of 

how to calculate Wilson coefficients is based on that (1-6) 

equation which has already been mentioned in the 

introduction. Effective Hamiltonian of the � → �� transition 

is defined as follows [2]. 

( )
10

*F

eff ud us i i

i 1

G
H S 1 V V C ( )Q ( ) h.c.

2 =

 ∆ = = µ µ + 
 
∑     (2-1) 

In this equation, 
�  is the Fermi constant and ��  is the 

local operator which controls the decay. ��	  coefficients are 

showed Wilson coefficients. The overall structure of the 

Wilson coefficients is as follow: 

i i i
C ( ) Z ( ) y ( )µ = µ + τ µ                      (2-2) 

In this equation � is defined as follows: 

*

td ts

*

ud us

V V

V V

−
τ =                               (2-3) 

In the τ equation 	���,	��� , ���	 and ��� are the elements of 

the Cabibbo – Kobayashi – Maskawa matrix. Cabibbo – 

Kobayashi – Maskawa matrix is a unitary matrix which 

contains information on the strength of flavor changing weak 

decays. Technically, it specifies the mismatch of quantum 

states of quarks when they propagate freely and when they 

take part in the weak interactions [3, 13].  

ud us ub

CKM cd cs cb

td ts tb

V V V

V V V V

V V V

 
 =  
 
 

                  (2-4) 

�
!  matrix is the 3 × 3  matrix, since there are three 

generations of quarks, which Kobayashi and Maskawa in 

1973 stated that the third generation of quarks to the matrix, 

mixed phases that, if not zero, it is symmetry breaking. If this 

phase is virtually zero, to explain the CP failure must seek 

something beyond the standard model. 

Several methods have been proposed for 	�
!  matrix 

parameterization which among them to discuss the 

introduction of standard parameterization. 

i

12 13 12 13 13

i i

CKM 12 23 12 23 13 12 23 12 23 13 23 13

i i

12 23 12 23 13 12 23 12 23 13 23 13

c c s c s e

V s c c s s e c c s s s e s c

s s c s s e c s s c s e c c

− δ

δ δ

δ δ

 
 

= − − − 
 − − − 

                                     (2-5) 

In which, 
ij ijc cos= θ

 
and 

ij ijs sin= θ  for i, j 1, 2, 3= . δ  

is the phase which is in the range of 2≤ δ ≤ π� . Matrix 

elements are calculated by using the following data [14]: 
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12

13

23

0.221

0.0035

0.041

2

θ =
θ =
θ =

πδ =

                                (2-6) 

CKM

0.9756 0.2192 0.0034i

V 0.2190 0.000135i 0.9747 0.000030i 0.4089

0.0089 0.003410i 0.0399 0.000760i 0.9990

− 
 = − − − 
 − − − 

 (2-7) 

To obtain � quark decay rate, we need the effective Wilson 

coefficients of the tree and penguin decay. The effective 

Wilson coefficients can be defined as follows [3]: 

eff eff eff

i i iC ( ) Z ( ) y ( )µ = µ + τ µ                 (2-8) 

Here $�
%&&

(�) are defined ��	)*++*,�	[2]: 

( ) ( )

( )

( )

( )
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7 7 V V i e

7i
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9 9 V V i

9i
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4 8
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4 8
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4
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4
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α µ µ = µ + γ + µ π µ 

( )

e

0 Teff Ts f
10 10 V V i

10i

C
8

ˆZ ( ) Z ( ) ln r Z ( )
4

α+
π

α µ 
µ = µ + γ + µ π µ 

 (2-9) 
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0 Teff Ts sf
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0 Teff Ts sf

4 4 V V i
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4
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α αµ µ = µ + γ + µ + π µ π 
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5 5 V V i t p
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C C
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4 24

+
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In these equations, 1 is matrix transpose operator. Matrix 

with variable dimensions 23

(4)
 and constant matrix 

Vr̂ are 

obtained from correction of �5 − �54 operators’ vertex. Also, 

the values of	�%	, �7	 and �� are extracted from ��8 Penguin 

diagram, �5,9  operators and QCD Penguin diagram, �: −

�; operators and electroweak penguin diagrams �< − �54 , 

respectively.  

( )
( ) ( ) ( )( )

( )( )

( ) ( )

t u 1

p s d 3 i 4 6

i u,d,s

e u 1 2

q q

C G m Z

C G m G m Z G m Z Z

8
C G m Z 3Z

9

2
G m G m ,k,

3

=

=

 = + + + 

= +

= κ − µ

∑

ɶ

ɶ ɶ ɶ

ɶ

ɶ

    (2-10) 

In which, = is parameter that in dimensional regulation, 

describes dependency 2>  model. For example, in 2>	 

model 	we have Naïve Dimensional Regularization (?8@) 

and Hooft-Veltman	(A�): 

1 NDR

0 HV


κ = 


                            (2-11) 

Function 
(B, �, �)  in (2-6) equations is defined as 

follows: 

( ) ( ) ( )2 2
1

20

m k x 1 x
G m,k, 4 dx x 1 x ln

 − −
µ = − −   µ 

∫      (2-12) 

In which �9  is the square of the momentum carried by 

virtual gluons. 	Ĉ  Matrix in (2-9) equations gives constant 

terms; they are independent of the momentum that is based 

on the 2> behavior in the dimensional regularization. For the 

kaon decays, there was no heavy quark mass scale between 

BE  and 	BF . Therefore, logarithmic term arising from 

corrections four quarks operations vertex to ln �& �⁄  form 

will be like (2-9) equation. We will assume that �& = 1	
�� 

as a reliable estimate obtained of destruction effects the 

effective Wilson coefficients. As a result, we have [2, 4]: 

( )0

2 6 0 0 0 0 0 0 0 0

6 2 0 0 0 0 0 0 0 0

0 0 2 6 0 0 0 0 0 0

0 0 6 2 0 0 0 0 0 0

0 0 0 0 2 6 0 0 0 0

0 0 0 0 0 16 0 0 0 0

0 0 0 0 0 0 2 6 0 0

0 0 0 0 0 0 0 16 0 0

0 0 0 0 0 0 0 0 2 6

0 0 0 0 0 0 0 0 0 2

− 
 − 
 −
 

− 
 −
 γ =

− 
 −
 
 −
 − 
 − 

                                         (2-13) 
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NDR

3 9 0 0 0 0 0 0 0 0

9 3 0 0 0 0 0 0 0 0

0 0 3 9 0 0 0 0 0 0

0 0 9 3 0 0 0 0 0 0

0 0 0 0 1 3 0 0 0 0
r̂

0 0 0 0 3 1 0 0 0 0

0 0 0 0 0 0 1 3 0 0

0 0 0 0 0 0 3 1 0 0

0 0 0 0 0 0 0 0 3 9

0 0 0 0 0 0 0 0 9 3

− 
 − 
 −
 

− 
 −
 =

− 
 −
 
 −
 − 
 − 

                                                   (2-14) 

HV

7 7 0 0 0 0 0 0 0 0
3

77 0 0 0 0 0 0 0 0
3

70 0 7 0 0 0 0 0 0
3

70 0 7 0 0 0 0 0 0
3

0 0 0 0 3 9 0 0 0 0
r̂

10 0 0 0 1 0 0 0 0
3

0 0 0 0 0 0 3 9 0 0

10 0 0 0 0 0 1 0 0
3

70 0 0 0 0 0 0 0 7
3

70 0 0 0 0 0 0 0 7
3

 −
 
 −
 
 − 
 

− 
 

− 
 =
 −
 
 −
 
 −
 
 − 
 
 −
 

                                (2-15) 

3. Conclusion 

Table 1. $�

%&&
 in renormalization scale � = 1
��. 

 NDR  HV  ( )eff

i
Z NDR  ( )eff

i
Z HV  

1Z  1.278  1.371  1.718  1.713  

2Z  0.509−  0.640−  1.113−  1.110−  

3Z  0.013  0.007  0.032  0.032  

4Z  0.035−  0.017−  0.081−  0.084−  

5Z  0.008  0.004  0.024  0.025  

6Z  0.035−  0.014−  0.086−  0.086−  

Table 2. J�

%&&
 in renormalization scale � = 1
��. 

 NDR  HV  ( )eff

i
y NDR  ( )eff

i
y HV  

1y  0  0  0  0  

2y  0  0  0  0  

3y  0.031  0.036  0.050  0.049  

4y  0.056−  0.059−  0.053−  0.053−  

5y  0.001−  0.016  0.003  0.002  

6y  0.109−  0.096−  0.160−  0.138−  

Table 3. The effective Wilson coefficients in renormalization scale µ=1GeV. 

 ( )eff

i
C NDR  ( )eff

i
C HV  

eff

1
C  1.718  1.713  

eff

2
C  1.113−  1.110−  

eff

3
C  0.0320834 0.0000335139i−  0.0320817 0.0000328436i−  

eff

4
C  0.0810884 0.0000355247i− +  0.0840884 0.0000355247i− +  

eff

5
C  6

0.024005 2.01083 10 i
−− ×  6

0.0250033 1.34056 10 i
−− ×  

eff

6
C  0.0862669 0.000107244i− +  0.0862302 0.0000924984i− +  

By using the effective Lagrangian density of the weak 

interaction, we can calculate decay rate in tree level. 

Furthermore, decay rates of S quark –anti quark can be 

calculated in tree and penguin level by the use of the 

effective Hamiltonian Theory. This is possible by the means 

of Effective Wilson coefficients.  

In this paper, Effective Wilson coefficients are calculated. 

In table 1 $�
%&&

 values were calculated. Moreover, the 

numerical values of J�
%&&

 are showed in the table 2 [5]. In 

conclusion, Table 3 shows calculated values for the effective 

Wilson coefficients for the decay of �	quark and �	�antiquark 

in renormalization scale µ=1GeV. 
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